JPH01181223A - Buffer circuit - Google Patents

Buffer circuit

Info

Publication number
JPH01181223A
JPH01181223A JP63005754A JP575488A JPH01181223A JP H01181223 A JPH01181223 A JP H01181223A JP 63005754 A JP63005754 A JP 63005754A JP 575488 A JP575488 A JP 575488A JP H01181223 A JPH01181223 A JP H01181223A
Authority
JP
Japan
Prior art keywords
level
potential
vdd
terminal
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63005754A
Other languages
Japanese (ja)
Inventor
Hiroshi Koga
広志 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63005754A priority Critical patent/JPH01181223A/en
Publication of JPH01181223A publication Critical patent/JPH01181223A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits
    • H03K19/01721Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits by means of a pull-up or down element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To increase the buffer operating speed and to reduce the power consumption by decreasing the state transition time while an excess change in a gate potential of an output drive MOS transistor(TR). CONSTITUTION:When an input level transits to a high level, a logic circuit NOR 1 is inverted and a MOS TR MN02 is conductive. The stored charge of a parasitic capacitor C02 is discharged via the TR MN02. Let a source-gate voltage to make a TR MN03 conductive be VTN03, then when the level at a point N04 is below the potential VTN03, the TR MN03 is cut off. Moreover, the stored charge of the parasitic capacitor 01 is discharged via the TR MN01. The level at a point N03 is brought into a potential slightly higher than a potential (Vdd-VTP03). Thus, the time required to reach a level below the level (Vdd-VTP03) is short and the TR MP03 is conductive. Thus, a current flows from the voltage Vdd to the load via the TRMP03 and the level of the capacitor C01 rises.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOSトランジスタによる出力バッファ回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an output buffer circuit using MOS transistors.

〔従来の技術〕[Conventional technology]

従来、この棟のバッファ回路としては、第5図に示し九
ような回路がある。Vddは電源端子、Vssは接地端
子、Illは入力端子、011は出方端子、Nltは接
点、MPIIはソースがVddに、ゲートがIllに、
ドレインがNilに接続さ散P形MO8トランジスタ、
MN 11はソース力Vssに、ゲートが111rlc
1 ドレインがNilに接続されたへ形MO8トランジ
スタ、MP13はソースがVddに、ゲートがNilに
、ドレインが端子011に接続され2p形MO8トラン
ジスタ、MN13tiソースがVssに、ゲートがNi
lに、ドレインが端子011に接続されたN形MO8)
う/ジスタ、C1lはNilの寄生容量である。
Conventionally, as a buffer circuit for this building, there is a circuit as shown in FIG. 5. Vdd is a power supply terminal, Vss is a ground terminal, Ill is an input terminal, 011 is an output terminal, Nlt is a contact, MPII has a source connected to Vdd, a gate connected to Ill,
Distributed P-type MO8 transistor, whose drain is connected to Nil
MN 11 has source power Vss and gate 111rlc
1 Hemform MO8 transistor with drain connected to Nil, MP13 has source connected to Vdd, gate connected to Nil, 2p type MO8 transistor with drain connected to terminal 011, MN13ti source connected to Vss, gate connected to Ni
l, the drain is connected to terminal 011 (N-type MO8)
The resistor C1l is a parasitic capacitance of Nil.

次に動作について述べる。Next, we will discuss the operation.

(1)先ず入力Illがロクレベルの場合にはMPII
は導通状態、MNIIは遮断の状態にあるから、C1l
はMPIIを介して完全に充電されて、N11はハイレ
ベルとなっている。従ってMP1社遮断状態、MN13
は導通状態となっており、出力荷電流がシンクされて、
出方は士〒rレベルトナって安定な状態となっている。
(1) First, if the input Ill is at the rock level, the MPII
is in a conductive state and MNII is in a cutoff state, so C1l
is fully charged via MPII, and N11 is at a high level. Therefore, MP1 company is cut off, MN13
is in a conducting state, and the output load current is sunk,
The situation is stable, with level 1.

(2)次に入力レベルが覧つレベルから反転してハイレ
ベルとなるとMPllは遮断状態、MNllは導通状態
となるからMN 11 t−介して711の蓄積電荷放
電が起こ、り、Nilのレベルは徐々に下がる。
(2) Next, when the input level is reversed from the visible level and becomes high level, MPll is in the cutoff state and MNll is in the conductive state, so that the accumulated charge of 711 is discharged through MN11t-, and the level of Nil gradually decreases.

こ仁でMP13が導通状態となるために必要なソース・
ゲート間電圧1<V    とすると、??1B NilのレベルがVddに対してV   だけ?P13 低い値となった時点からMP13は導通状態となるO 更にMN13が導通状態となるために必要なソース・ゲ
ート間電圧を■□、3とすると、NilのレベルがVs
sに対してV   だけ高い値をN13 過ぎて降下した時点からMNssは遮断状態となる。
The source and source necessary for MP13 to become conductive at this time
If the voltage between gates is 1<V, then ? ? 1B Is the Nil level only V compared to Vdd? When P13 becomes a low value, MP13 becomes conductive.O Furthermore, assuming that the source-gate voltage required for MN13 to become conductive is □, 3, the level of Nil becomes Vs.
MNss enters the cut-off state from the time when it drops past a value N13 higher than V by s.

従ってMP13t−介して負荷は充電され、端子011
はハイレベルとなる。
Therefore, the load is charged through MP13t-, and the terminal 011
is at a high level.

C1lはMNIIを介して絶えず蓄積電荷の放ね 電が行なかれて、Nllの電位は−Vsaと等しくなり
、全体は安定状態となる。
Accumulated charges in C1l are constantly discharged via MNII, and the potential of Nll becomes equal to -Vsa, resulting in a stable state as a whole.

(3)更に入力レベルがハイレベルからロウレベルに反
転するとMPIIは導通状態、MNllは遮断状態とな
って端子011はMPllを介して充電されてNilの
電位が上昇する。MN l 31j、 N 11の電位
が■   を上回った時点で導通状態とな?N13 シ、−万、MP13t!、NN11D1位、1zVcl
a−Vア、□、金上回った時点で遮断状態となって、M
P13t−介した負荷への電流供給が停止し、MN13
を介しt負荷からの電流シ/りによプ、端子011のレ
ベルは下がってロウレベルとなる。
(3) When the input level is further inverted from high level to low level, MPII becomes conductive and MNll becomes cut off, terminal 011 is charged via MPll and the potential of Nil rises. When the potential of MN l 31j and N 11 exceeds ■, it becomes conductive. N13 shi, -10,000, MP13t! , NN11D 1st place, 1zVcl
a-V A, □, it becomes a cutoff state when it exceeds gold, and M
The current supply to the load via P13t stops, and MN13
The level of terminal 011 decreases to a low level due to the current leakage from the load through the terminal 011.

C1lはMPIIによる充電が続いて、完全光電状態と
なって、VddK#Lい電位となる。これによって全体
は(1]の状態に戻ル安定する。
C1l continues to be charged by MPII, becomes completely photoelectric, and has a potential of VddK#L. As a result, the entire system returns to state (1) and becomes stable.

以降は入力信号の変化によシ、一連の動作を繰シ返し行
なう。
Thereafter, the series of operations is repeated depending on changes in the input signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述し九従米のパフ77回路は、出力を駆動するトラン
ジスタのゲート電位が、ゲートに寄生す執 る容量の完全放電ないしは、完全j電の状態により、V
dd電位ないしdVss電位となって安定状態となって
いるので、入力信号変化時点から出力t−!に動するト
ランジスタが状態遷移に達する迄の時間が大きく、動作
速度の低下t1i九すという欠点が有る。
In the above-mentioned Puff 77 circuit, the gate potential of the transistor that drives the output becomes V due to the complete discharge or complete discharge of the capacitance parasitic to the gate.
dd potential or dVss potential and is in a stable state, so from the time the input signal changes, the output t-! The disadvantage is that it takes a long time for a transistor that operates to reach a state transition, resulting in a reduction in operating speed.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明のバッファ回路は、出力IgKpJJ用の落1の
NO8トランジスタと、該第1のNO8)う/ジスタの
ゲートt−駆動する第2のNO8トランジスタと、該′
g2のNO8)う/ジスタのゲートt−駆動する論理回
路を有し、該論理回路は、バッファの大力信号と、バッ
ファ出力の帰還信号が加わる構成を有している。
The buffer circuit of the present invention includes a drop-in NO8 transistor for the output IgKpJJ, a second NO8 transistor for driving the gate of the first NO8 transistor, and the
g2 NO8) A logic circuit for driving the gate t of the register is provided, and the logic circuit has a configuration in which the large output signal of the buffer and the feedback signal of the buffer output are added.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図をよ本発゛明の一実施例の回路図である。Vdd
は電源端子、Vss4d接地端子、工O1は入力端子、
001は出力端子、No 1. No 2. NO3,
NO4,NO5゜NO6’ti各に’In点、INVl
fl IO1’に入力、NOI金出刃出力るインバータ
論理回路、NANDIはN)1並びに001を入力とし
、PJO5t−出力とする2人力NAND論理回路、N
0RIはNOI並びに端子001を入力とし、N06i
出力とする2人力NOR論理回路、MPO1t!ソー、
xがvddK、グー)カNO5に、ドレインがNO3に
接続されたP形MO8トランジスタ、MNOIはソース
がWasに、ゲートがIolに、ドレインがNO3に接
続され7jN形MO8ト2ンジスp、MPO2el/−
スがVddK、ゲートが工01に、ドレインがNO4に
接続されqP形MO8トランジスタ、MNO2はソース
がWasに、ゲートがNO6に、ドレインがNO4に接
続され九N形MO8トランジスタ、MPO3はソースが
Vddに、ドレインが端子001に接続されtP形MO
8トランジスタ、MNO3はソースがVssに、NO4
に、ドレインが端子001に接続され[N形MO8)2
ンジスタ、Co1t!NO3とVss間の寄生容量、C
O2はNO4とVss間の寄生容量である。
FIG. 2 is a circuit diagram of an embodiment of the present invention based on FIG. 1; Vdd
is the power supply terminal, Vss4d is the ground terminal, O1 is the input terminal,
001 is the output terminal, No. 1. No. 2. NO3,
'In point, INVl for NO4, NO5゜NO6'ti each
fl Inverter logic circuit that inputs to IO1' and outputs NOI, NANDI is NAND logic circuit that uses N)1 and 001 as input, and outputs PJO5t-, N
0RI uses NOI and terminal 001 as input, and N06i
Two-person NOR logic circuit for output, MPO1t! Thor,
P-type MO8 transistor with x connected to vddK, goo) cap NO5, drain connected to NO3, MNOI has source connected to Was, gate connected to Iol, drain connected to NO3, 7j N-type MO8 transistor p, MPO2el/ −
MPO3 has a source connected to Was, a gate to NO6, and a drain to NO4. MPO3 has a source connected to Vdd. , the drain is connected to terminal 001 and the tP type MO
8 transistors, the source of MNO3 is Vss, NO4
, the drain is connected to terminal 001 [N-type MO8)2
Njista, Co1t! Parasitic capacitance between NO3 and Vss, C
O2 is a parasitic capacitance between NO4 and Vss.

次に、本実施例の動作について述べる。Next, the operation of this embodiment will be described.

(11入力I01にロウレベルの信号が印加されている
場合、MNOIは遮断状態、MPO2は導通状態、NO
Iはハイレベルであシ、Noaiは端子001のレベル
によらずロウレベルを出力するからNO6はロウレベル
であ、!l)、MNO2は遮断状態である。
(When a low level signal is applied to the 11 input I01, MNOI is in the cutoff state, MPO2 is in the conduction state, and NO
I is at high level, and Noai outputs low level regardless of the level of terminal 001, so NO6 is at low level. l), MNO2 is in a blocked state.

従ってCO2はMp02f、介して充電され、NO4の
電位Jd Vddとなってお5、MNO3は導通状態と
なる。ここで、NANDIの出力であるNO5のレベル
は端子001のレベルによシ定まるが、仮シにMPOB
が導通状態であるとするならば、MN 03も導通状態
であるから端子001はVddとVssの中間レベルと
なυ、N05も又、中間レベルとなって、MPOIは僅
かながら、コンダクタンスを持ち、VddよpcOlを
充電して、001の電位が上昇する。
Therefore, CO2 is charged through Mp02f, becomes the potential Jd Vdd of NO4, and MNO3 becomes conductive. Here, the level of NO5, which is the output of NANDI, is determined by the level of terminal 001.
If is in a conductive state, MN03 is also in a conductive state, so the terminal 001 is at an intermediate level between Vdd and Vss, υ, N05 is also at an intermediate level, and MPOI has a small conductance. By charging pcOl to Vdd, the potential of 001 rises.

MPOBに導通状態を与えるソース・ゲート間なる。端
子001のレベルは下がシロウレペルとなる。NO5の
レベルは上がジノ1イレペルとなってMPOIは遮断状
態となる。COIへの充電電流はなくなシ、NO3のレ
ベルはVdd−VTPO3を僅かに超えた点で留ま夛、
Vdclに至ることはない。この状態で各々のレベルは
安定する。即ち八1Po3が導通状態を保持することは
あ)えない0 (2)次に入力レベルがハイレベルに遷移すると、MN
OIは導通状態、MPO2は遮断状態となシ、NOIは
ロウレベルとなる。従って、NANDIの出力NO5は
端子001のレベルによらずハイレベルを保ち、MPQ
Iは遮断状態のままである。
It is between the source and gate that gives conduction to MPOB. The lower level of the terminal 001 is the lower level. The level of NO5 becomes 1 level and the MPOI is cut off. There is no charging current to COI, and the NO3 level remains at a point slightly above Vdd-VTPO3.
It never reaches Vdcl. In this state, each level becomes stable. In other words, it is impossible for 81Po3 to maintain a conductive state.0 (2)When the input level transitions to high level next, MN
OI is in a conductive state, MPO2 is in a cut-off state, and NOI is at a low level. Therefore, the NANDI output NO5 maintains a high level regardless of the level of the terminal 001, and the MPQ
I remains blocked.

この時点に2いて端子001のレベルはロウのままであ
るからNOR+1は反転して、NO6はハイレベルとな
シ、MNO2は導通状態となる。CO2の蓄積電荷はM
NO2を介して放電されて、NO4のレベルが下がる。
At this point in time, the level of terminal 001 remains low, so NOR+1 is inverted, NO6 becomes high level, and MNO2 becomes conductive. The accumulated charge of CO2 is M
It is discharged through NO2 and the level of NO4 decreases.

MNO3に導通状態を与えるノースゲート間電位t−■
    とすると、NO4’1’NQ3 のレベルがV   を下回った時点でMNO3はNQ 
3 遮断状態となる。−万、C01の蓄積電荷もMNOIを
介して放電され、N030レベルが下がる。
North gate potential t-■ that gives conduction to MNO3
Then, when the level of NO4'1'NQ3 falls below V, MNO3 becomes NQ
3 Becomes a cut-off state. -10,000, the accumulated charge of C01 is also discharged through MNOI, and the N030 level decreases.

NO3のレベルはVdd−V    よシ僅かに高い?
r03 電位であっt几め、vdd−vTPo3を下回るレベル
に述する迄に要する時間は短<、MPOBは導通状態に
なる。従ってMPOBを介してVddから負荷へ電流が
流れ0010レベルが上昇する。
Is the NO3 level slightly higher than Vdd-V?
When the r03 potential decreases to a level below vdd-vTPo3, the time required is short, and MPOB becomes conductive. Therefore, current flows from Vdd to the load via MPOB and the 0010 level rises.

ここで端子001のレベルがN0R10入力閾値電圧を
超えて上昇するとNoaiは反転してNO6はロウレベ
ルとなp、MN02は遮断状態となってCO2の蓄積電
荷放電は停止し、NO4はVsst位迄下がることはな
い。更に001のレベルは上昇し、Vddと等しくなる
迄上昇して出力はノ・イレベルとなる。COIの蓄積電
荷はMNOIによシ完全に放電されて、NO30レベル
はVssと等しくなる。以上で全体のレベルは安定して
いる。
Here, when the level of terminal 001 rises above the N0R10 input threshold voltage, Noai is inverted, NO6 becomes low level, MN02 is cut off, the discharge of the accumulated charge of CO2 is stopped, and NO4 falls to the level of Vsst. Never. Further, the level of 001 rises until it becomes equal to Vdd, and the output becomes the NO level. The accumulated charge in COI is completely discharged by MNOI, and the NO30 level becomes equal to Vss. Above all, the overall level is stable.

(3)入力電位がハイレベルよシロウレベルに反IEし
た場合、ここで更に入力電位がロウレベルに転じると、
NOIはハイレベル、MNOIは遮断状態、MPO2は
導通状態となる。N0Rxの出力NO6は0010レベ
ルによらずロウレベルとなシ、MNO2は遮断状態のま
まであるからMPO2と介してCO2は充電されてNO
4のレベルが上昇し、vTNojを超えて上昇するとM
NQ3は導通となるO 尚、本動作は、NO4のレベルが(2)の最終状態時に
おいてV   よシ僅かながら低い電位NQ 3 シ、NANDIは反転してNO5はロウレベルとなるか
ら、MPOIは導通状態となシ、co I FiMPo
 1を介して充電されてNO3の電位が上昇する。NO
3の電位がVdd−V賛o3を超えて上昇すると、らの
蓄積電荷放電によシ端子001のレベAGE下がるO i子001のレベルが、NAN#2の閾値電圧を下回る
と%NO5は反転してハイレベルとなり、MPOIは遮
断状態となって、COlへの充電動作は停止するから、
NO3のレベルはVdd−V、rpQ3よシ僅かげかシ
高い電位迄の上昇に留まfi、Vdd電位となることは
ない。
(3) When the input potential changes from high level to low level, if the input potential further changes to low level,
NOI is at a high level, MNOI is in a cut-off state, and MPO2 is in a conductive state. The output NO6 of N0Rx is low level regardless of the 0010 level, and since MNO2 remains in the cut-off state, CO2 is charged via MPO2 and NO
When the level of 4 increases and exceeds vTNoj, M
In this operation, when the level of NO4 is in the final state of (2), the potential NQ3 is slightly lower than V, NANDI is inverted and NO5 becomes low level, so MPOI becomes conductive. state and nasi, co I FiMPo
1 and the potential of NO3 increases. NO
When the potential of terminal 001 rises above Vdd-Vo3, the level of terminal 001 decreases due to the discharge of the accumulated charges. When the level of terminal 001 falls below the threshold voltage of NAN#2, %NO5 is reversed. becomes high level, MPOI becomes cut off, and charging operation to COl stops.
The level of NO3 remains at Vdd-V, which is slightly higher than rpQ3, and never reaches the fi, Vdd potential.

COIはMPO2を介して更に充電されつづけて、NO
4の電位はVdd迄上昇し、負荷に蓄積されて−た電荷
tfMNO3により放電されつづけて端子001はロウ
レベルとなシ、全体のレベルは(1)の最終状態と等し
くなって安定な状態となる。
COI continues to be further charged via MPO2 and NO
The potential of 4 rises to Vdd, continues to be discharged by the charge tfMNO3 accumulated in the load, and the terminal 001 becomes low level. The overall level becomes equal to the final state of (1) and becomes stable. .

以降は入力レベルの変化によ〕上述の一連の動作を繰シ
返し行なう。
Thereafter, the above-described series of operations is repeated depending on changes in the input level.

第2図は本発明の第2の実施例としての3−ステート出
力のバフ77回路を示す。Vddは電源端子Vssは接
地端子、IOIはENOIは入力端子、002は出力端
子、No 1. No 2. No 3゜NO4,No
 5. No 6. NO7,Nfl 8は各々節点、
INvlはIOIを入力、N01e出力とするインバー
タ論理回路、N0RI FiNol並びKOOIを入力
とし、NO6’Ji出力とする2人力NOR論理回路、
NANDI FiNOl並びに端子001を入力、NO
Iを出力とする2人力NAND論理回路、IN−■2は
ENOlを入力、NQ7@出力とするインバータ論理回
路、MPO4はソースがVddがゲートがENOIK、
ドレインがNO3に接続されたP形M08トランジスタ
、MPOIはソースがVddに、ゲートがNO5にドレ
イ/がNO3に接続されtP形MO8)?ンジスタ、M
PO3はソースがVddに、ゲートがNO3に、ドレイ
ンが端子001に接続されたP形MO8トランジスタ、
MPO5はソースがVddに、ゲートがNo7rc、 
 ドレインがNO9に接続されtP形MOB トランジ
スタ、MPO2はソースがNO9に、ゲートがIOIに
、ドレインがNO4に接続されたP形MO8トランジス
タ、MNglはソースが1’108に、ゲートがIOI
に、ドレインがNO3に接続されたN形MO8トランジ
スタ、MN Q 4はソースがVssに、ゲートがBN
OIに、ドレインがNO8に接続されたN形MO8トラ
ンジスタ、MNO5は、ソースがWasに、ゲートがN
O7に、ドレインがNO4に接続され7jN形MO8ト
ランジスタ、MNQ2f−j:、7−スがVssに、ゲ
ートがN06K。
FIG. 2 shows a 3-state output buff 77 circuit as a second embodiment of the invention. Vdd is a power supply terminal, Vss is a ground terminal, IOI is an input terminal, ENOI is an input terminal, 002 is an output terminal, No. 1. No. 2. No 3゜NO4, No
5. No. 6. NO7 and Nfl 8 are nodes,
INvl is an inverter logic circuit that inputs IOI and outputs N01e, a two-person NOR logic circuit that inputs N0RI, FiNol, and KOOI, and outputs NO6'Ji;
Input NANDI FiNOl and terminal 001, NO
A two-person NAND logic circuit with I as the output, IN-■2 is an inverter logic circuit with ENOl as input and NQ7 @ output, MPO4 has a source of Vdd and a gate of ENOIK,
P-type M08 transistor with drain connected to NO3, MPOI has source connected to Vdd, gate connected to NO5, drain/tP-type MO8) connected to NO3? Nzista, M.
PO3 is a P-type MO8 transistor whose source is connected to Vdd, gate is connected to NO3, and drain is connected to terminal 001;
The source of MPO5 is Vdd, the gate is No7rc,
tP type MOB transistor with drain connected to NO9, MPO2 is a P type MO8 transistor with source connected to NO9, gate connected to IOI, drain connected to NO4, MNgl has source connected to 1'108, gate connected to IOI
, an N-type MO8 transistor with its drain connected to NO3, MN Q4 has a source connected to Vss and a gate connected to BN
An N-type MO8 transistor with its drain connected to OI and NO8, MNO5 has its source connected to Was and its gate connected to N
7j N-type MO8 transistor with drain connected to NO4, MNQ2f-j:, 7-sse connected to Vss, gate N06K.

ドレインがNO4に接続され[N形MO8トランジスタ
、MNoaはソースがVssに、ゲートがNO4に、ド
レインが端子001に接続されたN形MO8)?yジx
/、C0ItiNO3とVss間の寄生容量、C02は
NO4とVss間のを生容量である。
The drain is connected to NO4 [N-type MO8 transistor, MNoa is an N-type MO8 transistor whose source is connected to Vss, gate is connected to NO4, and drain is connected to terminal 001)? yji x
/, C0Iti is the parasitic capacitance between NO3 and Vss, and C02 is the raw capacitance between NO4 and Vss.

次に本実施例の動作について述べる。Next, the operation of this embodiment will be described.

(1)ENOIがロウレベルの場合、MPO4は導通状
1MNO4は遮断状7a、No 7 ハINV2 KJ
:l)ハ4レベルとな、り、MPO5は遮断状態、州0
5は導通状態となるから、他の節点、入力端子のレベル
によらずMPO3,MNO3は遮断状態となル、端子0
01はハイ−インピーダンス状態となる。
(1) When ENOI is low level, MPO4 is conductive 1MNO4 is disconnected 7a, No. 7 high INV2 KJ
:l) Level 4, MPO5 is blocked, state 0
5 becomes conductive, MPO3 and MNO3 are cut off regardless of the levels of other nodes and input terminals, and terminal 0
01 is in a high-impedance state.

(2)ENOIがハイレベルの場曾、MPO4は遮断状
態、MNO4t−1導通状m、N07t:t INV2
 KJ Cロウレベルとなj)MPO5は導通状態、M
NO5は遮断状態となり、結果としてNO8はVss電
位、NO9はVdd電位とな9、遮断状態にあるM−P
G 4. MNO5を無視すると、第1図の実施例と同
一の回路となるから入力端子I01のレベルによシ、第
1図の実施例と全く同じ動作を行う。
(2) When ENOI is at high level, MPO4 is cut off, MNO4t-1 is conductive, N07t:t INV2
KJ C low level j) MPO5 is in conduction state, M
NO5 is in the cut-off state, and as a result, NO8 is at the Vss potential and NO9 is at the Vdd potential.9, M-P in the cut-off state
G4. If MNO5 is ignored, the circuit becomes the same as the embodiment shown in FIG. 1, and therefore operates exactly the same as the embodiment shown in FIG. 1, depending on the level of the input terminal I01.

第3図は本発明の第3の実゛施例としてのP形ル・ダウ
ン抵抗であ)、他の節点、端子、素子は、前述の第1図
のものと同一でるる。
FIG. 3 shows a P-type pull-down resistor as a third embodiment of the present invention, and other nodes, terminals, and elements are the same as those in FIG. 1 described above.

回路動作においては、第1図中のMNO3t−RIK置
き換え、MPO2,MNO2,N0RI t−削除して
あり、第1図の回路動作に準する。
In the circuit operation, MNO3t in FIG. 1 is replaced with RIK, and MPO2, MNO2, N0RI t- are deleted, and the circuit operation is similar to that in FIG.

第4図は本発明の第4の実施例としてのN形MO8オー
プン・ドレイン回路を示す。R+2はプル・アップ抵抗
で、iSn、他の節点、端子、素子は前述の第1図のも
のと同一である。
FIG. 4 shows an N-type MO8 open drain circuit as a fourth embodiment of the present invention. R+2 is a pull-up resistor, iSn, and other nodes, terminals, and elements are the same as those in FIG. 1 described above.

回路動作に訃いては第1図中のMPO3’1iR2に置
ag、t、MPOI、 MNOI、 NANDI t’
MII除LテあシしWE1図の回路動作に準する。
Regarding circuit operation, ag, t, MPOI, MNOI, NANDI t' are placed in MPO3'1iR2 in Figure 1.
The circuit operation corresponds to the circuit operation shown in Figure WE1 except for MII.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明は、出力駆動MO8トランジ
スタのゲート電位の過剰な変化管抑えて、状態遷移時間
を短縮することにより■パッツァ動作装置の向上を図れ
、■バラ2ア動作の消費電力を小さくできるという効果
が有る。
As explained above, the present invention suppresses excessive changes in the gate potential of the output drive MO8 transistor and shortens the state transition time. By doing so, it is possible to (1) improve the Pazza operating device; and (2) improve the power consumption of the two-channel operation. This has the effect of making it smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の出1の実施例の回路図、第2図は本発
明の第2の実施例の回路図143図は本発明の第3の実
施例の回路図、第4図は本発明の第4の実施例の回路図
、第5図は従来例の回路図である。 Vdd・・・・・・電源端子、Vss・・・・・・接地
端子、lo−111、ENOI・・・・・・入力端子、
001.011・・・・・・出力端子、NOI、NO2
,NO3,NO4,N□5sNO6,NO7゜NO8,
NO9,Nl 1−−−・−接点、INVI、INV2
−山−インバータ論理回路、N0R11・・・・・・2
人力NOR,論理回路、NANDI・・・・・・2人力
NAND倫理回路、MPOI、MPO2,MPO3,M
PO4,MPll、MP13・・・・・・P形MO8ト
ランジスタ、MNO1,MNO2,MN−03、MNO
4,MNO5,MNI 1. MN 13・・・・・・
N形MOSトランジスタ、COI、CO2,C1l・・
・・・・寄生容量、R1・・・・・・プルダウン抵抗、
R2・・・・・・プルアップ抵抗。 代理人 弁理士  内 原   音 扇5図
FIG. 1 is a circuit diagram of the first embodiment of the present invention, FIG. 2 is a circuit diagram of the second embodiment of the present invention, and FIG. 4 is a circuit diagram of the third embodiment of the present invention. A circuit diagram of the fourth embodiment of the present invention, and FIG. 5 is a circuit diagram of a conventional example. Vdd...Power supply terminal, Vss...Ground terminal, lo-111, ENOI...Input terminal,
001.011...Output terminal, NOI, NO2
,NO3,NO4,N□5sNO6,NO7゜NO8,
NO9, Nl 1---Contact, INVI, INV2
- Mountain - Inverter logic circuit, N0R11...2
Human power NOR, logic circuit, NANDI...2 human power NAND ethical circuit, MPOI, MPO2, MPO3, M
PO4, MPll, MP13...P-type MO8 transistor, MNO1, MNO2, MN-03, MNO
4, MNO5, MNI 1. MN 13...
N-type MOS transistor, COI, CO2, C1l...
...Parasitic capacitance, R1...Pull-down resistance,
R2...Pull-up resistor. Agent Patent Attorney Uchihara Otoogi 5

Claims (1)

【特許請求の範囲】[Claims]  出力駆動用の第1のMOSトランジスタと、該第1の
MOSトランジスタのゲートを駆動する第2のMOSト
ランジスタと、該第2のMOSトランジスタのゲートを
駆動する論理回路を有し、該論理回路にはバッファの入
力信号とバッファ出力の帰還信号が加わることを特徴と
するバッファ回路。
The logic circuit includes a first MOS transistor for output driving, a second MOS transistor that drives the gate of the first MOS transistor, and a logic circuit that drives the gate of the second MOS transistor. is a buffer circuit characterized in that a buffer input signal and a feedback signal of the buffer output are added.
JP63005754A 1988-01-13 1988-01-13 Buffer circuit Pending JPH01181223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63005754A JPH01181223A (en) 1988-01-13 1988-01-13 Buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63005754A JPH01181223A (en) 1988-01-13 1988-01-13 Buffer circuit

Publications (1)

Publication Number Publication Date
JPH01181223A true JPH01181223A (en) 1989-07-19

Family

ID=11619906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63005754A Pending JPH01181223A (en) 1988-01-13 1988-01-13 Buffer circuit

Country Status (1)

Country Link
JP (1) JPH01181223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211807A1 (en) * 2000-11-29 2002-06-05 Phoenix Contact GmbH & Co. KG Digital level adaptation circuit
CN102518020A (en) * 2011-12-20 2012-06-27 中联重科股份有限公司 Asphalt mixture thermal regeneration equipment and combustion device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153919A (en) * 1986-09-30 1988-06-27 テキサス インスツルメンツ インコーポレイテツド Cmos logic circuit with improved noise characteristics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153919A (en) * 1986-09-30 1988-06-27 テキサス インスツルメンツ インコーポレイテツド Cmos logic circuit with improved noise characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211807A1 (en) * 2000-11-29 2002-06-05 Phoenix Contact GmbH & Co. KG Digital level adaptation circuit
US6552568B2 (en) 2000-11-29 2003-04-22 Phoenix Contact Gmbh & Co. Kg Level shifter circuit for level adjustment
CN102518020A (en) * 2011-12-20 2012-06-27 中联重科股份有限公司 Asphalt mixture thermal regeneration equipment and combustion device

Similar Documents

Publication Publication Date Title
US4988888A (en) CMOS output circuit with intermediate potential setting means
EP0508673B1 (en) High speed passgate, latch &amp; flip-flop circuits
JPS58133038A (en) Inverter circuit
JP2885177B2 (en) Power supply monitor circuit
KR900000487B1 (en) Logic gate circuit
EP0810732B1 (en) Differential signal generating circuit having current spike suppressing circuit
US7518412B2 (en) Output circuit having short rise time and small consumption current
JPH01181223A (en) Buffer circuit
JP3237644B2 (en) Level conversion circuit
JPH02228813A (en) Bipolar mos logic circuit and semiconductor integrated circuit
JPH0736507B2 (en) Semiconductor logic circuit
EP0567716A1 (en) Static edgetriggered D flip-flop with a low power consumption
JPH0677804A (en) Output circuit
JP2001127615A (en) Division level logic circuit
CN109787607B (en) High-voltage high-speed IO circuit based on low-voltage device
JP2540971B2 (en) Level conversion circuit
JPH0795044A (en) Level converting circuit
US5182472A (en) Logic circuit with bipolar CMOS configuration
JPH06132806A (en) Cmos output buffer circuit
KR100271645B1 (en) Input buffer circuit
JP2868245B2 (en) Semiconductor device and semiconductor memory
KR900006541B1 (en) The multi-input cmos gate circuitry
KR0136826Y1 (en) Data output buffer
JPH01192220A (en) Driver circuit
JPH0198318A (en) Input buffer circuit