JPH01172757A - Correlation type speedometer also used in measurement of friction coefficient - Google Patents

Correlation type speedometer also used in measurement of friction coefficient

Info

Publication number
JPH01172757A
JPH01172757A JP33304287A JP33304287A JPH01172757A JP H01172757 A JPH01172757 A JP H01172757A JP 33304287 A JP33304287 A JP 33304287A JP 33304287 A JP33304287 A JP 33304287A JP H01172757 A JPH01172757 A JP H01172757A
Authority
JP
Japan
Prior art keywords
friction coefficient
sensor
output
detection
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33304287A
Other languages
Japanese (ja)
Inventor
Goshi Sakai
郷史 酒井
Kazuteru Maekawa
和輝 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Shinsangyo Kaihatsu KK
Original Assignee
Aisin AW Co Ltd
Shinsangyo Kaihatsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Shinsangyo Kaihatsu KK filed Critical Aisin AW Co Ltd
Priority to JP33304287A priority Critical patent/JPH01172757A/en
Priority to US07/290,341 priority patent/US5020903A/en
Publication of JPH01172757A publication Critical patent/JPH01172757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PURPOSE:To use a sensor and an operational processing system in the detection of a speed and that of a friction coefficient in common, by calculating a speed from a shift time when the correlation function of the detection outputs of two sensors arranged in a moving direction becomes max. CONSTITUTION:The signals detected by sensors 1, 3 and the signal detected by a blind sensor 5 are respectively amplified by noise compensation amplifiers 7, 9. The effect of an electromagnetic wave is removed from the sensor 5 by subtraction processing. The signals compensated in noise are applied to high-pass filters 11, 13 to extract high frequency components. The outputs of the BPFs 11, 13 are inputted to automatic gain controllers (AGC) 17, 19 and the output of the AGC 17 is rectified in a waveform through a limiter 21. Further, the output of the AGC 19 is inputted to an analogue multiplexer 21 and, further, the output of the multiplexer 21 is inputted to a limiter 25 and the outputs of the respective limiters are converted by A/D converters 31, 33 to be red by a digital signal processor (DSP) 35. By this method, the sensors and the operational processing apparatus can be used in the detection of a speed and that of a friction coefficient.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相関式速度計に係わり、特に路面の摩擦係数も
同時に測定できるようにした摩擦係数測定兼用相関式速
度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a correlation type speedometer, and particularly to a correlation type speedometer that can also measure the friction coefficient of a road surface at the same time.

〔従来の技術〕[Conventional technology]

一般に流速、車速等の速度検出に相関式速度計が使用さ
れている。
Correlation type speedometers are generally used to detect speeds such as flow speeds and vehicle speeds.

第4図、第5図により従来使用されている相関式速度計
の原理について説明する。
The principle of a conventionally used correlation type speedometer will be explained with reference to FIGS. 4 and 5.

例えば第5図に示すように間隔lで先代のセンサAとセ
ンサBとが車に搭載され、路上からの反射光を検出して
いるとし、それぞれ第4図(a)、(b)に示すような
センサ出力が得られたとする。
For example, suppose that the previous generation sensor A and sensor B are mounted on a car with an interval l as shown in Fig. 5, and are detecting reflected light from the road, as shown in Fig. 4 (a) and (b), respectively. Suppose that a sensor output like this is obtained.

そしてサンプリング周期ΔtでセンサAの検出出力をM
個すンプリングし、同一周期でセンサBの検出出力をN
個(N>M)サンプリングする。これらのサンプリング
周期タについて積和Pを以下のように求める。
Then, the detection output of sensor A is set to M at sampling period Δt.
The detection output of sensor B is
(N>M) samples. The sum of products P for these sampling periods ta is determined as follows.

(ただし、iS jは整数) そして、これから相関関数5(j)は、として求められ
る。この5(j)についてΔtづつ時間をづらせて(N
 −M)回相関関数を計算し、そのうち最大の相関関数
を与えるずれ時間nΔt(nはずれ数)から、速度■は
、 V = R/ nΔt として求められる。
(However, iS j is an integer.) From this, the correlation function 5(j) is obtained as follows. For this 5(j), by increasing the time by Δt (N
-M) Calculate the correlation function, and from the deviation time nΔt (n is the number of deviations) that gives the largest correlation function, the speed ■ is determined as V = R/ nΔt.

また2輪74輪駆動の切り換え、センターデフロックの
制御、制動力の制御等をエンジン駆動力と車輪に作用す
る力を比較判定して行うことが行われており、この場合
、車輪に作用する力を算出するに際し、路面からの反射
光により路面状態を把握して摩擦係数を求めている。
In addition, switching between 2 wheels and 74 wheels, controlling the center differential lock, controlling the braking force, etc. are performed by comparing and determining the engine driving force and the force acting on the wheels. When calculating the coefficient of friction, the road surface condition is determined by the light reflected from the road surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、実車速と路面の摩擦係数とを同時に測定し、
車両の駆動制御や制動制御を行う場合、同しような光セ
ンサを、速度検出用と摩擦係数測定用にそれぞれ別に設
ける必要があり、そのため各検出信月の処理系が必要と
なり、無駄が多く、センサの設置スペースやコストの面
で問題があった。
By the way, by measuring the actual vehicle speed and the friction coefficient of the road surface at the same time,
When performing drive control or braking control of a vehicle, it is necessary to install similar optical sensors separately for speed detection and friction coefficient measurement, which requires a processing system for each detection signal, which is wasteful and There were problems in terms of sensor installation space and cost.

本発明は上記問題点を解決するためのもので、速度検出
と摩擦係数を求めるセンサ、信号処理系を兼用すること
により装置をコンパクト化すると共に、コスト低減を図
ることができる摩擦係数測定兼用相関式速度計を提供す
ることを目的とする。
The present invention is intended to solve the above-mentioned problems.By combining speed detection, a sensor for determining the friction coefficient, and a signal processing system, the device can be made more compact and the cost can be reduced. The purpose is to provide a type speedometer.

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明は、移動方向に配置された2 一つの
センサの検出出力が入力される演算処理手段と、路面を
照明する光源と、演算処理手段により制御され、光源を
オン、オフする手段とを備え、前記演算手段は、2つの
センサの検出出力の相関関数を計算し、相関関数値が最
大になるずれ時間から速度を求めると共に、光源をオン
、オフしたときの前記センサ検出出力の差から路面摩擦
係数を求めることを特徴とする。
To this end, the present invention provides a calculation processing means into which the detection output of two sensors arranged in the movement direction is input, a light source for illuminating the road surface, and a means for turning on and off the light source controlled by the calculation processing means. The calculation means calculates a correlation function between the detection outputs of the two sensors, determines the speed from the time lag at which the correlation function value becomes maximum, and calculates the difference between the sensor detection outputs when the light source is turned on and off. It is characterized by calculating the road surface friction coefficient from

〔作用及び発明の効果〕[Action and effect of the invention]

本発明は、移動方向に配置された2つのセンサの検出出
力の相関関数が最大になるずれ時間から速度を算出する
と共に、光源をオン、オフしたときのセンサ出力の差か
ら路面の反射率を検出して摩擦係数を求めることにより
、速度の検出と摩擦係数の検出にセンサと演算処理系を
共用することができ、装置をコンパクト化すると共に、
コストの低減化を図ることができる。
The present invention calculates the speed from the time difference when the correlation function between the detection outputs of two sensors arranged in the moving direction becomes maximum, and also calculates the reflectance of the road surface from the difference in sensor output when the light source is turned on and off. By detecting and determining the friction coefficient, the sensor and processing system can be shared for speed detection and friction coefficient detection, making the device more compact and
Cost reduction can be achieved.

〔実施例〕〔Example〕

以下、実施例を図面に基づき説明する。 Examples will be described below based on the drawings.

第1図は本発明の摩擦係数測定兼用相関式速度計の構成
を示すブロック図、第2図は波形図、第3図はタイムチ
ャートを示す図で、1.3はセンサ、5はブラインドセ
ンサ、7.9はノイズ補償増幅器、11.13はハイパ
スフィルタ、15はバッファ、17.19はオートゲイ
ンコントローラ(AGC) 、21はアナログマルチプ
レクサ、23.25はリミッタ、27は光源・スイッチ
コントローラ、29は光源、31.33はA/D変換器
、35はD S P (D 1g1tal  S ig
nal P rocesser) 、37.39は内部
RAM、41はシュアルボ−トメそりである。
Fig. 1 is a block diagram showing the configuration of the correlation type speedometer for measuring the friction coefficient of the present invention, Fig. 2 is a waveform diagram, and Fig. 3 is a diagram showing a time chart. 1.3 is a sensor, and 5 is a blind sensor. , 7.9 is a noise compensation amplifier, 11.13 is a high-pass filter, 15 is a buffer, 17.19 is an auto gain controller (AGC), 21 is an analog multiplexer, 23.25 is a limiter, 27 is a light source/switch controller, 29 is a light source, 31.33 is an A/D converter, 35 is D S P (D 1g1tal S ig
nal Processer), 37.39 is an internal RAM, and 41 is a Schalbot memory sled.

第1図において、センサ1.3で検出された信号と、ブ
ラインドセンサ5で検出された信号は、それぞれノイズ
補償増幅器7.9で減算増幅される。ブライドセンサは
遮光された状態のものであり、減算処理により電磁波等
の影響が除去される。
In FIG. 1, the signal detected by the sensor 1.3 and the signal detected by the blind sensor 5 are each subtracted and amplified by a noise compensation amplifier 7.9. The blind sensor is in a light-shielded state, and the effects of electromagnetic waves and the like are removed by subtraction processing.

ノイズ補償された信号はハイパスフィルタ11.13で
高周波成分が抽出される。これは相関関数の算出の際に
、DC成分によるオフセットの補正計算(−A、−B)
を省くことができると共にサンプリング時間を短縮する
ことができるからである。ハイパスフィルタ11.13
の出力はAGC17,19に入力され、AGCl 7の
出力はリミッタ23を経て波形整形される。またACC
19の出力は、アナログマルチプレクサ21に入力され
る。アナログマルチプレクサ21には、ノイズ補償増幅
器の出力が入力されるバッファ増幅器15の出力も人力
されており、端子■にセントされているときはACC1
9の出力を、端子■にセントされているときはバッファ
15の出力を伝送する。アナログマルチプレクサの出力
はリミッタ25に入力され、各リミッタの出力はA/D
変換器31.33でA/D変換されてDSP35に読み
込まれる。シュアルポートメモリ41は、A/D変換器
33の出力が人力され、車速データの取り込みと、路面
摩擦係数(路面μ)データの取り込みを行っている。本
実施例ではセンサ1のデータ数としては500個、セン
サ3のデータ数としては2000個使用しており、DS
P35の内部RAMの容量が500個のデータ分しかな
いので、ここではシュアルポートメモリ41を使用し、
車速データ1500個分と、摩擦係数データ500個分
を取り込むようにしている。シュアルポートメモリ41
はA/D変換器とDSP35とからアクセスでき、車速
データのサンプリングが終了すると、アドレスカウント
信号を出力して光源・スイッチコントローラ27を駆動
し、アナログマルチプレクサ21の切り換えを行うと共
に、光[29のON、OFFを行っている。またDSP
35は取り込んだ車速データから相関関数を計算して相
関値が最大になるずれ時間を求めて実車速を算出すると
共に、路面摩擦係数データから反射率を算出し、予め作
成された反射率と摩擦係数との変換テーブルから路面摩
擦係数を読み出しており、この出力により4輪駆動の制
御、制動制御等を行うことになる。
High-frequency components of the noise-compensated signal are extracted by high-pass filters 11.13. When calculating the correlation function, this is the offset correction calculation (-A, -B) due to the DC component.
This is because it is possible to omit the sampling time and to shorten the sampling time. High pass filter 11.13
The output of AGCl 7 is input to AGC 17, 19, and the output of AGCl 7 is waveform-shaped via limiter 23. Also ACC
The output of 19 is input to analog multiplexer 21 . The analog multiplexer 21 is also supplied with the output of the buffer amplifier 15 to which the output of the noise compensation amplifier is input, and when it is sent to the terminal ■, the ACC1
The output of buffer 15 is transmitted when the output of buffer 9 is sent to terminal ■. The output of the analog multiplexer is input to the limiter 25, and the output of each limiter is input to the A/D
The signals are A/D converted by converters 31 and 33 and read into the DSP 35. The true port memory 41 receives the output of the A/D converter 33 manually, and takes in vehicle speed data and road surface friction coefficient (road surface μ) data. In this example, the number of data for sensor 1 is 500, the number of data for sensor 3 is 2000, and the DS
Since the internal RAM capacity of P35 is only for 500 pieces of data, we will use the true port memory 41 here.
1500 pieces of vehicle speed data and 500 pieces of friction coefficient data are imported. true port memory 41
can be accessed from the A/D converter and DSP 35, and when the sampling of vehicle speed data is completed, it outputs an address count signal to drive the light source/switch controller 27, switch the analog multiplexer 21, and output the light [29]. Turns ON and OFF. Also DSP
35 calculates the correlation function from the imported vehicle speed data and calculates the deviation time at which the correlation value becomes maximum to calculate the actual vehicle speed, and also calculates the reflectance from the road surface friction coefficient data, and calculates the reflectance and friction created in advance. The road surface friction coefficient is read out from a conversion table with the coefficient, and this output is used to perform four-wheel drive control, braking control, etc.

次に第2図、第3図により作用を詳細に説明する。Next, the operation will be explained in detail with reference to FIGS. 2 and 3.

最初、アナログマルチプレクサ21は■側にセントされ
、光6jA29はONされる。この状態でセンサ1.3
の出力はそれぞれブラインドセンサの出力との差が取ら
れてノイズ補償され、ハイパスフィルタ11.13、A
GC1?、19、アナログマルチプレクサ21の接点■
、リミッタ23.25、A/D変換器31.33からD
SP35の内部RAM37.39、及びシュアルポート
メモリ41に取り込まれる。内部RAMの容量はデータ
500個分しかないので、500個取り込んだ時点でD
SP35からクリア信号が出力されてシュアルポートメ
モリ41をクリアし、以後、センサ3からのデータの取
り込みはシュアルポートメモリ41により行われる。そ
してシュアルポートメモリ41のデータの取り込みが1
500個に達すると、アドレスカウント信号が出力され
、光源・スイッチコントローラ27を駆動してアナログ
マルチプレクサ21の接点を■に切り換える。以後、シ
ュアルポートメモリ41はバッファ15の出力が入力さ
れることになる。そして、シュアルポートメモリで25
0個分のデータを取り込むと、アドレスカウント信号が
出力されて光源29がOFFされ、さらに250個分の
データが取り込まれる。この間にDSP35では相関関
数の計算が並列的に行われ、実車速を算出すると共に、
その算出後、路面の摩擦係数の計算が行われる。摩擦係
数は、第2図に示すように光源をON、OFFしたとき
の信号レベルの差りの差をとることにより求められ、外
来光の影響を無くした状態で反射率が測定される。そし
て反射率に対応した摩擦係数がテーブルから読み出され
て出力されることになる。なお、反射率の測定は、たま
たま道路の白線を検出して雪道と誤判断することがない
ように数回測定して異常値は捨てたり、数回の平均値を
採用するなどすればよい。
Initially, the analog multiplexer 21 is sent to the ■ side, and the light 6jA 29 is turned on. In this state, sensor 1.3
The outputs of are each noise-compensated by taking the difference with the output of the blind sensor, and are passed through high-pass filters 11, 13, and A.
GC1? , 19, Analog multiplexer 21 contact ■
, limiter 23.25, A/D converter 31.33 to D
The data is taken into the internal RAM 37 and 39 of the SP 35 and the true port memory 41. The internal RAM capacity is only for 500 pieces of data, so when 500 pieces of data are imported, D
A clear signal is output from the SP 35 to clear the real port memory 41, and thereafter, data from the sensor 3 is taken in by the real port memory 41. And the data import of the real port memory 41 is 1
When the number reaches 500, an address count signal is output, and the light source/switch controller 27 is driven to switch the contact of the analog multiplexer 21 to ■. Thereafter, the output of the buffer 15 will be input to the true port memory 41. And 25 with true port memory
When 0 pieces of data are taken in, an address count signal is output, the light source 29 is turned off, and 250 pieces of data are taken in. During this time, the DSP 35 calculates the correlation function in parallel, calculates the actual vehicle speed, and
After that calculation, the friction coefficient of the road surface is calculated. The friction coefficient is determined by calculating the difference in signal levels when the light source is turned on and off, as shown in FIG. 2, and the reflectance is measured with the influence of external light eliminated. Then, the friction coefficient corresponding to the reflectance is read out from the table and output. When measuring the reflectance, it is best to measure it several times and discard abnormal values, or use the average value of several measurements, to avoid accidentally detecting a white line on the road and misjudging it as a snowy road. .

また、実際に摩擦係数を自動車の制御用に使用する場合
には、高摩擦、低摩擦程度の区分で検出し、雪道、水溜
り、アスファルト、地面等の判断をするようにして制′
41Uを行ってもよい。
In addition, when actually using the friction coefficient for automobile control, it is detected in high friction and low friction categories, and the control is made to judge snowy roads, puddles, asphalt, the ground, etc.
41U may be performed.

なお、上記実施例ではDSPの他にシュアルポートメモ
リを使用するようにしたが、DSPの内部メモリが大容
量であればシュアルポートメモリを使用する必要がない
ことはいうまでもない。
Note that in the above embodiment, a real port memory is used in addition to the DSP, but it goes without saying that if the internal memory of the DSP has a large capacity, there is no need to use a real port memory.

以上のように本発明によれは、速度の検出と摩擦係数の
検出にセンサと演算処理装置を共用することができるの
で、装置をコンパクト化し、コストを低減化することが
可能となる。
As described above, according to the present invention, a sensor and an arithmetic processing device can be used in common for speed detection and friction coefficient detection, so it is possible to downsize the device and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の摩擦係数測定兼用相関式速度計の構成
を示すブロック図、第2圀は波形図、第3図はタイムチ
ャートを示す図、第4図、第5図は相関式速度針の原理
を説明するための図である。 1.3・・・センサ、5・・・ブラインドセンサ、7.
9・・・ノイズ補償増幅器、11.13・・・ハイパス
フィルタ、15・・・バッファ、21・・・アナログマ
ルチプレクサ、27・・・光源・スイッチコントローラ
、29・・・光源、3L33・・・A/D変換器、35
・・・DSP、37.39・・・内部RAM、41・・
・シュアルポートメモリ。 出  願  人 アイシン・ワーナー株式会社(外1名
) 代理人 弁理士 蛭 川 昌 信(外3名)第2図 第3図
Figure 1 is a block diagram showing the configuration of the correlation type speedometer that also measures the friction coefficient of the present invention, the second area is a waveform diagram, Figure 3 is a time chart, and Figures 4 and 5 are correlation type speedometers. It is a figure for explaining the principle of a needle. 1.3...Sensor, 5...Blind sensor, 7.
9... Noise compensation amplifier, 11.13... High pass filter, 15... Buffer, 21... Analog multiplexer, 27... Light source/switch controller, 29... Light source, 3L33... A /D converter, 35
...DSP, 37.39...Internal RAM, 41...
・Sualport memory. Applicant Aisin Warner Co., Ltd. (1 other person) Agent Patent attorney Masanobu Hirukawa (3 others) Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)移動方向に配置された2つのセンサの検出出力が
入力される演算処理手段と、路面を照明する光源と、演
算処理手段により制御され、光源をオン、オフする手段
とを備え、前記演算手段は、2つのセンサの検出出力の
相関関数を計算し、相関関数値が最大になるずれ時間か
ら速度を求めると共に、光源をオン、オフしたときの前
記センサ検出出力の差から路面摩擦係数を求めることを
特徴とする摩擦係数測定兼用相関式速度計。
(1) comprising an arithmetic processing means into which the detection outputs of two sensors arranged in the moving direction are input, a light source that illuminates the road surface, and a means that is controlled by the arithmetic processing means and turns on and off the light source; The calculation means calculates a correlation function between the detection outputs of the two sensors, determines the speed from the time difference at which the correlation function value becomes maximum, and calculates the road surface friction coefficient from the difference between the sensor detection outputs when the light source is turned on and off. A correlation type speedometer that can also be used to measure the coefficient of friction.
(2)相関関数を算出するための信号は、センサ検出出
力をハイパスフィルタを通して得られた信号である特許
請求の範囲第1項記載の摩擦係数測定兼用相関式速度計
(2) The correlation type speedometer for measuring the friction coefficient according to claim 1, wherein the signal for calculating the correlation function is a signal obtained by passing the sensor detection output through a high-pass filter.
(3)相関関数値と摩擦係数との測定は時分割で行う特
許請求の範囲第1項記載の摩擦係数測定兼用相関式速度
計。
(3) A correlation-type speedometer for both friction coefficient measurement and friction coefficient measurement according to claim 1, wherein the correlation function value and the friction coefficient are measured in a time-sharing manner.
JP33304287A 1987-12-28 1987-12-28 Correlation type speedometer also used in measurement of friction coefficient Pending JPH01172757A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33304287A JPH01172757A (en) 1987-12-28 1987-12-28 Correlation type speedometer also used in measurement of friction coefficient
US07/290,341 US5020903A (en) 1987-12-28 1988-12-27 Optical correlation-type velocity measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33304287A JPH01172757A (en) 1987-12-28 1987-12-28 Correlation type speedometer also used in measurement of friction coefficient

Publications (1)

Publication Number Publication Date
JPH01172757A true JPH01172757A (en) 1989-07-07

Family

ID=18261617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33304287A Pending JPH01172757A (en) 1987-12-28 1987-12-28 Correlation type speedometer also used in measurement of friction coefficient

Country Status (1)

Country Link
JP (1) JPH01172757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683048A1 (en) * 1991-10-25 1993-04-30 Electricite De France Device for measuring the electromagnetic field in a microwave applicator
CN102095896A (en) * 2010-11-20 2011-06-15 太原理工大学 Portable intelligent speedometer tester and using method thereof
JP2012112793A (en) * 2010-11-25 2012-06-14 Mitsubishi Electric Corp Speed measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683048A1 (en) * 1991-10-25 1993-04-30 Electricite De France Device for measuring the electromagnetic field in a microwave applicator
CN102095896A (en) * 2010-11-20 2011-06-15 太原理工大学 Portable intelligent speedometer tester and using method thereof
JP2012112793A (en) * 2010-11-25 2012-06-14 Mitsubishi Electric Corp Speed measuring device

Similar Documents

Publication Publication Date Title
SU657769A3 (en) Device for determining coefficient of wave mean length
EP0404598A3 (en) Interpolator
EP1028404A3 (en) Road vehicle sensing apparatus and signal processing apparatus therefor
FR2876455B1 (en) METHOD AND DEVICE FOR PROCESSING MEASUREMENT SIGNALS FROM AN ON-BOARD DISPLACEMENT SENSOR ON A MOTOR VEHICLE
WO1998048284A3 (en) Method for detecting the direction of rotation of a wheel by means of hall probes
JPH01172757A (en) Correlation type speedometer also used in measurement of friction coefficient
US5020903A (en) Optical correlation-type velocity measurement apparatus
CN104094134A (en) Method and environment detection device for determining the position and/or the movement of at least one object in the environment of vehicle by means of acoustic signals reflected by the object
RU2266530C1 (en) Method of and device for checking vehicle steering gear summary play
JP3521072B2 (en) Vehicle speed and vehicle length measurement method for moving objects
JPS6425026A (en) Detecting apparatus of leakage of water
CN113758551B (en) Weighing method of truck with anti-vibration function
JPH07225220A (en) Method and apparatus for detecting defect of steel plate
JPS6336479Y2 (en)
JPH10172090A (en) Vehicle detector
SU1094778A2 (en) Device for determining non-uniformity of actuation of brakes in vehicle
KR100192637B1 (en) Apparatus and method for detecting the optimum driving frequency of ultrasonic sensor
SU1158935A1 (en) Device for measuring tractor slippage
SU1743963A1 (en) Device for determining rail defects during vehicle movement
SU1262359A2 (en) Device for determining continuity of liquid flow in pipeline
KR970007789B1 (en) Micropattern formation of semiconductor elements
JPS63212768A (en) Ignition timing control device for internal combustion engine
KR100267330B1 (en) Judgment method of driving speed of vehicle
JP3285263B2 (en) Ultrasonic detector
SU1299947A1 (en) Device for determining weight of overhead travelling crane cargo