JPH01175717A - Porcelain composition for reduction re-oxidation type semiconductor capacitor - Google Patents

Porcelain composition for reduction re-oxidation type semiconductor capacitor

Info

Publication number
JPH01175717A
JPH01175717A JP62334078A JP33407887A JPH01175717A JP H01175717 A JPH01175717 A JP H01175717A JP 62334078 A JP62334078 A JP 62334078A JP 33407887 A JP33407887 A JP 33407887A JP H01175717 A JPH01175717 A JP H01175717A
Authority
JP
Japan
Prior art keywords
reduction
improved
type semiconductor
porcelain
zzrymz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62334078A
Other languages
Japanese (ja)
Inventor
Naoki Sasaki
直樹 佐々木
Hiroshi Sakamoto
浩 坂本
Kenzo Hanawa
健三 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62334078A priority Critical patent/JPH01175717A/en
Publication of JPH01175717A publication Critical patent/JPH01175717A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1272Semiconductive ceramic capacitors

Abstract

PURPOSE:To enable characteristics to be stable, insulation resistance to be improved, breakdown voltage to be improved, and mechanical strength of insula tion layer to be improved by adding a specified amount of manganese oxide to a material expressed by the general formula (Ba1-xSrx)m(Ti1-y-zZryMz)O3 and making the value within the expression to be within a specified range. CONSTITUTION:A manganese oxide of 0.05-0.2weight% (expressed in terms of to MnO2) is added to a material which is expressed by the general formula (Ba1-xSrx)m(Ti1-y-zZryMz)O3 (M is at least one of Ta and Nb and (m) is the total mol ratio of A site element and B site element) and the value of (m) within the expression is 0.990<=m<=1.000. For example, materials are subject to moisture mixture grinding so that the composition ratio (m) of [(Ba1-xSrx)m (Ti1-y-zZryMz)O3] may be equal to 0.995. The starting material is BaCO3, SrCO2, TiO2, ZrO2 and Ta2O5 with improved purity (99.8% or more) and x, y, and Z are equal to 0.200, 0.090 and 0.005, respectively. Also, a MnO2 of 0.1weight% is added to improve sinterability and insulation resistance. After that, a sintered porcelain is obtained through tentative burning, grinding, molding and calcina tion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はチタン酸バリウム(B a T iO3)系半
導体磁器の外周に再酸化により絶縁層を形成してなる還
元再酸化型半導体セラミックコンデンサー用磁器組成物
に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a reduction and reoxidation type semiconductor ceramic capacitor in which an insulating layer is formed on the outer periphery of barium titanate (B a TiO3) based semiconductor ceramic by reoxidation. Relating to a porcelain composition.

(従来の技術及び解決しようとする問題点)半導体セラ
ミックコンデンサーには種々のタイプのものがあるが、
還元再酸化型半導体セラミックコンデンサーは半導体磁
器の外周表面に絶縁層が形成され、その外側に容量取出
し用の電極が形成されているものである。
(Prior art and problems to be solved) There are various types of semiconductor ceramic capacitors.
A reduction and reoxidation type semiconductor ceramic capacitor has an insulating layer formed on the outer peripheral surface of a semiconductor ceramic, and an electrode for taking out the capacitance is formed on the outside of the insulating layer.

その製造法としては、例えば、チタン酸バリウム系磁器
にキュリー点シフターとして、例えばLa、Csなどの
希土類元素を添加し、混合、仮焼、更に成型、焼成して
焼結体磁器を得る6次いで。
The manufacturing method includes, for example, adding rare earth elements such as La and Cs as a Curie point shifter to barium titanate porcelain, mixing, calcination, further shaping and firing to obtain sintered porcelain. .

中性若しくは還元雰囲気中で熱処理して半導体化し、こ
れを酸化性雰囲気(例えば、空気中)で再酸化すること
により表面から酸素を粒内体積拡散させ、磁器表面に絶
縁層を形成させる。再酸化条件を制御することにより、
lIA縁層の厚さを変化させ。
It is heat-treated in a neutral or reducing atmosphere to convert it into a semiconductor, and then re-oxidized in an oxidizing atmosphere (for example, in air) to diffuse oxygen from the surface into the grains and form an insulating layer on the porcelain surface. By controlling the reoxidation conditions,
Varying the thickness of the IIA rim layer.

容量を変えることができる。この後、容量取出し用の電
極を付与するが、これには再酸化処理した後に電極を付
与する方法(例、特開昭59−217320号、同60
−17908号、同61−10225号)と、銀電極を
塗布してから再酸化処理を行い、ガラスフリット成分を
拡散させて新しい絶縁層を形成する方法(例、特開昭6
1−191009号)がある。
Capacity can be changed. After this, an electrode for taking out the capacitance is applied, but this method involves applying the electrode after re-oxidation treatment (for example, JP-A-59-217320, JP-A-60
-17908, No. 61-10225), and a method in which a silver electrode is coated and then reoxidized to diffuse the glass frit components to form a new insulating layer (for example, JP-A No. 6
1-191009).

前者の方法の場合、焼結体磁器に針状結晶、巨大粒が発
生していると、誘電体損失1M縁低抵抗破壊電圧などに
大きく影響し、1〜100μ腫の如く極めて薄い絶縁層
を利用して大容量を得ようとする還元再酸化型半導体セ
ラミックコンデンサーとしては好ましくない、チタン酸
バリウム系でAサイ8元素とBサイト元素のモル比が1
より大きくなると難焼結性となり、また1より小さくな
ると巨大粒、針状結晶が析出し易くなる傾向にあり、特
にチタン酸バリウムにシフター、デプレッサーなどの添
加元素を加えた場合、第2相が出現し易くなり、一般に
は第2相が析出した状態で使用されている。第2相のよ
うな不均一が存在すると、そこから絶縁破壊を起こし昌
くなり、#!縁抵抗、破壊電圧などの劣化を招くので、
再酸化処理した後に電極を付与する方法はあまり使われ
てぃない。
In the case of the former method, if needle-shaped crystals or giant grains occur in the sintered porcelain, it will greatly affect the dielectric loss, 1M edge low resistance breakdown voltage, etc. A barium titanate system with a molar ratio of 8 A-site elements and B-site element of 1 is undesirable for reduction and reoxidation type semiconductor ceramic capacitors that are intended to obtain large capacity by using barium titanate.
When the size is larger, it becomes difficult to sinter, and when it is smaller than 1, giant grains and needle-shaped crystals tend to precipitate. Especially when adding elements such as shifters and depressors to barium titanate, the second phase appears easily, and is generally used in a state in which the second phase has precipitated. If there is non-uniformity such as the second phase, dielectric breakdown will occur from there, resulting in #! This will lead to deterioration of edge resistance, breakdown voltage, etc.
The method of applying electrodes after reoxidation treatment is not often used.

このため、一般的には後者の方法により新しい絶縁層を
形成しているが、この方法では特性のバラツキが大きく
、絶縁層の機械的強度も極めて弱いという問題がある。
For this reason, a new insulating layer is generally formed by the latter method, but this method has problems in that the characteristics vary widely and the mechanical strength of the insulating layer is also extremely weak.

本発明は、上記従来技術の欠点を解消し、特性の安定性
、絶縁抵抗の向上、破壊電圧の向上及び絶縁層の機械的
強度の向上を可能とする新規な還元再酸化型半導体セラ
ミックコンデンサーを提供することを目的とするもので
ある。
The present invention provides a novel reduction-reoxidation type semiconductor ceramic capacitor that eliminates the drawbacks of the above-mentioned conventional technology and enables improved stability of characteristics, improved insulation resistance, improved breakdown voltage, and improved mechanical strength of the insulating layer. The purpose is to provide

(問題点を解決するための手段) 上記目的を達成するため、本発明者は、従来の還元再酸
化型半導体セラミックコンデンサーにおける磁器組成並
びに製造処理プロセスについて鋭意研究を重ねた結果、
還元、再酸化によって誘電体層を薄膜化したときに絶縁
破壊の原因となる第2相の巨大粒、針状結晶を完全に消
去でき、均一で細かい粒径の粒状結晶を得ることができ
る方策を見い出し、ここに本発明をなしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventor has conducted extensive research on the porcelain composition and manufacturing process of conventional reduction-reoxidation type semiconductor ceramic capacitors.
A measure that can completely eliminate giant grains and needle-shaped crystals in the second phase that cause dielectric breakdown when the dielectric layer is thinned by reduction and reoxidation, and can obtain granular crystals with uniform and fine grain size. The present invention has been made based on this discovery.

すなわち1本発明に係る還元再酸化型半導体セラミック
コンデンサー用磁器組成物は、一般式(B al−X 
S rx) m (Ti、−y−z ZryMz) O
That is, 1. The ceramic composition for a reduction and reoxidation type semiconductor ceramic capacitor according to the present invention has the general formula (B al-X
S rx) m (Ti, -y-z ZryMz) O
.

(但し、M:Ta及びNbのうちの少なくとも1種。(However, M: at least one of Ta and Nb.

m:Aサイ8元素とBサイト元素の 総モル比) で表される材料に対し、酸化マンガンを二酸化マンガン
(MnO,)に換算して0.05〜0.2重量%添加し
てなる還元再酸化型半導体セラミックコンデンサー用材
料において、0.990≦m≦1.000にしたことを
特徴とするものである。
m: total molar ratio of the 8 A-site elements and the B-site element This is a material for a re-oxidized semiconductor ceramic capacitor, characterized in that 0.990≦m≦1.000.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明においては、Aサイ8元素はBaを必須とし、更
にシフターとしてSrを含み、またBサイト元素はTi
及びZrを必須とし、更にTa及びNbのうちの少なく
とも1種を含む上記一般式で表されるチタン酸バリウム
系磁器材料を主成分とし、この主成分に対し、酸化マン
ガンを適量添加してなるものを対象としている。
In the present invention, the 8 A-site elements include Ba and further contain Sr as a shifter, and the B-site element is Ti.
The main component is a barium titanate-based porcelain material represented by the above general formula, in which Zr and Zr are essential, and further contains at least one of Ta and Nb, and an appropriate amount of manganese oxide is added to this main component. It targets things.

なお、Baに対するSrの含有モル比X%T1に対する
Zrの含有モル比y並びにTa及び/又はNbの含有モ
ル比2は適宜決定することが可能であり。
Note that the molar ratio of Sr to Ba (X%), the molar ratio y of Zr to T1, and the molar ratio 2 of Ta and/or Nb can be determined as appropriate.

特に制限はされない。例えば、0.05≦X≦0゜50
.0.01≦y≦0.30.0.001≦2≦0.01
0の範囲が望ましい。
There are no particular restrictions. For example, 0.05≦X≦0゜50
.. 0.01≦y≦0.30.0.001≦2≦0.01
A range of 0 is desirable.

また、酸化マンガンは焼結性、1!縁抵抗を改善するた
めに添加されるもので、二酸化マンガンに換算して0.
05〜0.2重量%の範囲で添加するのが好ましい。な
お、0.05重量%未満では高絶縁抵抗が得られず、0
.2重量%を超えるとIRやtanδが悪くなる。二酸
化マンガンとしては、Mn、O,又はMnC0,で添加
して仮焼し、これをM n O□基準で所定割合となる
ように配合することもできる。
In addition, manganese oxide has sinterability, 1! It is added to improve edge resistance, and has a value of 0.0% in terms of manganese dioxide.
It is preferably added in an amount of 0.05 to 0.2% by weight. Note that if it is less than 0.05% by weight, high insulation resistance cannot be obtained;
.. If it exceeds 2% by weight, IR and tan δ will deteriorate. As manganese dioxide, Mn, O, or MnC0 can be added and calcined, and then mixed in a predetermined ratio based on M n O□.

また、特に、Aサイ8元素とBサイト元素の総モル比m
が1.000を超えて大きくなると難焼結性となり、ま
た0、990未満であると巨大粒、針状結晶が出易くな
るので、好ましくない、したがって、原料純度から厳し
く制御して上記範囲の磁器組成とすることにより、還元
、再酸化によって誘導体層をWI膜化したときに絶縁破
壊の原因となる第2相の巨大粒、針状結晶を完全に消去
できる。特に、チタン酸バリウムを基本とし、これにシ
フター、デプレッサーを添加した場合でも室温近くの比
誘電率が12000以上が得られ、しかも第2相の巨大
粒、針状結晶がない素体(焼結体磁器)を還元再酸化す
ることにより、従来、再酸化によって薄い誘電体層にし
たときに起こる絶縁破壊を防止することができる。また
、電極焼付と再酸化を同時に行う、いわゆるフリット成
分の拡散を利用する必要もなくなるので、還元再酸化型
半導体セラミックコンデンサー特有の特性のバラツキも
なくなり1表面誘電体層の機械的弱さも問題とならなく
なる。
In particular, the total molar ratio m of the 8 A-site elements and the B-site element
If it exceeds 1.000, it becomes difficult to sinter, and if it is less than 0.990, giant grains and needle-like crystals tend to appear, which is undesirable. By using a ceramic composition, it is possible to completely eliminate gigantic grains and acicular crystals of the second phase that cause dielectric breakdown when the dielectric layer is converted into a WI film by reduction and reoxidation. In particular, even when a shifter and a depressor are added to barium titanate as a base material, a relative dielectric constant of 12,000 or more near room temperature can be obtained, and the element body (sintered) has no second phase giant grains or needle-like crystals. By reducing and reoxidizing the solid porcelain (solid porcelain), it is possible to prevent the dielectric breakdown that conventionally occurs when a thin dielectric layer is made by reoxidation. In addition, it is no longer necessary to use the so-called diffusion of frit components, which performs electrode baking and reoxidation at the same time, so there is no need to use the so-called diffusion of the frit component, which is characteristic of reduction and reoxidation type semiconductor ceramic capacitors, and the mechanical weakness of the first surface dielectric layer is no longer a problem. It will stop happening.

すなわち、単体コンデンサーと同様の扱いのできる還元
再酸化型半導体セラミックコンデンサーを得ることがで
きるのである。
In other words, it is possible to obtain a reduction and reoxidation type semiconductor ceramic capacitor that can be handled in the same way as a single capacitor.

なお、焼結体磁器の結晶としては、磁器組成並びに製造
条件を制御することにより、第2相の巨大粒、針状結晶
を消去し、しかも粒径3μ■以下で均一な粒状結晶とす
る必要がある。焼結体磁器の粒度が3μIを越える大き
な粒があると、再酸化後の絶縁薄膜層の厚みバラツキが
大きくなり、均一絶縁層が得られなくなる。0.2〜3
μ園の範囲が好ましい。
Furthermore, by controlling the porcelain composition and manufacturing conditions, it is necessary to eliminate the giant grains and acicular crystals of the second phase, and to obtain uniform granular crystals with a grain size of 3μ or less. There is. If the sintered porcelain contains large grains with a grain size of more than 3 μI, the thickness of the insulating thin film layer after reoxidation will vary greatly, making it impossible to obtain a uniform insulating layer. 0.2-3
The μ-en range is preferred.

このような粒状結晶を得るには、例えば以下に示す方法
で焼結体磁器を製造すればよい。
In order to obtain such granular crystals, sintered ceramics may be produced, for example, by the method shown below.

まず、Aサイト及びBサイトの各成分の原料純度として
は、微妙な組成比率mをコントロールするため、99.
8%以上のものを使用し、粉体粒度は、焼結体磁器の粒
度を3μm以下にコントロールする必要があるため、0
.2〜0.4μ厘のものを使用する。特にTiO2,Z
rO,はこの粒度範囲で粒度の揃った純度の高いのもの
を使用する。
First, the raw material purity of each component of the A site and B site is 99.
8% or more, and the powder particle size is 0.0% because it is necessary to control the particle size of the sintered porcelain to 3 μm or less.
.. Use one with a thickness of 2 to 0.4 μm. Especially TiO2,Z
As for rO, a highly pure one with uniform particle size within this particle size range is used.

次いで、各成分の粉体をアルコール中で70時間以上の
如く長時間粉砕すると、均一に揃った粉ができ、焼結体
磁器の結晶粒も粒径3μ重以下のものが可能となる。
Next, by grinding the powder of each component in alcohol for a long period of time, such as 70 hours or more, uniform powder can be obtained, and the crystal grains of the sintered porcelain can have a grain size of 3 microns or less.

混合後、仮焼、粉砕、乾燥、造粒、成形、焼成するが、
仮焼粉砕後の乾燥は、急速乾燥、瞬間乾燥等によると、
凝集粒のない粉が得られると共に焼結体密度も向上する
After mixing, calcination, pulverization, drying, granulation, molding, and firing are performed.
Drying after calcination and pulverization is done by rapid drying, instant drying, etc.
Powder free of agglomerated particles can be obtained, and the density of the sintered body can also be improved.

得られた焼結体磁器を中性若しくはH2、c。The obtained sintered porcelain was heated to neutral or H2, c.

等の還元性雰囲気中で還元処理して半導体化し、次いで
大気中等で再酸化処理して表面誘電体層を得る。
The semiconductor material is reduced to a semiconductor in a reducing atmosphere such as the like, and then re-oxidized in the air to obtain a surface dielectric layer.

容量取出し用電極の取付けは、電極中のガラスフリット
成分を拡散する方法を必要とせず、再酸化誘電体層をそ
のまま利用して適宜方法で行うことができる。オーミッ
ク性電極を焼き付けることも可能である。
The attachment of the capacitance extraction electrode can be carried out by an appropriate method using the reoxidized dielectric layer as it is without requiring a method of diffusing the glass frit component in the electrode. It is also possible to bake in ohmic electrodes.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 還元酸化型半導体セラミックコンデンサー用磁器材料と
して。
(Example) As a ceramic material for reduction-oxidation semiconductor ceramic capacitors.

(Ba1−x Srx)m (Ti、−y−zZryT
az)O。
(Ba1-x Srx)m (Ti, -y-zZryT
az)O.

の一般式の組成比率mがm=1.005.1.000.
0.995.0.990.0.985となるように原料
を湿式混合粉砕した。出発原料は高純度(99,8%以
上)のBacO,、S r CO3、T i Oz、Z
rO2,Ta、○、を用い、x=0.200.y=o。
The composition ratio m of the general formula is m=1.005.1.000.
The raw materials were wet-mixed and pulverized to give a powder of 0.995.0.990.0.985. The starting materials are high purity (99.8% or more) BacO, S r CO3, T i Oz, Z
Using rO2, Ta, ○, x=0.200. y=o.

090、z=o、o05とした。また、焼結性、絶縁抵
抗の改善のためにM n Ozとして0.1重量%添加
した。
090, z=o, o05. Furthermore, 0.1% by weight of MnOz was added to improve sinterability and insulation resistance.

次いで、混合乾燥後、空気中で1200℃×2時間仮焼
し、湿式粉砕して瞬間乾燥を行い、凝集粒のないものを
得た。次にバインダーを添加し、造粒を行い、単板成形
を行った。その後、成型体をすべて1400’CX3h
rで焼成し、焼結体磁器を得た。磁器の寸法は径6.4
■、厚さ0.91111程度である。
Next, after mixing and drying, the mixture was calcined in air at 1200° C. for 2 hours, wet-pulverized, and instant-dried to obtain a product free of agglomerated particles. Next, a binder was added, granulation was performed, and veneer molding was performed. After that, all the molded bodies were heated to 1400'CX3h.
The mixture was fired at R to obtain sintered porcelain. The diameter of the porcelain is 6.4
(2) Thickness is about 0.91111.

次に、還元性雰囲気中で還元処理を施し、更に空気中で
再酸化処理した後、容量取出し用電極として、オーミッ
ク性銀電極を焼付けした。
Next, after a reduction treatment was performed in a reducing atmosphere and a reoxidation treatment in air, an ohmic silver electrode was baked as a capacitance extraction electrode.

還元処理前の焼結体磁器の密度ρ(g/cm’) 。Density ρ (g/cm') of sintered porcelain before reduction treatment.

25℃での比誘電率gr及び誘電体損失tanδ(%)
を第1表に併記する。また、得られた半導体セラミック
コンデンサーの静電容量C(μF/cm”)。
Relative permittivity gr and dielectric loss tan δ (%) at 25°C
are also listed in Table 1. Also, the capacitance C (μF/cm”) of the obtained semiconductor ceramic capacitor.

誘電体損失tanδ(%)、絶縁抵抗CR(μF−MΩ
)及び絶縁破壊電圧Va(V)を第2表に示す、なお、
比誘電率sr、静電容量C及び誘電体損失tanδは周
波数IKHz、電圧1vで測定し、絶縁抵抗CRは50
V、DCを60秒間印加後、測定し、絶縁破壊電圧はD
C昇圧式で実施した。また、静電容量は、還元再酸化処
理条件を変えてすべての試料について0.25(μF/
cm”)となるようにした。
Dielectric loss tan δ (%), insulation resistance CR (μF-MΩ
) and dielectric breakdown voltage Va (V) are shown in Table 2.
The relative dielectric constant sr, capacitance C, and dielectric loss tan δ are measured at a frequency of IKHz and a voltage of 1 V, and the insulation resistance CR is 50
After applying V and DC for 60 seconds, the dielectric breakdown voltage was D.
It was carried out using a C pressurization method. In addition, the capacitance was 0.25 (μF/
cm”).

第1表より1mが1.010を超えると密度が低くなり
、焼結性に問題が生じてくることがわかる。また1mが
0.990未満、すなわちBサイト側が過剰になると、
比誘電率は向上するものの、磁器表面に巨大粒、針状結
晶が顕著に出現していることが光学顕微鏡観察により確
認された(第2図)Omが本発明範囲内にある磁器の表
面は粒状結晶が均一に分布し、結晶粒の大きさが平均3
μ腫以下であった(第1図)。
From Table 1, it can be seen that when 1 m exceeds 1.010, the density decreases and a problem arises in sinterability. Also, if 1m is less than 0.990, that is, the B site side is excessive,
Although the dielectric constant improved, it was confirmed by optical microscopic observation that giant grains and needle-shaped crystals appeared prominently on the porcelain surface (Figure 2). Granular crystals are uniformly distributed, with an average grain size of 3
The tumor was smaller than a μ tumor (Fig. 1).

また、第2表より明らかなとおり、磁器組成比率mが本
発明範囲を外れると、特に絶縁抵抗CR。
Furthermore, as is clear from Table 2, when the porcelain composition ratio m is out of the range of the present invention, the insulation resistance CR is particularly low.

絶縁破壊電圧Vaが劣化している。これは、電極がオー
ミック性であるので1表面誘電体層に出現している巨大
粒、針状結晶が特性劣化に関与していると考えられる。
The dielectric breakdown voltage Va has deteriorated. This is thought to be because the electrodes are ohmic, so giant grains and needle-like crystals appearing in one surface dielectric layer are responsible for the deterioration of the characteristics.

また、誘電体損失tanδも劣化している。Furthermore, the dielectric loss tan δ has also deteriorated.

一方、磁器組成比率mが本発明範囲内であると、均一で
小さな粒径の粒状の結晶であり、静電容量Cが0.25
(μF/c鵬”)で絶縁破壊電圧が1100v以上と特
性面で飛躍的に向上していることがわかる。
On the other hand, when the porcelain composition ratio m is within the range of the present invention, granular crystals are uniform and small in size, and the capacitance C is 0.25.
It can be seen that the dielectric breakdown voltage is 1100 V or more at (μF/c), which is a dramatic improvement in terms of characteristics.

【以下余白1 (発明の効果) 以上詳述したように、本発明によれば、チタン酸バリウ
ム系半導体磁塁材料の磁器組成比mを厳しく制御し、針
状結晶、巨大粒のない均一で細かい粒径の粒状結晶のも
のとするので、再酸化絶縁層を単板コンデンサーと同等
に利用することができ、電気特性1機械的強度が大幅に
向上した優れた特性の還元再酸化型半導体セラミックコ
ンデンサーを得ることができる。電極としてオーミック
性電極を用いたときに特に性能が発揮され、大量生産す
る際にも特性面で安定性が増し、特性のバラツキを極力
抑えることができる。
[Blank 1 (Effects of the Invention) As detailed above, according to the present invention, the porcelain composition ratio m of the barium titanate-based semiconductor magnetic base material is strictly controlled, and the porcelain composition ratio m of the barium titanate-based semiconductor magnetic base material is strictly controlled. Since it is made of granular crystals with a fine grain size, the reoxidation insulating layer can be used in the same way as a single-plate capacitor, and the electrical properties 1 are reduced and reoxidized semiconductor ceramics with excellent characteristics that have significantly improved mechanical strength. You can get a capacitor. Performance is particularly demonstrated when an ohmic electrode is used as the electrode, and stability in terms of properties increases even during mass production, making it possible to suppress variations in properties as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は焼結体磁器表面の結晶構造を示す顕
微鏡写真で、第1図は本発明例の場合であり、第2図は
従来例の場合である。 特許出願人    昭和電工株式会社 代理人弁理士   中  村   尚 第1図
1 and 2 are micrographs showing the crystal structure of the surface of the sintered ceramic. FIG. 1 shows the case of the present invention, and FIG. 2 shows the case of the conventional example. Patent applicant: Showa Denko K.K. Patent attorney Hisashi Nakamura Figure 1

Claims (1)

【特許請求の範囲】 一般式(Ba_1_−_xSr_x)m(Ti_1_−
_y_−_zZr_yM_z)O_3(但し、M:Ta
及びNbのうちの少なくとも1種、m:Aサイト元素と
Bサイト元素の 総モル比) で表される材料に対し、酸化マンガンを二酸化マンガン
(MnO_2)に換算して0.05〜0.2重量%添加
してなる還元再酸化型半導体セラミックコンデンサー用
材料において、0.990≦m≦1.000にしたこと
を特徴とする還元再酸化型半導体セラミックコンデンサ
ー用磁器組成物。
[Claims] General formula (Ba_1_-_xSr_x)m(Ti_1_-
_y_-_zZr_yM_z)O_3 (However, M: Ta
and at least one of Nb, m: total molar ratio of A-site elements and B-site elements), and manganese oxide is converted to manganese dioxide (MnO_2) from 0.05 to 0.2. A ceramic composition for a reduction and reoxidation type semiconductor ceramic capacitor, characterized in that the material for a reduction and reoxidation type semiconductor ceramic capacitor is added in a weight% of 0.990≦m≦1.000.
JP62334078A 1987-12-29 1987-12-29 Porcelain composition for reduction re-oxidation type semiconductor capacitor Pending JPH01175717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62334078A JPH01175717A (en) 1987-12-29 1987-12-29 Porcelain composition for reduction re-oxidation type semiconductor capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62334078A JPH01175717A (en) 1987-12-29 1987-12-29 Porcelain composition for reduction re-oxidation type semiconductor capacitor

Publications (1)

Publication Number Publication Date
JPH01175717A true JPH01175717A (en) 1989-07-12

Family

ID=18273269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62334078A Pending JPH01175717A (en) 1987-12-29 1987-12-29 Porcelain composition for reduction re-oxidation type semiconductor capacitor

Country Status (1)

Country Link
JP (1) JPH01175717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203632A (en) * 1992-12-29 1994-07-22 Taiyo Yuden Co Ltd Dielectric ceramic and ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203632A (en) * 1992-12-29 1994-07-22 Taiyo Yuden Co Ltd Dielectric ceramic and ceramic capacitor

Similar Documents

Publication Publication Date Title
JP3435607B2 (en) Non-reducing dielectric porcelain composition
JP2013028478A (en) Dielectric ceramic composition and electronic component
KR100466073B1 (en) Dielectric Composition Having Improved Homogeneity And Insulation Resistance, Preparing Method Thereof And Multilayer Ceramic Condenser Using The Same
KR20100133905A (en) Sintered material for dielectric substance and process for preparing the same
KR100546993B1 (en) Method for producing dielectric ceramic material powder, dielectric ceramic and monolithic ceramic capacitor
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
KR100366180B1 (en) Semiconducting Ceramic Material, Process for Producing the Ceramic Material, and Thermistor
JPH01175717A (en) Porcelain composition for reduction re-oxidation type semiconductor capacitor
JPH01175716A (en) Porcelain composition for reduction re-oxidation type semiconductor ceramic capacitor
KR100355933B1 (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor
JP2020152630A (en) Method for preparing dielectric having low dielectric loss and dielectric prepared thereby
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JPH01175715A (en) Porcelain composition for reduction re-oxidation type semiconductor capacitor
JPH01175718A (en) Porcelain composition for reduction re-oxidation type semiconductor capacitor
JP2866986B2 (en) Piezoelectric ceramic composition
JPH01175719A (en) Porcelain composition for reduction re-oxidation type semiconductor capacitor
JP2002284571A (en) Dielectric ceramic having excellent thermal and dc bias properties
JPH0477698B2 (en)
JPS6053408B2 (en) Reduced semiconductor ceramic composition
JP3385631B2 (en) Non-reducing dielectric porcelain composition
JP3368599B2 (en) Non-reducing dielectric porcelain composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
KR100355932B1 (en) A method for preparing Barium Titanate powders for the multilayer ceramic Chip Capacitor
JPS633442B2 (en)
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Effective date: 20060713

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070305

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070404

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130413

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130413

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160413

Year of fee payment: 9