JPH0118141B2 - - Google Patents

Info

Publication number
JPH0118141B2
JPH0118141B2 JP55159598A JP15959880A JPH0118141B2 JP H0118141 B2 JPH0118141 B2 JP H0118141B2 JP 55159598 A JP55159598 A JP 55159598A JP 15959880 A JP15959880 A JP 15959880A JP H0118141 B2 JPH0118141 B2 JP H0118141B2
Authority
JP
Japan
Prior art keywords
alloy
hot workability
oxidation resistance
less
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159598A
Other languages
Japanese (ja)
Other versions
JPS5785958A (en
Inventor
Motoaki Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15959880A priority Critical patent/JPS5785958A/en
Publication of JPS5785958A publication Critical patent/JPS5785958A/en
Publication of JPH0118141B2 publication Critical patent/JPH0118141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は加熱炉のメツシユベルト用合金に係
り、特に熱間加工性ならびに耐熱・耐酸化性に優
れ、ことに加工度の高い加熱炉部品であるメツシ
ユベルトの素材として適した加熱炉のメツシユベ
ルト用合金に関する。 耐熱・耐酸化用鋼としては、JIS G 4311(鋼
棒)およびJIS G 4312(鋼板)に規定される
SUH記号およびSUS記号のものがある。それら
のうち、例えばSUH310はオーステナイト系であ
つて、主として耐熱・耐酸化用に適しているとさ
れている。しかしながら、Ni含有量が少なく、
高温で長時間使用中にσ相が析出して脆化するお
それがあると共に、浸炭抵抗力が劣り、例えば加
熱炉用のメツシユベルトの如き耐熱部品には使用
されているものの満足できる性能ではない。 また、耐熱・耐酸化性を向上させ、高温での長
時間使用に際しても脆化を生じないようにした耐
熱合金(商品名:Alloy DS、表1のNo.7参照)
も開発されている。この合金は耐浸炭性にも優れ
ていると共に、熱膨張率が小さいので、上記加熱
炉炉用のメツシユベルトの如く、使用中に加熱・
冷却が頻繁に繰り返される用途に適しているとも
いえるが、しかしながら、高Si含有量のために熱
間加工性に劣るので、例えば上記加熱炉用のメツ
シユベルトの如く加工度の高い製品には適さない
という欠点を有している。 本発明の目的は、上述した従来技術の欠点を解
消し、熱間加工性ならびに耐熱・耐酸化性に優れ
た耐熱合金を提供することにある。 本発明に係る加熱炉のメツシユベルト用合金
は、重量%で、C(炭素):0.01〜0.15未満%、Si
(ケイ素):0.1超過〜2%、Mn(マンガン):0.3
〜2%、Ni(ニツケル):35超過〜45%、Cr(クロ
ム):18〜21未満%、B(ホウ素):0.0005〜0.01
%、およびCa(カルシウム):0.001〜0.01%、Mg
(マグネシウム):0.001〜0.04%、REM(希土類元
素):0.005〜0.05%のうちの1種または2種以上
を含み、さらに必要に応じてTi(チタン):0.3%
以下、Nb+Ta(ニオブ+タンタル):0.3%以下、
Zr(ジルコニウム):0.3%以下、V(バナジウ
ム):0.3%以下のうちの1種または2種以上を含
み、残部Feおよび不可避的不純物からなること
を特徴としている。 以下、各成分範囲の限定理由について詳細に説
明する。 Niは、高温での長時間使用に対して安定した
オーステナイト組織を作り、高温強度を向上させ
るために必要な元素であつて、このような効果を
より確実に得るためには35%を超えて添加するこ
とが必要である。このNi添加は浸炭に対する抵
抗力を増すと共に、Ni量の増加につれて熱膨張
係数を低下させる。したがつて、加熱・冷却が頻
繁に繰り返される加熱炉のメツシユベルト用の素
材として適したものとすることができるが、Ni
は高価であるため、その上限を45%に抑える。 Crは、耐酸化性ならびに耐硫化性を得るため
に不可欠な元素であつて、そのためには18%以上
添加することが必要である。このCrの添加によ
つて高温強度を増加させることができるが、過剰
の添加によつて耐酸化性ならびに耐硫化性を低下
させると共に、高温での長時間使用時にσ相を生
じて脆化を来たすおそれがあるため、このような
不具合の発生をより確実に防止するために21%よ
りも少ないものとする。 Siは、耐酸化性を増大させ、とくに耐浸炭性を
高めるのに有効な元素であると同時に、すぐれた
脱酸作用を有する元素であり、このような効果を
より確実に得るためには1.0%よりも多く添加す
ることが必要である。このSiは耐酸化性合金に好
んで添加されるが、これは、スケール部分の元素
分布を調べた場合に、スケールと基地との境界付
近にSiが濃縮して、スケールと基地との間の密着
性を改善し、スケールの耐スポーリング性を向上
させて耐酸化性を向上させることによる。この耐
酸化性の向上はSi添加量が少なすぎると望むこと
ができず、また脱酸作用を発揮させる必要から、
1.0%を超えて添加することがとくに好ましい。
この耐酸化性の向上は、Si量の増加と共に著しく
増大するが、2%を越えると耐酸化性の向上の傾
向は緩やかとなる。また、Si添加量が2%を越え
ると熱間加工性が低下し、使用中に700〜850℃の
高温において長時間保持されると、粒界にσ相を
生じて脆くなる傾向がある。そのため、Siの上限
を2%とする。 Mnは、Crと共に緻密なスケールを生成し、と
くに加熱・冷却を受けやすい加熱炉のメツシユベ
ルトの素材として使用した場合に、加熱・冷却時
におけるスケールのスポーリングを生じにくくす
るのに有効な元素である。また、熱間加工性を向
上させると共に、すぐれた脱酸作用をもつ元素で
もある。したがつて、これらの効果を発揮させる
ためには少なくとも0.3%以上添加することが必
要である。しかし、過剰に添加すると耐酸化性を
低下させるので、その上限を2%とする。 Cは、高成温強度を増大すると共に、結晶粒度
を微細化しスケールの密着性を増すのに有効な元
素であつて、そのためには0.01%以上添加するこ
とが必要である。しかし、Cの添加量が多くなる
と、粒界においてCrを含む炭化物(M23C6)の生
成量が増加し、これに沿つて粒界酸化を生ずる傾
向を増すとともに炭化物(M23C6)の生成によつ
て熱間加工性を阻害し、また、スケールと基地と
の間隙部分にCOガスを生成してスケールの密着
性を損なう傾向が増大する。それゆえ、このよう
な不具合の発生をより確実に防止するためにCの
上限を0.15%未満とする。 Bは、結晶粒界における空孔を埋めることによ
つて粒界析出部位をなくすので、熱間加工性を阻
害する原因となる炭化物(M23C6)の析出を遅ら
す作用がある。このため、熱間加工性とくに比較
的低温側における加工性を向上させる。また、高
温で長時間保持した場合のσ相の生成を抑制する
効果もある。そして、これらの効果は0.0005%の
添加で認められるが、0.01%を越えて添加する
と、粒界に低融点共晶が生成され、粒界酸化を促
進するので耐酸化性が低下する。したがつて、B
は0.0005〜0.01%の範囲とする。 Ca、Mg、REMは、Bとの複合添加によつて
熱間加工性を著しく向上する。これらの元素は、
製鋼過程で強力な脱硫作用を発揮すると共に、粒
界における不純物元素と結合して安定な形にし、
粒界を清浄化する効果があり、とくに高温側にお
ける熱間加工性を改善する。したがつて、前記B
の添加効果とあわせて、低温側から高温側に至る
広い範囲で熱間加工性を向上させる。さらに、
Ca、Mg、REMは、スケールの密着性を著しく
向上させて耐酸化性の増大に寄与する。すなわ
ち、これらの元素はスケールと基地との境界部分
に緻密な保護被膜を作つてCやNの移動を阻止す
るので、スポーリングの原因となるCOやN2ガス
の生成を抑制して、スケールの密着性を著しく向
上させる。他方、Ca、Mg、REMの添加量が多
すぎると、低融点のNi系金属化合物が生成され
て熱間加工性を低下するので好ましくなく、加え
て、過剰添加により粒界に沿つて内部酸化が進行
して耐酸化性が損なわれるようになる。したがつ
て、以上の理由から、Ca量が0.001〜0.01%、Mg
量が0.001〜0.04%、REM量が0.005〜0.05%の範
囲でこれらの1種または2種以上を添加する。 Ti、Nb+Ta、Zr、Vは、Cを固定すること
によつて粒界にCrを含む炭化物(M23C6)が生成
されるのを防止し、この生成による脆化を防ぐと
共に、上記炭化物に沿つて粒界酸化を生じるのを
防止して耐酸化性を向上させるのに有効な元素で
あるが、過剰添加ではσ相の生成が助長されるの
で好ましくない。したがつて、Ti、Nb+Ta、
Zr、Vをいずれも0.3%以下の範囲で、これらの
1種または2種以上を必要に応じて添加する。 実験例 塩基性電気炉を用いて、表1に示すNo.1〜10の
各化学成分割合になるインゴツトを溶製した。こ
のとき、CaはNii−5%Ca合金、MgはNi−5%
Mg合金、REMはミツシユメタルとしてそれぞれ
添加した。
The present invention relates to an alloy for mesh belts in heating furnaces, and particularly to an alloy for mesh belts in heating furnaces that has excellent hot workability, heat resistance, and oxidation resistance, and is particularly suitable as a material for mesh belts, which are heating furnace parts that are highly processed. . Heat-resistant and oxidation-resistant steels are specified in JIS G 4311 (steel bars) and JIS G 4312 (steel plates).
There are SUH symbol and SUS symbol. Among them, SUH310, for example, is austenitic and is said to be mainly suitable for heat resistance and oxidation resistance. However, the Ni content is low,
During long-term use at high temperatures, there is a risk of precipitation of the σ phase and embrittlement, and the carburization resistance is poor, so although it is used in heat-resistant parts such as mesh belts for heating furnaces, its performance is not satisfactory. In addition, it is a heat-resistant alloy with improved heat resistance and oxidation resistance that prevents embrittlement even when used at high temperatures for long periods of time (product name: Alloy DS, see No. 7 in Table 1).
has also been developed. This alloy has excellent carburization resistance and has a small coefficient of thermal expansion, so it can be heated and
Although it can be said to be suitable for applications where cooling is frequently repeated, it has poor hot workability due to its high Si content, so it is not suitable for highly processed products such as the mesh belt for the heating furnace mentioned above. It has the following drawbacks. An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a heat-resistant alloy that has excellent hot workability, heat resistance, and oxidation resistance. The mesh belt alloy for a heating furnace according to the present invention has, in weight percent, C (carbon): 0.01 to less than 0.15%, Si
(Silicon): over 0.1 ~ 2%, Mn (manganese): 0.3
~2%, Ni (nickel): over 35~45%, Cr (chromium): 18~less than 21%, B (boron): 0.0005~0.01
%, and Ca (calcium): 0.001-0.01%, Mg
Contains one or more of (magnesium): 0.001-0.04%, REM (rare earth element): 0.005-0.05%, and optionally Ti (titanium): 0.3%.
Below, Nb + Ta (niobium + tantalum): 0.3% or less,
It is characterized by containing one or more of the following: Zr (zirconium): 0.3% or less, V (vanadium): 0.3% or less, and the remainder consists of Fe and inevitable impurities. The reason for limiting each component range will be explained in detail below. Ni is a necessary element to create a stable austenite structure for long-term use at high temperatures and improve high-temperature strength. It is necessary to add This Ni addition increases the resistance to carburization and lowers the coefficient of thermal expansion as the amount of Ni increases. Therefore, it can be suitable as a material for mesh belts in heating furnaces where heating and cooling are frequently repeated.
is expensive, so the upper limit is set at 45%. Cr is an essential element for obtaining oxidation resistance and sulfidation resistance, and for this purpose it is necessary to add 18% or more. The addition of Cr can increase high-temperature strength, but excessive addition reduces oxidation resistance and sulfidation resistance, and also causes σ phase and embrittlement during long-term use at high temperatures. Therefore, in order to more reliably prevent such problems from occurring, the ratio should be less than 21%. Si is an element that is effective in increasing oxidation resistance, especially carburization resistance, and at the same time has an excellent deoxidizing effect. It is necessary to add more than %. This Si is preferably added to oxidation-resistant alloys, but this is because when examining the element distribution in the scale part, Si is concentrated near the boundary between the scale and the base, and the Si is concentrated near the boundary between the scale and the base. By improving adhesion, improving scale spalling resistance, and improving oxidation resistance. This improvement in oxidation resistance cannot be expected if the amount of Si added is too small, and it is necessary to exert a deoxidizing effect.
It is particularly preferable to add more than 1.0%.
This improvement in oxidation resistance increases significantly as the amount of Si increases, but when it exceeds 2%, the tendency for improvement in oxidation resistance becomes gradual. Furthermore, if the amount of Si added exceeds 2%, hot workability decreases, and if the steel is kept at a high temperature of 700 to 850° C. for a long time during use, it tends to form a σ phase at grain boundaries and become brittle. Therefore, the upper limit of Si is set to 2%. Mn produces dense scale together with Cr, and is an effective element to prevent scale spalling during heating and cooling, especially when used as a material for mesh belts in heating furnaces that are susceptible to heating and cooling. be. It is also an element that improves hot workability and has an excellent deoxidizing effect. Therefore, in order to exhibit these effects, it is necessary to add at least 0.3% or more. However, if added in excess, the oxidation resistance will be reduced, so the upper limit is set at 2%. C is an effective element for increasing high-temperature strength, refining grain size, and increasing scale adhesion, and for this purpose, it is necessary to add 0.01% or more. However, when the amount of C added increases, the amount of carbides (M 23 C 6 ) containing Cr increases at the grain boundaries, and along with this, the tendency to cause grain boundary oxidation increases, and the amount of carbides (M 23 C 6 ) increases. The generation of CO gas impairs hot workability, and there is an increased tendency for CO gas to be generated in the gap between the scale and the base, impairing the adhesion of the scale. Therefore, in order to more reliably prevent the occurrence of such problems, the upper limit of C is set to less than 0.15%. Since B eliminates grain boundary precipitation sites by filling vacancies at grain boundaries, B has the effect of delaying the precipitation of carbides (M 23 C 6 ) that are a cause of inhibiting hot workability. Therefore, hot workability, particularly workability at relatively low temperatures, is improved. It also has the effect of suppressing the formation of σ phase when held at high temperature for a long time. These effects are observed when added at 0.0005%, but when added in excess of 0.01%, low melting point eutectic is generated at grain boundaries, promoting grain boundary oxidation, resulting in a decrease in oxidation resistance. Therefore, B
shall be in the range of 0.0005 to 0.01%. When Ca, Mg, and REM are added in combination with B, hot workability is significantly improved. These elements are
In addition to exerting a strong desulfurization effect during the steelmaking process, it combines with impurity elements at grain boundaries to form a stable form.
It has the effect of cleaning grain boundaries and improves hot workability, especially on the high temperature side. Therefore, the above B
Together with the effect of adding , it improves hot workability over a wide range from low temperature to high temperature. moreover,
Ca, Mg, and REM significantly improve scale adhesion and contribute to increased oxidation resistance. In other words, these elements form a dense protective film at the boundary between the scale and the base and prevent the movement of C and N, suppressing the production of CO and N2 gases that cause spalling, and reducing the scale. significantly improves adhesion. On the other hand, if the amount of Ca, Mg, or REM added is too large, a Ni-based metal compound with a low melting point will be formed, which will reduce hot workability, which is undesirable.In addition, excessive addition will cause internal oxidation along grain boundaries. progresses and oxidation resistance is impaired. Therefore, for the above reasons, the amount of Ca is 0.001 to 0.01%, Mg
One or more of these are added in an amount of 0.001 to 0.04% and an amount of REM of 0.005 to 0.05%. By fixing C, Ti, Nb + Ta, Zr, and V prevent the formation of carbides containing Cr (M 23 C 6 ) at grain boundaries, prevent embrittlement caused by this formation, and Although it is an effective element for preventing grain boundary oxidation along the lines and improving oxidation resistance, excessive addition is not preferable because it promotes the formation of the σ phase. Therefore, Ti, Nb+Ta,
If necessary, one or more of these Zr and V may be added within a range of 0.3% or less. Experimental Example Using a basic electric furnace, ingots having the respective chemical component ratios Nos. 1 to 10 shown in Table 1 were melted. At this time, Ca is Ni-5%Ca alloy, Mg is Ni-5%
Mg alloy and REM were each added as Mitsushi metal.

【表】【table】

【表】 次に、上記インゴツトを1200℃に均熱したのち
圧延分塊をおこなつて90mm角のビレツトに作成し
た。この圧延の際、ビレツトコーナー部は温度低
下しやすいため、加工性が低下する傾向にある
が、なかでも比較合金7,8,10はコーナー部
の割れが著しく、低い歩留りを示した。また比較
合金9は上記比較合金7,8,10に比べて若干
コーナー割れが減少していた。これに対して、本
発明合金1〜6ではコーナー割れを全く生じなか
つた。 次いで、上記ビレツトからサンプリングをおこ
ない、直径6.4mm×長さ110mmの供試材を各々合金
毎に切り出してグリーブル型高速引張試験機によ
り引張試験をおこない、熱間加工性の良否を調べ
た。その結果を第1図に示す。 第1図から明らかなように、本発明合金1,2
はいずれもとくに低温側における延性が高いこと
を示しており、例えば加熱炉用のメツシユベルト
の加工を比較的低温において容易にできることが
確認された。本発明合金3についてもほぼ同様の
結果を得ることができ、第1発明合金1〜3がす
ぐれた熱間加工性を有することがわかつた。ま
た、第2発明合金4〜6(第1図では代表して合
金4の結果を示す)についてもすぐれた熱間加工
性を有することが確かめられた。 これに対して、比較合金7は高Si含有量のため
に熱間加工性が最も劣つていた。また、比較合金
9はB添加によつて熱間加工性が改善され、比較
合金7〜10の中では最もすぐれていたが、それ
でも本発明合金1〜6に比べてかなり熱間加工性
が劣つていることが確認された。 今度は、大気中における連続加熱試験(試験温
度1000℃)をおこなつて酸化増量を測定すること
により耐酸化性の良否を調べた。その結果を第2
図に示す。 第2図から明らかなように、本発明合金1,2
はいずれも非常にすぐれた耐酸化性を示し、比較
合金7に匹敵する値を示した。なお、前述した如
く比較合金7は熱間加工性に劣つているので、加
工度の高い耐熱部品である加熱炉のメツシユベル
トには適さない。また、本発明合金3についても
ほぼ同様の結果を得ることができ、第1発明合金
1〜3がいずれもすぐれた耐酸化性を具備するこ
とが確かめられた。また、第2発明合金4〜6
(第2図では代表して4の結果を示す)について
もすぐれた耐酸化性を有することが確かめられ
た。これに対して、比較合金8,9,10はいず
れも耐酸化性についてあまり好ましくない結果を
得た。 さらに今度は、長時間時効処理による靭性の変
化を調べた。その結果を表2に示す。この試験で
はJIS Z 2202に定める4号試験片(2mm、Vノ
ツチ)を作成してシヤルピー衝撃試験機により衝
撃値を測定した。
[Table] Next, the above ingot was soaked at 1200°C and then rolled and bloomed to form a 90 mm square billet. During this rolling, the temperature at the billet corner portions tends to drop, which tends to reduce workability, but Comparative Alloys 7, 8, and 10 in particular had significant cracking at the corner portions and exhibited low yields. Furthermore, Comparative Alloy 9 had slightly fewer corner cracks than Comparative Alloys 7, 8, and 10. On the other hand, in the alloys 1 to 6 of the present invention, corner cracks did not occur at all. Next, samples were taken from the billet, and test materials of 6.4 mm in diameter and 110 mm in length were cut out for each alloy and subjected to a tensile test using a Greeble type high-speed tensile tester to examine the quality of hot workability. The results are shown in FIG. As is clear from FIG. 1, alloys 1 and 2 of the present invention
All of these materials show particularly high ductility on the low-temperature side, and it was confirmed that mesh belts for heating furnaces, for example, can be easily processed at relatively low temperatures. Almost similar results were obtained for Invention Alloy 3, and it was found that First Invention Alloys 1 to 3 had excellent hot workability. It was also confirmed that the second invention alloys 4 to 6 (Figure 1 shows the results for alloy 4 as a representative) had excellent hot workability. In contrast, Comparative Alloy 7 had the poorest hot workability due to its high Si content. In addition, although Comparative Alloy 9 had improved hot workability due to the addition of B and was the best among Comparative Alloys 7 to 10, it still had considerably poorer hot workability than Invention Alloys 1 to 6. It was confirmed that it was on. Next, we conducted a continuous heating test in the atmosphere (test temperature: 1000°C) and measured the oxidation weight gain to examine the quality of the oxidation resistance. The result is the second
As shown in the figure. As is clear from FIG. 2, the alloys 1 and 2 of the present invention
All exhibited excellent oxidation resistance, with values comparable to Comparative Alloy 7. As mentioned above, Comparative Alloy 7 has poor hot workability, and is therefore not suitable for mesh belts in heating furnaces, which are heat-resistant parts that require a high degree of workability. Furthermore, almost similar results were obtained for Invention Alloy 3, and it was confirmed that All Invention Alloys 1 to 3 had excellent oxidation resistance. In addition, second invention alloys 4 to 6
(Figure 2 shows the results of 4 as a representative) was also confirmed to have excellent oxidation resistance. On the other hand, comparative alloys 8, 9, and 10 all obtained less favorable results in terms of oxidation resistance. Furthermore, we investigated changes in toughness due to long-term aging treatment. The results are shown in Table 2. In this test, a No. 4 test piece (2 mm, V-notch) specified in JIS Z 2202 was prepared, and the impact value was measured using a Sharpie impact tester.

【表】 表2に示す結果から明らかなように、本発明合
金1〜6および比較合金8,9はいずれも靭性の
低下が比較的小さいのに対して、比較合金7は高
Si含有量であるために組織が不安定になつて靭性
の低下が大きく、比較合金10は高Cr低Niであ
るためにσ相が生じやすいので靭性の低下が大き
い。 このように、本発明合金1〜6では、比較合金
7よりもSi量を低減すると共に、BおよびCa、
Mg、REMの1種または2種以上を含有させたも
の、およびこれにTi、Nb+Ta、Zr、Vの1種
または2種以上を複合微量添加することによつ
て、熱間加工性ならびに耐酸化性の両方を向上さ
せることができ、とくに加工度の高い耐熱部品で
ある加熱炉のメツシユベルトの素材としてすぐれ
た特徴を発揮すると共に、長時間時効処理による
靭性の低下を小さく抑えることができるという利
点をそなえている。 以上のように、本発明によれば、熱間加工性な
らびに耐熱・耐酸化性に優れ、とくに加工度の高
い耐熱・耐酸化部品である加熱炉のメツシユベル
トの素材に適する合金を得ることができるという
非常にすぐれた効果をもたらしうる。
[Table] As is clear from the results shown in Table 2, inventive alloys 1 to 6 and comparative alloys 8 and 9 all have relatively small decreases in toughness, while comparative alloy 7 has a high
Because of the Si content, the structure becomes unstable and the toughness is greatly reduced. Comparative Alloy 10 is high in Cr and low in Ni, so the σ phase is likely to occur, resulting in a large decrease in toughness. In this way, alloys 1 to 6 of the present invention have a lower Si content than comparative alloy 7, and also contain B and Ca.
By containing one or more of Mg and REM, and adding a small amount of one or more of Ti, Nb + Ta, Zr, and V to this, hot workability and oxidation resistance are improved. It has the advantage of being able to improve both toughness and toughness, and exhibiting excellent characteristics as a material for mesh belts in heating furnaces, which are heat-resistant parts that are highly processed, as well as minimizing the decrease in toughness caused by long-term aging treatment. It is equipped with As described above, according to the present invention, it is possible to obtain an alloy that has excellent hot workability, heat resistance, and oxidation resistance, and is particularly suitable as a material for mesh belts of heating furnaces, which are heat-resistant and oxidation-resistant parts that are highly processed. It can bring about very good effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はグリーブル型高速引張試験機による試
験温度と断面減少率との関係を示すグラフ、第2
図は大気中での連続加熱試験における保持時間と
酸化増量との関係を示すグラフである。
Figure 1 is a graph showing the relationship between test temperature and area reduction rate using a Greeble-type high-speed tensile tester;
The figure is a graph showing the relationship between retention time and oxidation weight increase in a continuous heating test in the atmosphere.

Claims (1)

【特許請求の範囲】 1 重量%で、C:0.01〜0.15未満%、Si:1.0超
過〜2%、Mn:0.3〜2%、Ni:35超過〜45%、
Cr:18〜21未満%、B:0.0005〜0.01%、および
Ca:0.001〜0.01%、Mg:0.001〜0.04%、
REM:0.005〜0.05%のうちの1種または2種以
上を含み、残部Feおよび不可避的不純物からな
ることを特徴とする加熱炉のメツシユベルト用合
金。 2 重量%で、C:0.01〜0.15未満%、Si:1.0超
過〜2%、Mn:0.3〜2%、Ni:35超過〜45%、
Cr:18〜21未満%、B:0.0005〜0.01%、および
Ca:0.001〜0.01%、Mg:0.001〜0.04%、
REM:0.005〜0.05%のうちの1種または2種以
上を含み、さらにTi:0.3%以下、Nb+Ta:0.3
%以下、Zr:0.3%以下、V:0.3%以下のうちの
1種または2種以上を含み、残部Feおよび不可
避的不純物からなることを特徴とする加熱炉のメ
ツシユベルト用合金。
[Claims] 1 In weight%, C: 0.01 to less than 0.15%, Si: more than 1.0 to 2%, Mn: 0.3 to 2%, Ni: more than 35 to 45%,
Cr: 18 to less than 21%, B: 0.0005 to 0.01%, and
Ca: 0.001~0.01%, Mg: 0.001~0.04%,
REM: An alloy for a mesh belt of a heating furnace, characterized in that it contains one or more of 0.005 to 0.05%, and the balance consists of Fe and unavoidable impurities. 2 In weight%, C: 0.01 to less than 0.15%, Si: more than 1.0 to 2%, Mn: 0.3 to 2%, Ni: more than 35 to 45%,
Cr: 18 to less than 21%, B: 0.0005 to 0.01%, and
Ca: 0.001~0.01%, Mg: 0.001~0.04%,
REM: Contains one or more of 0.005-0.05%, Ti: 0.3% or less, Nb + Ta: 0.3
% or less, Zr: 0.3% or less, V: 0.3% or less, and the balance is Fe and inevitable impurities.
JP15959880A 1980-11-14 1980-11-14 Heat resistant alloy Granted JPS5785958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15959880A JPS5785958A (en) 1980-11-14 1980-11-14 Heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15959880A JPS5785958A (en) 1980-11-14 1980-11-14 Heat resistant alloy

Publications (2)

Publication Number Publication Date
JPS5785958A JPS5785958A (en) 1982-05-28
JPH0118141B2 true JPH0118141B2 (en) 1989-04-04

Family

ID=15697192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15959880A Granted JPS5785958A (en) 1980-11-14 1980-11-14 Heat resistant alloy

Country Status (1)

Country Link
JP (1) JPS5785958A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527319C2 (en) 2003-10-02 2006-02-07 Sandvik Intellectual Property Alloy for high temperature use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120014A (en) * 1974-08-08 1976-02-17 Crucible Inc
JPS5129962A (en) * 1974-09-06 1976-03-13 Seiko Instr & Electronics RYUZUSOSASHIKI BETSUKIKO
JPS56163244A (en) * 1980-05-20 1981-12-15 Aichi Steel Works Ltd Heat resistant austenite steel with superior hot workability and oxidation resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120014A (en) * 1974-08-08 1976-02-17 Crucible Inc
JPS5129962A (en) * 1974-09-06 1976-03-13 Seiko Instr & Electronics RYUZUSOSASHIKI BETSUKIKO
JPS56163244A (en) * 1980-05-20 1981-12-15 Aichi Steel Works Ltd Heat resistant austenite steel with superior hot workability and oxidation resistance

Also Published As

Publication number Publication date
JPS5785958A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
US4964926A (en) Ferritic stainless steel
US7806993B2 (en) Heat-resistant ferritic stainless steel and method for production thereof
CN108026623B (en) Ferritic stainless steel
JPH10140296A (en) Al-containing austenitic stainless steel excellent in hot workability
JPS6344814B2 (en)
HUE033762T2 (en) Cost-effective ferritic stainless steel
JPS6142781B2 (en)
JP3591486B2 (en) High Cr ferritic heat resistant steel
JPH0118141B2 (en)
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPH0246663B2 (en)
US4022586A (en) Austenitic chromium-nickel-copper stainless steel and articles
US4049432A (en) High strength ferritic alloy-D53
JPH1096038A (en) High cr austenitic heat resistant alloy
JP2797981B2 (en) High strength austenitic steel welding material and method for producing the same
JPS6214626B2 (en)
JPH06271993A (en) Austenitic stainless steel excellent in oxidation resistance
JPH02118053A (en) Heat-resistant alloy
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JP3381457B2 (en) Austenitic stainless steel for high temperature with excellent weldability
JPS5843464B2 (en) High carbon chromium nickel steel with excellent hot workability
JPS5928621B2 (en) Duplex stainless steel with excellent hot workability
JP2024137729A (en) Ferritic stainless steel for furnace walls
JPS648692B2 (en)
JPS5919978B2 (en) Malleable Ni-based super heat-resistant alloy