JPH0116913B2 - - Google Patents
Info
- Publication number
- JPH0116913B2 JPH0116913B2 JP18592186A JP18592186A JPH0116913B2 JP H0116913 B2 JPH0116913 B2 JP H0116913B2 JP 18592186 A JP18592186 A JP 18592186A JP 18592186 A JP18592186 A JP 18592186A JP H0116913 B2 JPH0116913 B2 JP H0116913B2
- Authority
- JP
- Japan
- Prior art keywords
- solution
- alloy
- oxide film
- annealing
- acidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000956 alloy Substances 0.000 claims description 34
- 229910045601 alloy Inorganic materials 0.000 claims description 34
- 239000000243 solution Substances 0.000 claims description 24
- 238000004140 cleaning Methods 0.000 claims description 20
- 238000000137 annealing Methods 0.000 claims description 19
- 230000002378 acidificating effect Effects 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 claims description 9
- 239000003929 acidic solution Substances 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 20
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 18
- 229910004298 SiO 2 Inorganic materials 0.000 description 15
- 239000010949 copper Substances 0.000 description 15
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical compound O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/02—Cleaning or pickling metallic material with solutions or molten salts with acid solutions
- C23G1/10—Other heavy metals
- C23G1/103—Other heavy metals copper or alloys of copper
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
〔産業上の利用分野〕
本発明は例えば半導体のリードフレームや端子
コネクタ等の電子部品に用いられる電子部品材料
用Si含有Cu基合金の表面に形成された酸化被膜
を除去する方法に関するものである。
〔従来の技術〕
Siを含有するCu基合金は高導電性、高力性及
び耐熱性を備えているので、様々な用途に汎用さ
れ、例えば半導体リードフレームや端子コネクタ
等にも使用されている。半導体リードフレームに
使用される場合は、上記合金表面に金属めつきが
された後、金線等が圧接されて回路が形成され、
また端子コネクタに使用される場合は、接点部の
信頼性を向上させるためにCu,Ni,Sn等のめつ
きが行なわれる。この様なめつき処理を施す場合
において、合金表面が清浄でなく例えば酸化物等
が存在するとめつきむらを生じ、まためつき金属
の密着力が低下し、めつきが剥離するおそれがあ
る。従つて合金表面に酸化物等が残存すること
は、たとえそれが僅かであつても好ましくない。
しかるに前記の電子部品材料に使用される合金の
製造過程においては、冷間圧延後に焼鈍するのが
一般的であり、焼鈍に際してはコイル状に巻取つ
た板厚0.2〜2mmの合金板を不活性ガス或は還元
性ガス雰囲気中でバツチ焼鈍するのが通例であ
る。ところが巻取りに際して合金板間に持ち込ま
れている空気や湿分は前記不活性ガス等によつて
完全に置換されきれず微量ながら残存する。その
為焼鈍時にはこれらが酸化剤として作用し、合金
板表面に酸化被膜が形成されてしまう。この際コ
イルの巻き締め力や焼鈍炉のガス雰囲気が変動す
ることもあつて前記残存空気や残存湿分の量も一
定でないから、酸化被膜の形成量も変動し、第1
図に示す様に、コイル1の端部から幅方向に向つ
て酸化被膜2の生成変動による不均一な耳模様が
形成されてしまう。この様な酸化被膜を少しでも
抑制するために純度99.9%以上のN2ガス或はH2
ガスを使用して、しかも露点をN2ガスでは−40
℃以下、H2ガスでは−60℃以下に管理して焼鈍
を行なつていたが、これらのガスは高価である割
には酸化被膜の生成を防止するための根本的な解
決策にはなり得ていなかつた。このため第2図に
示す様に焼鈍後の合金コイルから合金板1aを巻
き戻して酸性洗浄液3に浸漬洗浄し、次いでSiC
の砥粒が塗布されたバフ4で研磨を行なつてい
た。5は浸漬ローラ3を示す。尚通常は184g/
程度の硫酸浴を洗浄液として使用し焼鈍により
生成した酸化物を除去するのであるが、酸化物の
中でもSiO2の皮膜は特に除去され難いのでこれ
を除去する目的で更にバフ研磨を付加することが
必要とされていたのである。
〔発明が解決しようとする問題点〕
しかしながらSiO2は硬い被膜として形成され
ているため、バフ研磨によつても除去することが
困難であり殆んどそのまま残存する傾向にあつ
た。このため研磨後の合金コイルを電子用部品素
材に供するためスリツター加工を行なつて条材を
作つた時に、一部分でも焼鈍模様が存在する条材
はその条材全長に亘つてスクラツプ化されること
となり、歩留りの低下は多大なものであつた。尚
洗浄液として弗化水素酸水溶液、硫酸と過酸化水
素水の混合溶液、或は硝酸と硫酸の混合溶液等を
使用することができるのならばSiO2の除去も不
可能ではない。しかしながら弗化水素酸水溶液と
SiO2の反応は反応速度が速いので洗浄液の寿命
が短く、また弗化水素ガスを使用するので腐食性
が激しく作業環境上好ましくないという問題があ
る。また硫酸と過酸化水素水の混合溶液及び硫酸
と硝酸の混合溶液の場合は、溶液中に合金成分の
Cuイオンが溶出する恐れがあり、Cuイオンによ
つて洗浄溶液が自然分解し短時間で酸洗溶液とし
ての効力を失うという問題がある。
このため工程途中で酸性溶液を追加し或は新た
に酸性溶液を建浴して再度洗浄する必要も生ず
る。しかるに新たに建浴することはそれ自体不経
済であるだけでなく、新たな酸性溶液を追加する
と過酸化水素或は硝酸のエツチング力が変化して
合金コイル表面の色調が異なつてくるという不都
合が生じる。また酸化性のある過酸化水素或は硝
酸は合金コイルの表面を活性化するので防錆剤を
嫌う半導体リードフレーム材料等の仕上げ溶液と
しては必ずしも好ましいものではない。また作業
中に過酸化水素ガス或は窒素酸化物ガスの発生に
より作業環境を汚染するという問題もある。
本発明はこの様な事情に鑑みてなされたもので
あつて、Siを含有する電子部品材料用Cu基合金
の焼鈍によつて合金表面に生成するSiO2をはじ
めとする各種酸化物を、安定性のある酸性溶液で
洗浄して完全に除去することができる様な合金の
表面処理方法を提供することを目的とするもので
ある。
〔問題点を解決しようとする手段〕
本発明はSiを含有する電子部品材料用Cu基合
金を焼鈍することによつて合金表面に生じる酸化
被膜を酸性溶液で洗浄するに当たり、酸性溶液と
して10g/以上の酸性弗化アンモンを含む溶液
を用いることを要旨とするものである。
〔作用〕
本発明者等はSiO2と容易に反応ししかも比較
的安定性の高い酸性洗浄液を見出すべく種々の酸
性溶液について検討した結果、10g/以上の酸
性弗化アンモンを含む溶液を使用すると焼鈍によ
り生成されたSiO2がほぼ確実に除去されること
を見出した。尚10g/未満の濃度の場合は浸漬
洗浄時間が長くなり作業能率が低下した。酸性弗
化アンモン溶液の濃度についてはその上限を特に
定めるものではないが、酸性弗化アンモンの常温
(40℃)における水への溶解度は500g/である
から、500g/を超えて懸濁状とならない限り
飽和溶液として利用することも差支えない。
この様に酸性弗化アンモンを含む溶液を用いる
ことによつてSiO2の被膜は洗浄・除去されるが、
本発明者等が研究・検討した結果単に酸性弗化ア
ンモン水溶液を用いるよりも、酸性弗化アンモン
を硫酸水に溶解したものを使用すれば酸化被膜の
除去作用がより一層向上し洗浄時間も短縮される
ことがわかつた。この理由としてはSiO2と共存
するCu2O等の被膜を除去するのに硫酸が作用す
るものと考えられる。硫酸は添加量が多くなると
エツチング性が現われることと経済性の点からそ
の濃度は500g/以下であることが好ましい。
この様に酸化物被膜の除去をほぼ満足し得る程度
まで遂行できる様になつたので、合金の焼鈍に際
して高価なN2ガスやH2ガスを使用することは必
ずしも必要ではなくなり安価なDXガス雰囲気で
の焼鈍で十分であることがわかつた。即ちDXガ
スの使用による焼鈍を行なつたところ、条材の全
長にわたつて局部酸化被膜を生じたが、この場合
DXガス炉で500℃、2時間の焼鈍を行なつて生
成するSiO2被膜の厚みはせいぜい0.6μm程度であ
り、10g/以上の濃度の酸性弗化アンモンの硫
酸溶液で洗浄することによりSiO2を除去し更に
研磨することによつて、酸化被膜を生じていた部
分と生じていなかつた部分を全く区別ができない
状態にまで美麗に仕上げることができ、この場合
条材表面の色調は変化しなかつた。尚DXガスを
使用する場合は焼鈍炉におけるガスの露点は高
く、その制御は比較的容易である。合金板洗浄後
の研磨方法は限定されないが、SiCの砥粒を塗布
した回転バフによるものが好ましい。尚本発明者
等が検討した結果Siを0.01%以上含有するCu基合
金表面に形成される酸化被膜はSiO2を主成分と
するものであり、このSiO2が酸洗に対して頑強
であることがわかつた。このためSiO2を0.01%以
上含有するCu基合金表面に形成される酸化被膜
の除去は一般には格別の困難さを伴なうものであ
るが本発明に係る方法によればこの様な場合でも
酸化被膜の除去を困難なく行なうことができるの
である。
尚本発明における電子部品材料用Si含有Cu基
合金は、その組成として一般にNi:0.05〜5%を
含み含み更にまた必要に応じて下記の群より選ば
れた1種又は2種以上を含むものが代表的である
が、特に本発明は合金組成を限定するものではな
い。
Zn:0.1〜5% Sn:0.02〜5%
Co:0.1〜0.5% Mn:0.01〜1%
Cr:0.001〜0.1% Zr:0.001〜0.1%
Ti:0.001〜0.1% B:0.001〜0.1%
Al:0.001〜0.1% P:0.001〜0.1%
Fe:0.01〜1% Mg:0.001〜0.01%
尚代表的なものとしては、Cu.3.2%Ni―0.7%
Si―0.3%Zn、Cu―1.6%Ni―0.35%Si―0.3%Zn、
Cu―1%Ni―0.2%Si―0.03%P、Cu―3.2%Ni
―0.7%Si―0.3%Zn―1.25%Snが例示される。
〔実施例〕
実施例 1
第1表の試料番号1〜4に示した組成の銅合金
板からなるコイルを焼鈍し、合金表面に生成した
酸化物被膜を除去するために酸性洗浄液で10秒間
浸漬洗浄した後SiC砥粒を塗布した回転バフで研
磨を行なつた。第2表に焼鈍条件を、第3表に酸
性洗浄液の組成と濃度を、第4表にテスト結果を
示す。尚研磨後の板厚のばらつきは±1μm以下で
あつた。
[Industrial Application Field] The present invention relates to a method for removing an oxide film formed on the surface of a Si-containing Cu-based alloy for electronic component materials used in electronic components such as semiconductor lead frames and terminal connectors. . [Prior art] Cu-based alloys containing Si have high conductivity, high strength, and heat resistance, so they are used for a variety of purposes, such as semiconductor lead frames and terminal connectors. . When used in semiconductor lead frames, the surface of the alloy is plated with metal, and then a gold wire or the like is pressure-welded to form a circuit.
Furthermore, when used in terminal connectors, plating with Cu, Ni, Sn, etc. is performed to improve the reliability of the contact portion. When performing such a plating treatment, if the alloy surface is not clean and, for example, oxides are present, uneven plating will occur, and the adhesion of the plating metal will decrease, which may cause the plating to peel off. Therefore, it is undesirable for oxides or the like to remain on the alloy surface, even if only in a small amount.
However, in the manufacturing process of the alloys used in the above-mentioned electronic component materials, it is common to perform annealing after cold rolling, and during annealing, an alloy plate with a thickness of 0.2 to 2 mm that is wound into a coil is inert. It is customary to perform batch annealing in a gas or reducing gas atmosphere. However, the air and moisture introduced between the alloy plates during winding cannot be completely replaced by the inert gas, and a small amount remains. Therefore, during annealing, these act as oxidizing agents, and an oxide film is formed on the surface of the alloy plate. At this time, the winding force of the coil and the gas atmosphere of the annealing furnace vary, and the amount of residual air and residual moisture is not constant, so the amount of oxide film formed also fluctuates.
As shown in the figure, an uneven selvage pattern is formed from the end of the coil 1 in the width direction due to variations in the formation of the oxide film 2. In order to suppress the formation of such an oxide film, use N 2 gas or H 2 with a purity of 99.9% or higher.
using gas, and the dew point is −40 for N2 gas.
℃ or below, or below -60℃ for H2 gas during annealing, but although these gases are expensive, they are not a fundamental solution to preventing the formation of oxide films. I wasn't getting it. For this purpose, as shown in Fig. 2, the alloy plate 1a is unwound from the annealed alloy coil, immersed in an acidic cleaning solution 3 for cleaning, and then the SiC
Polishing was performed using a buff 4 coated with abrasive grains. 5 indicates the dipping roller 3. Normally 184g/
A sulfuric acid bath of about 100% is used as a cleaning solution to remove the oxides generated during annealing, but among oxides, the SiO 2 film is particularly difficult to remove, so it is necessary to add buffing to remove it. It was needed. [Problems to be Solved by the Invention] However, since SiO 2 is formed as a hard film, it is difficult to remove even by buffing and tends to remain almost unchanged. For this reason, when a polished alloy coil is slittered to make a strip to be used as a material for electronic parts, if the strip has even a partial annealing pattern, the entire length of the strip is scrapped. As a result, the yield was significantly reduced. If an aqueous solution of hydrofluoric acid, a mixed solution of sulfuric acid and hydrogen peroxide, or a mixed solution of nitric acid and sulfuric acid can be used as the cleaning liquid, it is not impossible to remove SiO 2 . However, hydrofluoric acid aqueous solution
Since the reaction rate of SiO 2 is fast, the life of the cleaning solution is short, and since hydrogen fluoride gas is used, it is highly corrosive and unfavorable in terms of the working environment. In addition, in the case of a mixed solution of sulfuric acid and hydrogen peroxide or a mixed solution of sulfuric acid and nitric acid, alloy components may be present in the solution.
There is a problem that Cu ions may be eluted, and the cleaning solution will spontaneously decompose due to the Cu ions and lose its effectiveness as a pickling solution in a short period of time. For this reason, it becomes necessary to add an acidic solution during the process or prepare a new acidic solution and wash again. However, preparing a new bath is not only uneconomical in itself, but also has the disadvantage that adding a new acidic solution changes the etching power of hydrogen peroxide or nitric acid, resulting in a different color tone on the surface of the alloy coil. arise. In addition, hydrogen peroxide or nitric acid, which have oxidizing properties, activate the surface of the alloy coil, so they are not necessarily preferable as finishing solutions for semiconductor lead frame materials and the like that do not like rust inhibitors. There is also the problem that hydrogen peroxide gas or nitrogen oxide gas is generated during work, contaminating the work environment. The present invention has been made in view of the above circumstances, and aims to stabilize various oxides such as SiO 2 that are generated on the alloy surface by annealing Cu-based alloys containing Si for electronic component materials. The object of the present invention is to provide a surface treatment method for alloys that can be completely removed by cleaning with a strong acidic solution. [Means for Solving the Problems] The present invention uses an acid solution to clean an oxide film formed on the alloy surface by annealing a Si-containing Cu-based alloy for electronic component materials. The gist is to use a solution containing the above acidic ammonium fluoride. [Function] The present inventors investigated various acidic solutions in order to find an acidic cleaning solution that easily reacts with SiO 2 and is relatively stable, and found that when a solution containing 10 g or more of acidic ammonium fluoride is used, It has been found that SiO 2 generated by annealing is almost certainly removed. In addition, when the concentration was less than 10 g/L, the immersion cleaning time became longer and the work efficiency decreased. There is no particular upper limit to the concentration of the acidic ammonium fluoride solution, but the solubility of acidic ammonium fluoride in water at room temperature (40°C) is 500g/, so if it exceeds 500g/, it will not form a suspension. Unless otherwise specified, it may be used as a saturated solution. In this way, the SiO 2 coating can be cleaned and removed by using a solution containing acidic ammonium fluoride.
As a result of research and consideration by the present inventors, using a solution of acidic ammonium fluoride dissolved in sulfuric acid water will further improve the removal effect of the oxide film and shorten the cleaning time, rather than simply using an acidic ammonium fluoride aqueous solution. I found out that it would happen. The reason for this is thought to be that sulfuric acid acts to remove a film of Cu 2 O, etc. that coexists with SiO 2 . The concentration of sulfuric acid is preferably 500 g/less or less, since etching properties appear as the amount of sulfuric acid added increases, and from the economic point of view.
In this way, it has become possible to remove the oxide film to a nearly satisfactory degree, so it is no longer necessary to use expensive N 2 gas or H 2 gas when annealing the alloy, and an inexpensive DX gas atmosphere can be used. It was found that annealing at In other words, when annealing was performed using DX gas, a local oxide film was formed over the entire length of the strip;
The thickness of the SiO 2 film produced by annealing at 500°C for 2 hours in a DX gas furnace is approximately 0.6 μm at most, and the SiO 2 film is removed by cleaning with a sulfuric acid solution of acidic ammonium fluoride at a concentration of 10 g/min or more. By removing the oxidized film and polishing it further, it is possible to achieve a beautiful finish in which the areas with an oxide film and those without are completely indistinguishable, and in this case, the color tone of the surface of the strip does not change. Ta. Note that when DX gas is used, the dew point of the gas in the annealing furnace is high, and its control is relatively easy. The polishing method after cleaning the alloy plate is not limited, but it is preferable to use a rotary buff coated with SiC abrasive grains. As a result of studies conducted by the present inventors, the oxide film formed on the surface of a Cu-based alloy containing 0.01% or more of Si is mainly composed of SiO 2 , and this SiO 2 is robust against pickling. I found out. For this reason, it is generally extremely difficult to remove the oxide film formed on the surface of a Cu-based alloy containing 0.01% or more of SiO 2 , but the method of the present invention can remove it even in such cases. The oxide film can be removed without difficulty. The composition of the Si-containing Cu-based alloy for electronic component materials in the present invention generally includes 0.05 to 5% Ni, and if necessary, one or more selected from the following group: is typical, but the present invention does not particularly limit the alloy composition. Zn: 0.1~5% Sn: 0.02~5% Co: 0.1~0.5% Mn: 0.01~1% Cr: 0.001~0.1% Zr: 0.001~0.1% Ti: 0.001~0.1% B: 0.001~0.1% Al: 0.001~0.1% P: 0.001~0.1% Fe: 0.01~1% Mg: 0.001~0.01% Typical examples include Cu.3.2%Ni-0.7%
Si-0.3%Zn, Cu-1.6%Ni-0.35%Si-0.3%Zn,
Cu-1%Ni-0.2%Si-0.03%P, Cu-3.2%Ni
-0.7%Si-0.3%Zn-1.25%Sn are exemplified. [Example] Example 1 A coil made of a copper alloy plate having the composition shown in sample numbers 1 to 4 in Table 1 was annealed and immersed in an acidic cleaning solution for 10 seconds to remove the oxide film formed on the alloy surface. After cleaning, polishing was performed using a rotating buff coated with SiC abrasive grains. Table 2 shows the annealing conditions, Table 3 shows the composition and concentration of the acidic cleaning solution, and Table 4 shows the test results. The variation in plate thickness after polishing was less than ±1 μm.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
実施例 2
第1表の試料番号1、2及び3に示した組成の
銅合金条板を第2表に示す条件(但し炉はベル型
DXガス炉を用い、露点は5〜10℃とした)で焼
鈍後、炉中で150℃まで冷却し、その後大気中で
室温まで放冷した。
これら合金の外周部および内側部からサンプル
を切り出し、第5表の化学組成からなる洗浄液中
でいずれも20℃で10秒間洗浄し、第5表の結果を
得た。
SiO2の存在の有無についてはESCA分析計に
て、またはんだの濡れ性は230℃の60%Sn―Pb中
に、フラツクスMIL―F―14256Aに相当するア
ルフア611をつけ、5秒間浸漬して、被覆状況を
調べた。
また、Cu2OにてCu分を50g/溶出した後の
溶液で供試材5種の表面の仕上り状況および色調
の変化を調べた。[Table] Example 2 Copper alloy strips with the compositions shown in sample numbers 1, 2, and 3 in Table 1 were heated under the conditions shown in Table 2 (however, the furnace was a bell-shaped furnace).
After annealing using a DX gas furnace (with a dew point of 5 to 10°C), the material was cooled to 150°C in the furnace, and then allowed to cool to room temperature in the atmosphere. Samples were cut from the outer periphery and the inner part of these alloys and washed in a cleaning solution having the chemical composition shown in Table 5 at 20° C. for 10 seconds to obtain the results shown in Table 5. The presence or absence of SiO 2 was determined using an ESCA analyzer, and the wettability of the solder was determined by soaking Alpha 611, which is equivalent to the flux MIL-F-14256A, in 60% Sn-Pb at 230°C for 5 seconds. , the coating status was investigated. In addition, the surface finish and color tone changes of the five test materials were investigated using the solution after eluting 50 g of Cu with Cu 2 O.
本発明は上記の様に構成されるからSiを含有す
る電子部品材料用Cu基合金表面の酸化被膜を、
母材表面を粗面化することなく、母材表面の色調
を変えることもなく完全に除去することができる
のであつて、しかも本発明の酸性洗浄液は半永久
的に使用することができ、作業工程の途中におい
ても溶液の補給、更新が可能なため管理が容易で
ある。
また、本発明方法においては酸性溶液が過酸化
水素や硝酸の様な酸化剤を含まないので、酸性溶
液処理後、合金表面の仕上りが活性化されておら
ず変色し難く、またガス発生が少ないので作業環
境もより改善される。
Since the present invention is constructed as described above, the oxide film on the surface of a Cu-based alloy for electronic component materials containing Si can be
The acidic cleaning solution of the present invention can be completely removed without roughening the surface of the base material or changing the color tone of the surface of the base material. Moreover, the acidic cleaning solution of the present invention can be used semi-permanently, and the work process Management is easy because the solution can be replenished and renewed even during the process. In addition, in the method of the present invention, the acidic solution does not contain oxidizing agents such as hydrogen peroxide or nitric acid, so the finish of the alloy surface is not activated and does not easily discolor after treatment with the acidic solution, and gas generation is small. Therefore, the working environment will also be improved.
第1図は合金系コイルの酸化被膜の生成状態を
説明する図、第2図は酸化被膜を除去する為の工
程を示す図である。
1…合金系コイル、2…酸化被膜、3…洗浄
液、4…バフ。
FIG. 1 is a diagram explaining the state of formation of an oxide film on an alloy-based coil, and FIG. 2 is a diagram showing a process for removing the oxide film. 1... Alloy coil, 2... Oxide film, 3... Cleaning liquid, 4... Buff.
Claims (1)
鈍することによつて金属表面に生じる酸化皮膜を
酸性溶液で洗浄するに当たり、酸性溶液として10
g/以上の酸性弗化アンモニウムを含む溶液を
用いることを特徴とする電子部品材料用Si含有
Cu基合金の酸化皮膜除去方法。1. When cleaning the oxide film formed on the metal surface by annealing Cu-based alloys containing Si for electronic component materials with an acidic solution, 10
Si-containing material for electronic components, characterized by using a solution containing acidic ammonium fluoride in an amount of
Method for removing oxide film from Cu-based alloys.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18592186A JPS6342383A (en) | 1986-08-07 | 1986-08-07 | Method for removing oxide film on cu alloy containing si |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18592186A JPS6342383A (en) | 1986-08-07 | 1986-08-07 | Method for removing oxide film on cu alloy containing si |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6342383A JPS6342383A (en) | 1988-02-23 |
JPH0116913B2 true JPH0116913B2 (en) | 1989-03-28 |
Family
ID=16179205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18592186A Granted JPS6342383A (en) | 1986-08-07 | 1986-08-07 | Method for removing oxide film on cu alloy containing si |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6342383A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01301900A (en) * | 1988-01-18 | 1989-12-06 | Kobe Steel Ltd | Surface treatment of electronic part |
JP2612331B2 (en) * | 1989-03-07 | 1997-05-21 | 株式会社神戸製鋼所 | Method for removing oxide film from copper-based alloy |
-
1986
- 1986-08-07 JP JP18592186A patent/JPS6342383A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6342383A (en) | 1988-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3147547A (en) | Coating refractory metals | |
US7384901B2 (en) | Process for cleaning aluminum and aluminum alloy surfaces with nitric acid and chromic acid-free compositions | |
US5320737A (en) | Treatment to reduce solder plating whisker formation | |
JP6114770B2 (en) | Tin plating method for copper alloy material | |
JP2009293091A (en) | Method for producing copper alloy for electrical or electronic parts | |
JPH0116913B2 (en) | ||
JP3514837B2 (en) | Hot-dip galvanizing method | |
JP2005307283A (en) | Method for producing cold rolled steel sheet comprising easily oxidizable component | |
EP0265578A1 (en) | A non-abrasive polish or cleaning composition and process for its preparation | |
JP2720925B2 (en) | Low spatter wire and method of manufacturing the same | |
US5547518A (en) | Enhanced method for cleaning foil | |
US4361445A (en) | Copper alloy cleaning process | |
JPH04160173A (en) | Discoloration preventive liquid for copper | |
JPS6357788A (en) | Pickling solution for cu alloy containing si | |
JP3994295B2 (en) | Method for preventing discoloration of copper or copper alloy material and copper or copper alloy material | |
JPH0748641A (en) | Copper alloy lead frame for bear bonding | |
JP2587258B2 (en) | Method for producing reflow tin or tin alloy plated material using copper or copper alloy as base material | |
JP4469055B2 (en) | Hot-dip Zn-Mg-Al alloy plating method | |
JPH028385A (en) | Cleaning of copper alloy | |
EP4293136A1 (en) | Etchant and method of surface treatment of aluminum or aluminum alloy | |
JPH0426789A (en) | Production of reflow soldering material | |
JPH10265973A (en) | Production of copper alloy material for electronic parts having good silver plating property | |
JPH1112751A (en) | Method for electroless plating with nickel and/or cobalt | |
JPS61166999A (en) | Method for cleaning surface of steel sheet | |
JP2807359B2 (en) | Plating method of copper alloy material containing tin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |