JPH0118035B2 - - Google Patents

Info

Publication number
JPH0118035B2
JPH0118035B2 JP58032777A JP3277783A JPH0118035B2 JP H0118035 B2 JPH0118035 B2 JP H0118035B2 JP 58032777 A JP58032777 A JP 58032777A JP 3277783 A JP3277783 A JP 3277783A JP H0118035 B2 JPH0118035 B2 JP H0118035B2
Authority
JP
Japan
Prior art keywords
paste
ceramics
ceramic
atmosphere
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58032777A
Other languages
Japanese (ja)
Other versions
JPS59162192A (en
Inventor
Hideo Suzuki
Tetsuo Kosugi
Mitsuru Ura
Satoru Ogiwara
Makoto Hiraga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3277783A priority Critical patent/JPS59162192A/en
Publication of JPS59162192A publication Critical patent/JPS59162192A/en
Publication of JPH0118035B2 publication Critical patent/JPH0118035B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセラミツクス表面に導電性薄膜を形成
する方法に関するものである。 〔従来の技術と発明が解決しようとする課題〕 セラミツクスの表面に金属膜を形成すること
は、セラミツク多層配線基板の導体部形成に欠く
ことのできない重要な技術である。このセラミツ
クスの表面に膜を形成する方法としては、CVD
やPVD法等があるが、厚みの小さいものしか形
成することができない。 また特開昭50−1320225には、金属をセラミツ
クスに結着する方法が示されている。この方法は
金属質部材を金属の共晶温度以下の温度で反応性
雰囲気で加熱して共晶体を形成し、この形成され
た共晶体がセラミツクスを濡らし、冷却に際して
セラミツクスと金属とを接合させるようにしたも
のである。使用される反応性雰囲気の反応性ガス
としては酸素が用いられている。しかるにこの方
法では雰囲気として酸化性のものが用いられてい
るところから、導体部表面が酸化し半田が濡れな
いという欠点がある。 更に特開昭55−90478号には、セラミツクス成
形体と金属との接着法が示されている。この方法
はセラミツクス成形体(酸化物系、窒化物系、炭
化物系、硼化物系、ガラス等)に銅又は硫化銅を
接触させ酸化雰囲気中(空気、酸素、空気と酸素
の混合ガス、不活性ガスと酸素の混合ガス)で加
熱して接着するものである。しかるにこの方法に
おいても導体部の酸化が激しく、半田の濡れが悪
くなつて半田付けがほとんど不可能になるという
欠点がある。 また、メタライズペーストを用いてセラミツク
ス表面をメタライズ処理する方法がある。ところ
で一般に電気的目的に使用するメタライズペース
トはセラミツクスの表面に焼き付けられて膜とさ
れた場合に、良好な電気的性質を有する他に、セ
ラミツクスとの接合強度が高いこと、および、導
体又は他の金属性コネクタと結合するときにろう
の濡れ性が良いことが要求される。しかして従来
のメタライズペーストにおいては、酸化物系のガ
ラス成分を含有しており、メタライズ処理に際し
てペースト中に含有されるガラス成分が溶融さ
れ、この溶融物がセラミツク表面との馴染を良く
し、良好な接合強度を実現している。しかしなが
ら炭化珪素セラミツクスのように酸化物ガラスと
の反応性が小さいものにおいては、ペースト中に
含まれるガラス成分は容易にはセラミツクスと反
応せず、逆に多くの気泡が発生して簡単には結合
出来ない。 特にCuを主成分とするCuペーストを用いて膜
を形成するに際しては、加熱雰囲気の種類によつ
て接合強度及び半田付け性が著しく異なる。即ち
空気中或いは酸素雰囲気中で加熱すると、接合強
度は高いものになるものの、ペースト中のCu粉
末の酸化が激しくなり、半田に対する濡れが著し
く悪くなるという問題がある。一方、Cuの酸化
を防ぐために雰囲気を還元性雰囲気(例えば水素
ガス、窒素ガスと水素との混合ガス等)或いは不
活性ガス雰囲気(例えば窒素ガス、アルゴンガ
ス)、真空中等で加熱をすると半田の濡れ性につ
いては好ましい結果が得られるが、逆に接着強度
が低くなるという問題がある。 本発明の目的は上記従来技術の問題点を解消
し、炭化珪素のように酸化物との反応性が小さい
セラミツクスについても導電性のペーストを焼き
付けることができ、しかも形成される膜のセラミ
ツクスとの接合強度が極めて高いと共に、膜の酸
化も防止されて半田に対する濡れも良好なものと
なる、非酸化物系セラミツクス表面に導電性膜を
形成する方法を提供するにある。 〔課題を解決するための手段〕 本発明の方法は、Cu、Ag、PdおよびNiの1
種または2種以上の金属粉末と、P化合物、Bi、
Geの1種または2種以上を含有するペーストを
非酸化物系セラミツクス表面に塗付し、これを水
蒸気を含む不活性ガス雰囲気中で加熱するように
したものである。 〔作用〕 即ちこのような水蒸気を含む不活性ガス雰囲気
中で加熱すると、ペーストの加熱焼成中に、加湿
した不活性ガス雰囲気中の水蒸気が分解して非酸
化物系セラミツクスの表面を酸化させ、又ペース
ト中の金属粉末又は導電性金属化合物の粉末の一
部およびP化合物、Bi、Geが酸化されてセラミ
ツクスとペーストの界面に、これら酸化物の反応
層が形成されてセラミツクスと導電膜の馴染をよ
くするとともに接合強度が高められる。また、こ
の水蒸気を含む不活性ガス雰囲気のもつ酸化作用
も強いものではなく、膜全体としての酸化の程度
も低く、P化合物、Bi、Geの酸化物もセラミツ
クス側に沈下し、形成される導電膜表面側の酸化
物の割合が低くなつて、導電膜表面の半田に対す
る濡れ性も十分確保されるようになるのである。 本発明において使用されるペーストは、主成分
として金属粉末を含有し、従金属として、P化合
物、Bi、Geの1種または2種以上を含有するも
のである。この金属粉末としては、Cu、Ag、Pd
及びNiの一種又は二種以上をあげることができ
る。また導電性金属化合物としてはLaB6をあげ
ることができる。Cuを主成分とするペーストと
しては、例えばCuの粉末と、P化合物(例えば
Cu−P合金、B−P合金、Fe−P合金等)、Bi或
いはGeの粉末を含み、これらを有機物の基材に
分散させたスラリ状のペーストが採用可能であ
る。有機物の基材としては、周知の各種のものが
採用可能であるが、例えばエチルセルローズを含
むブチルカルビトール溶液が挙げられる。このよ
うなペーストが塗布されたセラミツクスを加熱す
る温度としては、セラミツクス焼結温度に上げる
必要はなく、要するに、ペースト中の金属粉末が
焼き付けられる温度であれば良く、例えば前述の
Cuを含むペースト等においては、700〜1050℃好
ましくは850〜1000℃の温度で加熱される。この
ように加熱温度は低いので、添加された金属が完
全にとけることなく適当にセラミツクス表面上に
メタライズされ、また、セラミツクスの熱変形が
少ないので導電性膜の寸法精度も十分確保でき
る。 このときの雰囲気は水蒸気を含む不活性ガス雰
囲気が採用される。不活性ガスとしては、窒素、
アルゴン、ヘリウム或いはネオン等のものが採用
可能であるが、特に窒素ガスが好ましい。またこ
のような不活性ガスに加えられる水蒸気の量は不
活性ガスに対して0.01〜1.0%程度が好ましく、
雰囲気全体としては弱酸性雰囲気となる。また、
水蒸気を含む水素ガス雰囲気では、水蒸気の弱い
酸化力が水素ガスの還元力に妨げられて、雰囲気
全体としては非常に弱い酸化力となり、かつ、添
加される金属が酸素との親和力の低い金属なので
十分な金属酸化物が得られず、従つてセラミツク
スと導電性膜との十分な強度が望めない。不活性
ガスに水蒸気を加える方法としては各種の方法が
採用可能であるが、例えば、バブラを通して窒素
ガスを加熱炉中に通気する方法が挙げられる。こ
の際バブラの加熱温度を調節することにより不活
性ガス中に加えられる水分の量を調節することが
できる。 なお本発明は炭化珪素セラミツクスのように従
来の酸化物ガラス粉末を含むペーストでは簡単に
は膜を形成することができなかつた材質のセラミ
ツクスに適用するに好適であつて、ペースト中に
添加されたP化合物、Bi、Geは弱い酸化性雰囲
気中での低い温度での加熱によつて酸化物となり
やすく、そのため非酸化物系セラミツクスの表面
に導電性膜を容易に形成できるのである。本発明
は炭化珪素セラミツクスに限定されるものではな
く、各種の非酸化物系セラミツクスの表面に膜を
形成することができることはもちろんである。 〔実施例〕 第1表に示すペーストを用いてSiGセラミツク
スの表面に膜を形成した。 第1表に示す組成の各粉末とCu粉末との混合
粉末に6体積%エチルセルローズを含むブチルク
ルビトール溶液を20重量%添加してスラリー状と
しペーストを作成したものを用いた。SiCセラミ
ツクス成形体はSiC粉末に酸化ベリウムを1重量
%添加して混合したものを減圧雰囲気下でホツト
プレスした、密度比98%以上、室温の熱伝導率
が、0.6cal/cm、sec、℃以上、比抵抗が1012Ωcm
以上の成形体用いた。この成形体の表面アラサを
±3μmとし、脱脂等の表面洗滌をした後、この
表面に前述のペーストをスクリーン印刷し、雰囲
気をH2ガス、N2ガス、Arガス及び水分を含む
N2ガスにして各焼成温度で15分間保持して焼成
した。焼成に先き立ち、基板を120℃で10分間保
持してペーストを乾燥させた。接着した金属薄膜
の接着強度を第1図に示す方法で求めた、セラミ
ツク成形体1の表面にたて2mm、横3mm、厚さ約
20μm、の金属薄膜2を設け、その上に重量で、
Ag2%、Sn62.5%、Pb35.2%、Sb0.3%の半田3
によつて幅1.5mm、厚さ0.5mmの銅箔4を接合し、
図中の矢印の垂直方向に引つ張つたときの剥離強
さ(Kg/mm2)を求めた。更に半田の濡れ性試験
を、半田槽中に焼成した上述の基板を2〜3秒間
浸漬することにより行なつた。外観から半田の付
着面積の非常に小さいものを×印、やや良好なも
のを△印、良好なものを○印として表し、3段階
の評価を行なつた。表中、「接」は接着強さを示
し、値はKg/mm2単位で表わした。 「濡」は半田に対する濡れ性を表わす。水分を
含んだN2ガス雰囲気は水を入れたバブラ(寸法
80φ×130)の中に1/minのN2ガスを通し
て行ない、水分の量はバブラ中の水を容器ごと加
熱して行つた。水分量の測定はバブラを通つて炉
内に入る前に、吸水トラツプを通してそのトラツ
プの重量増加から求めた。 第1表に示すように焼成時の雰囲気がH2ガス、
Arガスによつたものはペーストの添加金属およ
び酸化物のガラス化が形成されないために接着が
できなかつた。また、半田の濡れ試験ができなか
つた。N2ガスの場合でもそれぞれの組成のペー
ストも十分な接着強さ、及び半田の濡れ性の良い
ものが得られない。上記のいずれのガス雰囲気の
場合も酸化力を全然有しないので、金属粉末が金
属酸化物を形成せず、従つて、セラミツクスと導
電性膜とのなじみを善くして接合強度を高めるこ
とが望めない。N2ガス中に水分を0.02%、0.2%
含ませた雰囲気で焼成した場合、接着性及び半田
の濡れ性が優れ、特に焼成温度が870℃よりも970
℃の方でより優れていた。 〔発明の効果〕 以上の通り本発明の構成によれば、Cu、Ag、
PdおよびNiの1種または2種以上の金属粉末と、
P化合物、Bi、Geの1種または2種以上を有す
るペーストを塗布された非酸化物系セラミツクス
を水蒸気
[Industrial Application Field] The present invention relates to a method for forming a conductive thin film on a ceramic surface. [Prior Art and Problems to be Solved by the Invention] Forming a metal film on the surface of ceramics is an important technique indispensable for forming conductor portions of ceramic multilayer wiring boards. CVD is a method for forming a film on the surface of ceramics.
There are other methods such as PVD and PVD, but they can only form small thicknesses. Furthermore, Japanese Patent Application Laid-Open No. 1320225/1983 discloses a method for bonding metal to ceramics. In this method, a metallic member is heated in a reactive atmosphere at a temperature below the eutectic temperature of the metal to form a eutectic, and the formed eutectic wets the ceramic and bonds the ceramic and metal when cooled. This is what I did. Oxygen is used as a reactive gas in the reactive atmosphere used. However, since this method uses an oxidizing atmosphere, there is a drawback that the surface of the conductor portion is oxidized and the solder cannot be wetted. Further, JP-A-55-90478 discloses a method of bonding a ceramic molded body to a metal. This method involves contacting copper or copper sulfide with a ceramic molded body (oxide-based, nitride-based, carbide-based, boride-based, glass, etc.) in an oxidizing atmosphere (air, oxygen, mixed gas of air and oxygen, inert It is bonded by heating with a mixture of gas and oxygen). However, this method also has the drawback that the conductor portions are severely oxidized, resulting in poor solder wetting and making soldering almost impossible. There is also a method of metallizing the ceramic surface using a metallizing paste. By the way, metallizing pastes that are generally used for electrical purposes have good electrical properties when baked onto the surface of ceramics to form a film, and also have high bonding strength with ceramics, as well as the ability to bond with conductors or other materials. Good wettability of the solder is required when bonding with a metallic connector. However, conventional metallization pastes contain oxide-based glass components, and during the metallization process, the glass components contained in the paste are melted, and this melt blends well with the ceramic surface, resulting in a good Achieves high bonding strength. However, in the case of materials such as silicon carbide ceramics, which have low reactivity with oxide glass, the glass components contained in the paste do not easily react with the ceramics, and on the contrary, many bubbles are generated, making it difficult to combine easily. Can not. Particularly when forming a film using a Cu paste containing Cu as a main component, the bonding strength and solderability vary significantly depending on the type of heating atmosphere. That is, when heated in air or in an oxygen atmosphere, although the bonding strength becomes high, there is a problem in that the Cu powder in the paste becomes severely oxidized and wetting with solder becomes significantly poor. On the other hand, if the atmosphere is heated in a reducing atmosphere (e.g. hydrogen gas, mixed gas of nitrogen gas and hydrogen, etc.) or an inert gas atmosphere (e.g. nitrogen gas, argon gas), vacuum, etc. to prevent Cu oxidation, the solder Although favorable results can be obtained in terms of wettability, there is a problem in that adhesive strength is reduced. An object of the present invention is to solve the above-mentioned problems of the prior art, to make it possible to bake a conductive paste even on ceramics that have low reactivity with oxides, such as silicon carbide, and to make it possible to bake a conductive paste onto ceramics such as silicon carbide. It is an object of the present invention to provide a method for forming a conductive film on the surface of non-oxide ceramics, which has extremely high bonding strength, prevents oxidation of the film, and has good wettability with solder. [Means for Solving the Problems] The method of the present invention provides a
A seed or two or more metal powders, a P compound, Bi,
A paste containing one or more types of Ge is applied to the surface of non-oxide ceramics and heated in an inert gas atmosphere containing water vapor. [Function] That is, when heated in such an inert gas atmosphere containing water vapor, the water vapor in the humidified inert gas atmosphere decomposes and oxidizes the surface of the non-oxide ceramic during heating and firing of the paste. In addition, part of the metal powder or conductive metal compound powder, P compound, Bi, and Ge in the paste is oxidized, and a reaction layer of these oxides is formed at the interface between the ceramic and the paste, which improves the compatibility between the ceramic and the conductive film. This improves the bonding strength and improves the bonding strength. In addition, the oxidizing effect of this inert gas atmosphere containing water vapor is not strong, and the degree of oxidation of the film as a whole is low, and the oxides of P compounds, Bi, and Ge also sink to the ceramic side, forming a conductive layer. The proportion of oxide on the film surface side is lowered, and the solder wettability of the conductive film surface is also ensured sufficiently. The paste used in the present invention contains metal powder as a main component and one or more of P compounds, Bi, and Ge as secondary metals. This metal powder includes Cu, Ag, and Pd.
and one or more types of Ni. Moreover, LaB 6 can be mentioned as a conductive metal compound. A paste containing Cu as a main component includes, for example, Cu powder and a P compound (e.g.
A slurry-like paste containing powders of Bi or Ge (Cu-P alloy, B-P alloy, Fe-P alloy, etc.) and dispersed in an organic base material can be used. As the organic material base material, various well-known materials can be used, such as a butyl carbitol solution containing ethyl cellulose. The temperature at which ceramics coated with such a paste is heated does not need to be raised to the ceramic sintering temperature; in short, it may be any temperature at which the metal powder in the paste is baked.
Pastes containing Cu are heated at a temperature of 700 to 1050°C, preferably 850 to 1000°C. Since the heating temperature is thus low, the added metal is properly metallized on the ceramic surface without completely melting, and since the ceramic undergoes little thermal deformation, sufficient dimensional accuracy of the conductive film can be ensured. The atmosphere at this time is an inert gas atmosphere containing water vapor. Inert gases include nitrogen,
Argon, helium, neon, or the like can be used, but nitrogen gas is particularly preferred. Further, the amount of water vapor added to such inert gas is preferably about 0.01 to 1.0% based on the inert gas,
The overall atmosphere is a weakly acidic atmosphere. Also,
In a hydrogen gas atmosphere containing water vapor, the weak oxidizing power of water vapor is hindered by the reducing power of hydrogen gas, resulting in a very weak oxidizing power in the atmosphere as a whole, and the added metal has a low affinity for oxygen. A sufficient amount of metal oxide cannot be obtained, and therefore sufficient strength between the ceramic and the conductive film cannot be expected. Various methods can be used to add water vapor to the inert gas, including a method of passing nitrogen gas into the heating furnace through a bubbler. At this time, the amount of moisture added to the inert gas can be adjusted by adjusting the heating temperature of the bubbler. The present invention is suitable for application to ceramics made of materials such as silicon carbide ceramics, in which a film cannot be easily formed with a paste containing conventional oxide glass powder. P compounds, Bi, and Ge easily become oxides when heated at low temperatures in a weakly oxidizing atmosphere, and therefore a conductive film can be easily formed on the surface of non-oxide ceramics. The present invention is not limited to silicon carbide ceramics, and it goes without saying that a film can be formed on the surface of various non-oxide ceramics. [Example] A film was formed on the surface of SiG ceramics using the paste shown in Table 1. A paste was prepared by adding 20% by weight of a butyl curbitol solution containing 6% by volume of ethyl cellulose to a mixed powder of each powder having the composition shown in Table 1 and Cu powder to form a slurry. The SiC ceramic molded body is made by hot pressing a mixture of SiC powder with 1% by weight of berium oxide in a reduced pressure atmosphere.The density ratio is 98% or more, and the thermal conductivity at room temperature is 0.6 cal/cm, sec, °C or more. , specific resistance is 10 12 Ωcm
The above molded body was used. The surface roughness of this molded body is set to ±3 μm, and after surface cleaning such as degreasing, the above-mentioned paste is screen printed on this surface, and the atmosphere is set to include H 2 gas, N 2 gas, Ar gas, and moisture.
Calcination was performed by turning on N2 gas and holding each firing temperature for 15 minutes. Prior to firing, the paste was dried by holding the substrate at 120° C. for 10 minutes. The adhesive strength of the bonded metal thin film was determined by the method shown in Fig. 1, and the adhesive strength of the bonded metal thin film was determined by the method shown in Figure 1.
A metal thin film 2 of 20 μm is provided, and a weight of
Solder 3 with Ag2%, Sn62.5%, Pb35.2%, Sb0.3%
Copper foil 4 with a width of 1.5 mm and a thickness of 0.5 mm is bonded by
The peel strength (Kg/mm 2 ) when pulled in the direction perpendicular to the arrow in the figure was determined. Furthermore, a solder wettability test was conducted by dipping the above-mentioned fired substrate into a solder bath for 2 to 3 seconds. Based on the appearance, a three-level evaluation was performed, with a very small solder adhesion area marked with an "x", a somewhat good one marked with a "△", and a good one marked with a "○". In the table, "touch" indicates adhesive strength, and the value is expressed in kg/mm 2 unit. "Wet" indicates wettability to solder. N2 gas atmosphere containing moisture is removed using a bubbler filled with water (dimensions
N2 gas was passed through the bubbler at a rate of 1/min through a 80φ x 130mm tube, and the amount of water was determined by heating the water in the bubbler together with the container. Moisture content was measured by passing the water through the trap before entering the furnace through the bubbler and determining the increase in weight of the trap. As shown in Table 1, the atmosphere during firing was H2 gas,
In the case of using Ar gas, adhesion could not be achieved because vitrification of the added metal and oxide of the paste was not formed. Also, it was not possible to conduct a solder wetness test. Even in the case of N 2 gas, it is not possible to obtain a paste with sufficient adhesive strength and good solder wettability with each paste. Since none of the above gas atmospheres has any oxidizing power, the metal powder does not form metal oxides, and it is therefore expected that the ceramics and conductive film will be compatible with each other and the bonding strength will be increased. do not have. 0.02%, 0.2% moisture in N2 gas
When fired in an atmosphere that contains moisture, the adhesion and solder wettability are excellent, especially when the firing temperature is 970°C rather than 870°C.
It was better at ℃. [Effect of the invention] As described above, according to the structure of the present invention, Cu, Ag,
One or more metal powders of Pd and Ni,
Non-oxide ceramics coated with a paste containing one or more of P compounds, Bi, and Ge are heated with water vapor.

【表】【table】

【表】 を含む不活性ガス雰囲気中で加熱して、セラミツ
クス表面上に導電性膜を形成し、この導電性膜が
金属酸化物を有するので、この導電性膜がセラミ
ツクスに対する強い接着強度を有し、さらに、こ
の導電性膜が過度の量の金属酸化物を含まないの
でこの導電性膜と半田との濡れ性も極めて良好と
なる。 また、加熱温度をセラミツクス焼結温度程に高
温にする必要がないので、セラミツクスの熱変形
が小さく、従つて寸法精度の良好な導電性膜を備
えたセラミツクスが得られる。
A conductive film is formed on the ceramic surface by heating in an inert gas atmosphere containing [Table].Since this conductive film contains metal oxide, this conductive film has strong adhesive strength to the ceramic. Furthermore, since this conductive film does not contain an excessive amount of metal oxide, the wettability between this conductive film and solder is also extremely good. Further, since the heating temperature does not need to be as high as the ceramic sintering temperature, thermal deformation of the ceramic is small, and therefore, a ceramic having a conductive film with good dimensional accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は金属化層の剥離試験方法を示す断面図
である。 1……SiCセラミツクス成形体、2……金属薄
膜、3……半田、4……銅箔。
FIG. 1 is a cross-sectional view showing a method for testing the peeling of a metallized layer. 1... SiC ceramic molded body, 2... Metal thin film, 3... Solder, 4... Copper foil.

Claims (1)

【特許請求の範囲】 1 Cu、Ag、Pd及びNiの1種または2種以上
の金属粉末と、P化合物、Bi、Geの1種又は2
種以上を含有するペーストを非酸化物系セラミツ
クスの表面に塗布する工程と、このペーストが塗
布された非酸化物系セラミツクスを、水蒸気を含
む不活性ガス雰囲気中で加熱する工程とを有する
非酸化物系セラミツクス表面に導電性膜を形成す
る方法。 2 非酸化物系セラミツクスはSiCであることを
特徴とする特許請求の範囲第1項に記載の非酸化
物系セラミツクス表面に導電性膜を形成する方
法。 3 不活性ガスはN2、Ar、He及びNeの1種又
は2種以上であることを特徴とする特許請求の範
囲第1項または第2項に記載の非酸化物系セラミ
ツクス表面に導電性膜を形成する方法。
[Claims] 1. One or more metal powders of Cu, Ag, Pd, and Ni, and one or more of P compounds, Bi, and Ge.
A process of applying a paste containing at least one of the above-mentioned species to the surface of a non-oxide ceramic, and a process of heating the non-oxide ceramic coated with the paste in an inert gas atmosphere containing water vapor. A method of forming a conductive film on the surface of physical ceramics. 2. The method for forming a conductive film on the surface of non-oxide ceramics according to claim 1, wherein the non-oxide ceramics are SiC. 3. The inert gas is one or more of N 2 , Ar, He, and Ne. Method of forming membranes.
JP3277783A 1983-03-02 1983-03-02 Formation of electroconductive film on ceramic surface Granted JPS59162192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3277783A JPS59162192A (en) 1983-03-02 1983-03-02 Formation of electroconductive film on ceramic surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3277783A JPS59162192A (en) 1983-03-02 1983-03-02 Formation of electroconductive film on ceramic surface

Publications (2)

Publication Number Publication Date
JPS59162192A JPS59162192A (en) 1984-09-13
JPH0118035B2 true JPH0118035B2 (en) 1989-04-03

Family

ID=12368268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3277783A Granted JPS59162192A (en) 1983-03-02 1983-03-02 Formation of electroconductive film on ceramic surface

Country Status (1)

Country Link
JP (1) JPS59162192A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676854B2 (en) * 1988-12-16 1997-11-17 日本油脂株式会社 Polyoxyalkylene unsaturated ether-maleic acid ester copolymer and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527841A (en) * 1978-08-16 1980-02-28 Ngk Spark Plug Co Metallization of highly aluminous ceramics
JPS56160704A (en) * 1980-05-14 1981-12-10 Matsushita Electric Ind Co Ltd Metallized composition
JPS5747782A (en) * 1980-09-01 1982-03-18 Hitachi Ltd Formation of metal coating on silicon carbide sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527841A (en) * 1978-08-16 1980-02-28 Ngk Spark Plug Co Metallization of highly aluminous ceramics
JPS56160704A (en) * 1980-05-14 1981-12-10 Matsushita Electric Ind Co Ltd Metallized composition
JPS5747782A (en) * 1980-09-01 1982-03-18 Hitachi Ltd Formation of metal coating on silicon carbide sintered body

Also Published As

Publication number Publication date
JPS59162192A (en) 1984-09-13

Similar Documents

Publication Publication Date Title
Burgess et al. The Direct Bonding of Metals to Ceramics by the Gas‐Metal Eutectic Method
US4663649A (en) SiC sintered body having metallized layer and production method thereof
US5653379A (en) Clad metal substrate
JPH0957487A (en) Brazing filler metal
JP4081865B2 (en) Method for producing conductor composition
JPH0118035B2 (en)
JP2578283B2 (en) Metallization method for aluminum nitride substrate
JPH0576795B2 (en)
JPH02174145A (en) Aluminum nitride structure and its manufacture
JP2000077805A (en) Wiring board and manufacture thereof
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH0466688B2 (en)
JP3977875B2 (en) Brazing alloy and joined body for joining of alumina-based ceramics-aluminum alloy
JPS59217680A (en) Metallizing paste and ceramic product
US4950503A (en) Process for the coating of a molybdenum base
JP3808376B2 (en) Wiring board
JPH0324431B2 (en)
JPS6228067A (en) Joining method for ceramics
JPS61247672A (en) Method of joining metal particle to substrate and adhesive composition
JP2743558B2 (en) Copper conductor paste
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JP2003234552A (en) Wiring board
JPS631279B2 (en)
JPS59121176A (en) Ceramic metallization
JPS6156198B2 (en)