JPH01165184A - Method of forming diaphragm of semiconductor pressure sensor - Google Patents

Method of forming diaphragm of semiconductor pressure sensor

Info

Publication number
JPH01165184A
JPH01165184A JP62324759A JP32475987A JPH01165184A JP H01165184 A JPH01165184 A JP H01165184A JP 62324759 A JP62324759 A JP 62324759A JP 32475987 A JP32475987 A JP 32475987A JP H01165184 A JPH01165184 A JP H01165184A
Authority
JP
Japan
Prior art keywords
etching
diaphragm
thickness
pressure sensor
semiconductor pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324759A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishibashi
清志 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62324759A priority Critical patent/JPH01165184A/en
Publication of JPH01165184A publication Critical patent/JPH01165184A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To detect the end point of etching while a silicon diaphragm is formed by a method wherein a silicon semiconductor pressure sensor is provided at the bottom of an etching chamber main part and anisotropic etching is carried out and the thickness of the etched diaphragm is converted into an electrical output and directly monitored. CONSTITUTION:A semiconductor pressure sensor wafer is mounted at the bottom of an etching chamber main part 1 so as to make its diaphragm etching surface side 2-a face the inside of the chamber and a window aperture 2-2 is formed by, for instance, etching with a nitride film 2-1 as a mask. Then, if the chamber main part 1 is filled with, for instance, KOH solution and silicon etching is carried out while the solution temperature is controlled by a heater 4, the thickness of the diaphragm 5 is gradually reduced. Therefore, if an exciting voltage VEX is applied to the sensor chip at the bottom and its output is amplified by a DC amplifier and monitored from the electrode pads 8 of the sensor chip by the probes 7 attached to a printed board 6, the thickness td of the diaphragm 5 can be detected from the relation between the thickness td and an output voltage Vout.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明に、シリコン半導体圧力センサのダイヤフラム
形成時のダイヤフラム仕上り厚さ検出方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for detecting the finished thickness of a diaphragm during formation of a diaphragm for a silicon semiconductor pressure sensor.

〔従来の技術〕[Conventional technology]

半纏体圧力センサのダイヤフラム形成方法として、弗酸
、硝酸を主成分とするシリコンエツチング液を使った方
法と、水酸化カリウムなどのアルカリエツチング液を使
う方法が一般に用いられている。弗酸、硝酸系の強酸混
合液を使うシリコンエツチングに等方性エツチングと呼
ばれ、エツチングがシリコンウェハの結晶軸に依存せず
、等方向にエツチング反応が進行するため、このように
呼ばれる。この方法は仕上り面が鏡面に仕上り、また弗
酸や硝酸が半導体産業に使用される一般的な酸であるた
め手軽に用いられるが、反応が強烈でエツチングレート
の制御が困難なこと、ウニ八面内のエツチングバラツキ
が大きいこと、及びエツチングマスクとして、シリコン
ウェハ上に形成が容易な酸化膜や窒化膜を容易に用いる
ことができないことなどの理由により、薄肉のシリコン
ダイヤフラム形成にげあまシ用いられない。
As methods for forming the diaphragm of a semi-integrated pressure sensor, two methods are generally used: a method using a silicone etching solution containing hydrofluoric acid or nitric acid as a main component, and a method using an alkaline etching solution such as potassium hydroxide. Silicon etching using a strong acid mixture of hydrofluoric acid and nitric acid is called isotropic etching, and is so called because the etching reaction proceeds in the same direction without depending on the crystal axis of the silicon wafer. This method is easy to use because it produces a mirror-like finish and hydrofluoric acid and nitric acid are common acids used in the semiconductor industry, but the reaction is intense and it is difficult to control the etching rate. Due to the large in-plane etching variations and the inability to use oxide or nitride films, which are easy to form on silicon wafers, as etching masks, it is difficult to form thin silicon diaphragms. I can't.

一方、水酸化カリウム(KOH)などのアルカリ水溶液
を用いるエツチングは、エツチングの進行方向が結晶軸
に大きく依存する、いわゆる異方性エツチングであると
いう欠点にあるものの、反応が緩やかでダイヤフラムの
厚みの制御が容易であること、エツチングマスクに窒化
膜が使えること、及びウェハ面内のエツチングバラツキ
が少いことなどの理由で、半導体圧力センサのダイヤフ
ラム形成によく用いられている。
On the other hand, etching using an alkaline aqueous solution such as potassium hydroxide (KOH) has the disadvantage that the direction of etching is largely dependent on the crystal axis, which is so-called anisotropic etching. It is often used to form diaphragms in semiconductor pressure sensors because it is easy to control, a nitride film can be used as an etching mask, and there is little variation in etching within the wafer surface.

上記異方性エツチングの一方法として、エツチング容器
の底部をシリコンウェハとし、ダイヤフラム面側をエツ
チング容器内部にするようにシリコンウェハを取り付け
、センサ部は外部に開放としておいてから、エツチング
容器内にエツチング液ヲ涌してエツチングを行うという
方法が用いられてきた。
One method for the above-mentioned anisotropic etching is to use a silicon wafer at the bottom of an etching container, attach the silicon wafer so that the diaphragm side is inside the etching container, leave the sensor part open to the outside, and then place the silicon wafer inside the etching container. A method of etching using an etching solution has been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の異方性エツチングの方法は、センサ部がエツチン
グ液と完全に分離されるので、ダイヤスラムエツチング
中のセンサ部の保護を考慮する必要が無く、原始的では
あるが、有用な方法である。
In the conventional anisotropic etching method, the sensor part is completely separated from the etching solution, so there is no need to consider protecting the sensor part during diaphragm etching, and although it is a primitive method, it is a useful method. .

しかしながら、ウェハのエツチング容器への装着は仲々
手間がかかり、エツチング進行に伴うダイヤプラムの厚
みを絶えず測定しながら、ダイヤフラムの厚みを所逼の
厚さに仕上げる場合、作業性が著しく損われるという問
題点があった。
However, mounting the wafer in the etching container is quite time-consuming, and work efficiency is significantly impaired when the thickness of the diaphragm is finished to a desired thickness while constantly measuring the thickness of the diaphragm as etching progresses. There was a point.

この発明は上記の異方性エツチングの一方法において、
ダイヤフラムの厚みをリアルタイムでモニタリングしな
がら、所望の厚みにダイヤフラムが仕上った時点でエツ
チングを終了させる方法を提供せんとするものである。
In one method of the above-mentioned anisotropic etching, the present invention provides the following steps:
The present invention aims to provide a method of monitoring the thickness of the diaphragm in real time and ending etching when the diaphragm is finished to a desired thickness.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体圧力センサのダイヤフラム加工方
法は、異方性エツチング容器の底部に半導体圧力センサ
ウェハを取付け、上記半導体圧力センサウエハにセンサ
チップを設けるとともに、エツチング容器内に注入した
エツチング液によって上記半導体圧力センサウエハに圧
力を加え、エツチングの進行状況を上記センサチップか
ら得られる出力をモニタすることによって所期のエツチ
ング量が達成された時点を把握しようとするものである
The diaphragm processing method for a semiconductor pressure sensor according to the present invention includes attaching a semiconductor pressure sensor wafer to the bottom of an anisotropic etching container, providing a sensor chip on the semiconductor pressure sensor wafer, and etching the semiconductor pressure sensor with an etching liquid injected into the etching container. By applying pressure to the sensor wafer and monitoring the progress of etching by the output obtained from the sensor chip, it is possible to determine when the desired amount of etching has been achieved.

〔作用〕[Effect]

この発明における半導体圧力センサのダイヤフラム加工
方法は、上記のとおり所期のエツチング達成時点をモニ
タすることができるので、その時点で直ちにエツチング
の進行を停止することができる。
As described above, the method of processing a diaphragm for a semiconductor pressure sensor according to the present invention makes it possible to monitor the point in time when the desired etching is achieved, so that the progress of etching can be stopped immediately at that point.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

@1図は半導体圧力センサのダイヤフラムの加工法を説
明する断面図、第2図は第1図に示す方法で得られるダ
イヤフラム厚さと出力電圧の関係を示す特性図、第3図
はこの発明の他の実施例によるダイヤフラムへの加圧法
を示す断面図である。
@Figure 1 is a cross-sectional view explaining the method of processing a diaphragm of a semiconductor pressure sensor, Figure 2 is a characteristic diagram showing the relationship between diaphragm thickness and output voltage obtained by the method shown in Figure 1, and Figure 3 is a diagram showing the relationship between the diaphragm thickness and output voltage obtained by the method shown in Figure 1. FIG. 7 is a cross-sectional view showing a method of applying pressure to a diaphragm according to another embodiment.

図において、tlliエツチング容器本体、(1−a)
はエツチング容器内側、(2)ホ半導体圧力センサウエ
ハ、 (2−s) Triダイヤフラムのエツチング面
側、(2−1)aシリコン窒化膜、(2−2)に窓明は
部、(31にアルカリエツチング液、141[ヒータ、
(llダイヤフラム、+61[プリント基板、fvlH
プローブ、(8)はセンサチップの電極パッド、(91
ioリング、(10)に締め付はネジである。
In the figure, the tlli etching container body, (1-a)
(2) is the inside of the etching container, (2) is the semiconductor pressure sensor wafer, (2-s) is the etched surface side of the Tri diaphragm, (2-1) is the silicon nitride film, (2-2) is the window area, (31 is the alkali Etching liquid, 141 [heater,
(ll diaphragm, +61 [printed circuit board, fvlH
Probe, (8) is the electrode pad of the sensor chip, (91
Tighten the io ring (10) with a screw.

@1図に示す如く、エツチング容器本体fi+の底部に
半導体圧力センサウェハ(2)のダイヤプラムエツチン
グ面側(2−a)をエツチング容器内伊+1(1−#)
になるように装着する。ダイヤスラムエツチング面側(
2−a)のエツチングマスクとしては、例えばCher
nlcal Vapor Depositon法によっ
てシリコン窓化膜(2−1)を形成し、エツチング部分
の窒化膜(2−1)Hl例えばPlasma Etcb
lngによって除去し窓明は部(2−2)を開口してお
く。次にエツチング容器本体fi+の内部に適当な濃度
の、例えばKOHのようなアルカリエツチング液(3)
を痛し、ヒーター(4)でエツチング液温を制御しなが
らシリコンエツチングを開始する。
@1 As shown in Figure 1, the diaphragm etching surface side (2-a) of the semiconductor pressure sensor wafer (2) is placed on the bottom of the etching container main body fi+.
Attach it so that it looks like this. Diamond slam etched side (
As the etching mask of 2-a), for example, Cher.
A silicon window film (2-1) is formed by the nlcal vapor deposition method, and a nitride film (2-1) Hl, for example, Plasma Etcb, is formed in the etched portion.
Remove the window by lng and leave the window part (2-2) open. Next, add an alkaline etching solution (3) such as KOH with an appropriate concentration to the inside of the etching container main body fi+.
Then, silicon etching is started while controlling the temperature of the etching liquid using the heater (4).

エツチングが進行するに伴い、ダイヤフラム(5)の厚
みa徐々に薄くなる。0〜2気圧程度の14域で使用す
るダイヤフラムの通常厚みハ25〜50fim程度に設
定される。アルカリエツチング液(3)の高さhtlo
〜20cm程度にしておくと、エツチング容器本体+1
1の底部に取付けたシリコンダイヤフラム(6)に印加
される圧力i o、a〜0.6kgf/cm2程度とな
る。
As the etching progresses, the thickness a of the diaphragm (5) gradually becomes thinner. The normal thickness of the diaphragm used in the 14 range of about 0 to 2 atmospheres is set to about 25 to 50 fim. Height of alkaline etching solution (3) htlo
If you keep it at ~20cm, the etching container body +1
The pressure applied to the silicon diaphragm (6) attached to the bottom of 1 is approximately 0.6 kgf/cm2.

この程度の圧力ならば、エツチング容器本体(1)の底
部となっている半導体圧力センサウエハ(2)内のセン
サチップで十分検出できる。
This level of pressure can be sufficiently detected by the sensor chip in the semiconductor pressure sensor wafer (2) which is the bottom of the etching container body (1).

従って、弐面のセンサチップに励起′げ圧Vvxを与え
、その出力を直流増幅しプリント基板(6)に取付けた
プローブ(7)でセンサチップの電極パッド(8)から
モニタすれば、ダイヤフラム(5)の厚みtdと出力電
圧voutとの関係に第2図のようになる。よって出力
電圧voutをモニタしておけば、ダイヤプラム(5)
の厚みtdを知ることができる。
Therefore, if an excitation pressure Vvx is applied to the sensor chip on the second side, and the output is DC amplified and monitored from the electrode pad (8) of the sensor chip with the probe (7) attached to the printed circuit board (6), the diaphragm (5 ) The relationship between the thickness td and the output voltage vout is as shown in FIG. Therefore, if you monitor the output voltage vout, the diaphragm (5)
The thickness td can be known.

出力rM、 FJ:、”out Ttlアルカリエツチ
ング液(31の液温Tが決まれば、ダイヤフラム(5)
の厚みtdに依存するので、ダイヤフラム(5)の厚み
が目標の厚みに達した時、すぐにアルカリエツチング液
(3)を排水口から排出し、同時に純水を注水口から注
入し、アルカリエツチング液(3)を洗い流してシリコ
ンエツチングを終了させる。
Output rM, FJ:, "out Ttl alkaline etching liquid (31) Once the liquid temperature T is determined, the diaphragm (5)
When the thickness of the diaphragm (5) reaches the target thickness, the alkaline etching liquid (3) is immediately discharged from the drain port, and at the same time pure water is injected from the water inlet to complete the alkaline etching process. Wash away the solution (3) to complete silicon etching.

この一連の作業は、シリコンエツチングの終了点を電気
的に検出することができるので、自動化することも可能
である。
This series of operations can be automated because the end point of silicon etching can be electrically detected.

なお、この場合、気をつけなければならない点はアルカ
リエツチング液(3)の高さbを常に一定にしておく必
要があることである。
In this case, care must be taken that the height b of the alkaline etching solution (3) must always be kept constant.

なお、上記方法は、たまたまアルカリエツチング液(3
)の圧力に感応する程度のダイヤフラム(5)の厚みに
仕上げる場合を想定し、シリコンダイヤフラム部に与え
る圧力をアルカリエツチング液(3)を使って与えてい
るが、要するにダイヤフラム部に絶えず力を印加すれば
よいわけで、第3図で示すようにダイヤフラム部に機械
的に力(F)を印加してダイヤフラムの厚みをモニタリ
ングすることも可能である。
It should be noted that the above method happens to be based on alkaline etching solution (3
), we use alkaline etching liquid (3) to apply pressure to the silicon diaphragm, assuming that the diaphragm (5) is thick enough to respond to the pressure of Therefore, it is also possible to monitor the thickness of the diaphragm by mechanically applying a force (F) to the diaphragm portion as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、エツチング容器本体
の底をシリコン半導体圧力センサとする異方性エツチン
グにおいて、仕上りダイヤフラムの厚みを直接電気的出
力としてモニタできるため、シリコンダイヤフラムを加
工しながら異方性エツチングの終了点を検出することが
できる。
As described above, according to the present invention, in anisotropic etching in which the bottom of the etching container body is used as a silicon semiconductor pressure sensor, the thickness of the finished diaphragm can be directly monitored as an electrical output. The end point of directional etching can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

%1図はこの発明を適用した半導体圧力センサのダイヤ
フラムの加工法を説明する断面図、第2図は第1図に示
す方法で得られるダイヤフラム厚さと出力電圧の関係を
示す特性図、第3図aこの発明の他の実施例によるダイ
ヤフラムへの加圧法を示す断面図である。 図において、[11H工ツチング容器本体、(]−a)
にエツチング容器内側、+21H半導体圧力センサウエ
ハ、(2−a)rttdヤフラムのエツチング面側、(
2−1)にシリコン窒化膜、(2−2)に窓明は部、(
31にアルカリエツチング液、(4)ハヒータ、+51
Hダイヤフラム、+61Uプリント基板、[7114プ
ローブ、(8)にセンサチップの電極パッド、+91U
Oリング、flolは締め付はネジである。 なお、図中、同一符号は同一、又は相当部分を示す。
Figure 1 is a cross-sectional view illustrating the method of processing the diaphragm of a semiconductor pressure sensor to which the present invention is applied, Figure 2 is a characteristic diagram showing the relationship between the diaphragm thickness and output voltage obtained by the method shown in Figure 1, and Figure 3 Figure a is a cross-sectional view showing a method of applying pressure to a diaphragm according to another embodiment of the present invention. In the figure, [11H engineering container body, (]-a)
Inside the etching container, +21H semiconductor pressure sensor wafer, (2-a) etching surface side of rttd yaphram, (
2-1) has a silicon nitride film, (2-2) has a window opening, (
31 is alkaline etching liquid, (4) hajita, +51
H diaphragm, +61U printed circuit board, [7114 probe, (8) sensor chip electrode pad, +91U
The O-ring and flol are tightened with screws. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  エッチング容器の底部をシリコンウェハにした半導体
圧力センサのダイヤフラム形成方法において、ダイヤフ
ラムの厚みを、半導体圧力センサウェハ内のセンサ素子
の一つに機械的力と電気入力とを与え、出力電圧を増幅
測定することにより検知することを特徴とする半導体圧
力センサのダイヤフラム加工方法。
In a method of forming a diaphragm for a semiconductor pressure sensor using a silicon wafer as the bottom of an etching container, the thickness of the diaphragm is measured by applying mechanical force and electrical input to one of the sensor elements in the semiconductor pressure sensor wafer and amplifying the output voltage. A method for processing a diaphragm of a semiconductor pressure sensor characterized by detecting by
JP62324759A 1987-12-21 1987-12-21 Method of forming diaphragm of semiconductor pressure sensor Pending JPH01165184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324759A JPH01165184A (en) 1987-12-21 1987-12-21 Method of forming diaphragm of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324759A JPH01165184A (en) 1987-12-21 1987-12-21 Method of forming diaphragm of semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH01165184A true JPH01165184A (en) 1989-06-29

Family

ID=18169360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324759A Pending JPH01165184A (en) 1987-12-21 1987-12-21 Method of forming diaphragm of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH01165184A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452654B2 (en) 1997-07-28 2002-09-17 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452654B2 (en) 1997-07-28 2002-09-17 Sharp Kabushiki Kaisha Liquid crystal display in which at least one pixel includes both a transmissive region and a reflective region

Similar Documents

Publication Publication Date Title
US6629465B1 (en) Miniature gauge pressure sensor using silicon fusion bonding and back etching
KR0182291B1 (en) Improved semiconductor pressure sensor means and method
JP2552093B2 (en) Pressure sensor
JPH01165184A (en) Method of forming diaphragm of semiconductor pressure sensor
JP2001324398A (en) Corrosion resistant vacuum sensor
EP0639760B1 (en) Semiconductor type differential pressure measurement apparatus and method for manufacturing the same
JPH05340828A (en) Semiconductor pressure sensor
JPH0554709B2 (en)
JPH1197413A (en) Method for etching si wafer
JPS621272B2 (en)
EP0990267A2 (en) Etching method
JP3509275B2 (en) Method for manufacturing semiconductor device
JPH0114698B2 (en)
JP3427616B2 (en) Capacitive sensor and method of manufacturing the same
JP2001066208A (en) Semiconductor pressure measuring device and manufacturing method thereof
JP3196194B2 (en) Semiconductor pressure measuring device and method of manufacturing the same
JPS6062164A (en) Manufacture of semiconductor pressure sensor
JPS627880A (en) Plasma etching device
JPH0289375A (en) Manufacture of semiconductor pressure sensor
JPS6285470A (en) Pressure sensor
JPS59170272A (en) Dry treating device
JP2671392B2 (en) Method for manufacturing semiconductor device
JPH02179869A (en) Sputtering device
CN106495091A (en) The processing method of diaphragm under resonant silicon microsensor
JPH03239940A (en) Capacity type pressure sensor