JPH01165183A - Manufacture of thermoelectric device - Google Patents

Manufacture of thermoelectric device

Info

Publication number
JPH01165183A
JPH01165183A JP62324731A JP32473187A JPH01165183A JP H01165183 A JPH01165183 A JP H01165183A JP 62324731 A JP62324731 A JP 62324731A JP 32473187 A JP32473187 A JP 32473187A JP H01165183 A JPH01165183 A JP H01165183A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric material
melt
organic resin
thermoelectric device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62324731A
Other languages
Japanese (ja)
Inventor
Keiji Sato
恵二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP62324731A priority Critical patent/JPH01165183A/en
Publication of JPH01165183A publication Critical patent/JPH01165183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromechanical Clocks (AREA)

Abstract

PURPOSE:To facilitate manufacture of a small size and high performance thermoelectric device which can be employed as a power source of an electronic wrist watch and the like by a method wherein a thermoelectric material strip obtained by chilling melt is combined with organic resin to produce the thermoelectric device. CONSTITUTION:(Bi, Sb)2 (Te, Se)3 system material is employed as thermoelectric material used at a temperature close to a room temperature. The material is melted in a nitrogen atmosphere in a quartz tube at about 800 deg.C to produce melt 1. The melt 1 is spouted against a rotary roll 2 made of Cu or the like and chilled to form a thermoelectric material strip 3. Then the thermoelectric material strips 3 obtained like this are laminated with organic resin layers 4 which have a low thermal conductivity and cut vertically to the lamination surface. After the out units are laminated with the organic resin layers again, electrodes 5 are formed and, further, insulating layers 6 and heat conducting layers 7 are formed. With this constitution, a thermoelectric device with excellent Seebeck coefficient, thermal conductivity and mechanical strength can be obtained. Moreover, as a thin strip can be obtained in the first stage, if a large number of minute thermoelectric material segments have to be coupled in order to manufacture, for instance, an electronic wrist watch, simple and efficient manufacturing process can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子腕時計などの電力源として使用する熱電素
子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a thermoelectric element used as a power source for electronic wristwatches and the like.

〔発明の概要〕[Summary of the invention]

本発明は電子腕時計などの小型電子製品において、温度
差、例えば体温と周囲環境との温度差を利用して電力を
発生させ、更に必要に応じて2次電池または大容量コン
デンサなどに充電させるために用いる熱電素子の製造方
法において、熱電材料の融体を急冷することにより得ら
れる薄帯を絶縁材料と複合することにより、微細な数十
個もの熱電材料を直列に結合した、熱電素子を効率的に
製造し、しかも特性のすぐれたものを供給することを可
能とするものである。
The present invention is used in small electronic products such as electronic wristwatches to generate electric power using temperature differences, for example, the difference between body temperature and the surrounding environment, and to charge a secondary battery or a large-capacity capacitor as necessary. In the manufacturing method of thermoelectric elements used in This makes it possible to manufacture products with high quality and provide excellent properties.

〔従来の技術〕[Conventional technology]

電子腕時計においては、体温を利用して熱電素子と大容
量コンデンサまたは2次電池との組合わせにより半永久
電源を得ることができる。
In an electronic wristwatch, a semi-permanent power source can be obtained by using body temperature in combination with a thermoelectric element and a large-capacity capacitor or a secondary battery.

この場合、常温付近で最もすぐれた性能指数をもつ熱電
材料として、(Bi、Sb)g  (Te。
In this case, (Bi, Sb)g (Te) is the thermoelectric material with the best figure of merit near room temperature.

Se)、系熱電材料があるが、この材料でもN形および
P形ともゼーベック係数は200μV/に程度であり、
従ってたとえば温度差2℃で電圧2■を得るには、約5
4個もの熱電材料微小片を必要とする。
There is a thermoelectric material based on Se), but even this material has a Seebeck coefficient of about 200 μV/ for both N type and P type.
Therefore, for example, to obtain a voltage of 2 cm with a temperature difference of 2°C, approximately 5
As many as four thermoelectric material micropieces are required.

腕時計の場合、利用できる面積は6d程度が限度であり
、また厚みにも限度があり、従ってその素子は例えば0
.1關×0.1龍×8顛程度の熱電材料片を数千個直列
に結合する必要があり、それを実現する方法としては、
たとえば昭和61年電気学会全国大会講演論文集m 1
194にみられるごと(厚膜性の利用が考えられる。
In the case of a wristwatch, the usable area is limited to about 6 d, and there is also a limit to the thickness, so the element is, for example, 0.
.. It is necessary to connect several thousand thermoelectric material pieces of 1 size x 0.1 x 8 pieces in series, and the method to achieve this is as follows.
For example, Proceedings of the 1986 National Conference of the Institute of Electrical Engineers of Japan m1
As seen in 194 (the use of thick film properties is considered).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

厚膜法を利用する場合、導電率が小さい、基板としてガ
ラスなどの熱伝導率の比較的大きなものを使用する必要
があるなどの制限があり、すぐれた熱電素子は得にくい
When using the thick film method, there are limitations such as low electrical conductivity and the need to use a substrate with relatively high thermal conductivity, such as glass, making it difficult to obtain excellent thermoelectric elements.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、熱電素子の製造において、融体を回転する
冷却媒体に接触させ急冷させることにより得る熱電材料
薄帯を用いて、断熱絶縁材料と複合することにより熱電
素子を製造する。
In the present invention, in manufacturing a thermoelectric element, a thermoelectric material ribbon obtained by bringing a melt into contact with a rotating cooling medium and rapidly cooling it is used and composited with a heat-insulating material to manufacture a thermoelectric element.

〔作用〕[Effect]

融体から急冷により、特性のすぐれた微小薄帯が容易に
得られ、かつ有機樹脂などの熱伝導率の小さな断熱絶縁
材料と複合することにより、温度差の生じやすい、従っ
て効率の大きな熱電素子が得られる。
Micro ribbons with excellent properties can be easily obtained by rapid cooling from a melt, and by combining them with heat-insulating materials with low thermal conductivity such as organic resins, thermoelectric elements that easily generate temperature differences and therefore have high efficiency can be created. is obtained.

〔実施例〕〔Example〕

以下図面により詳細に説明する。 This will be explained in detail below with reference to the drawings.

常温付近で使用する熱電材料としては(Bi。The thermoelectric material used near normal temperature is (Bi.

5b)t  (Te、5e)3系材料を使用する。これ
を単ロール法あるいは対ロール法などの融体急冷装置を
使用して薄帯を得る。
5b) Use t (Te, 5e) 3-based materials. A thin ribbon is obtained by using a melt quenching device such as a single roll method or a twin roll method.

単ロール法による融体急冷法について図で説明する。The melt quenching method using a single roll method will be explained using diagrams.

第1図において(Bi、5b)t  (Te、5e)s
系材料を石英管中で約800℃にて窒素雰囲気中で溶融
し、融体1を形成する。これをCuなどよりなる回転ロ
ール2に噴きつけ急冷し、熱電材料薄帯3を得る。
In Figure 1, (Bi, 5b)t (Te, 5e)s
The system material is melted in a quartz tube at about 800° C. in a nitrogen atmosphere to form a melt 1. This is sprayed onto a rotating roll 2 made of Cu or the like and quenched to obtain a thermoelectric material ribbon 3.

このようにして得られた薄帯は厚み0.1mmで幅8關
であワた・ 次にこのようにして得た熱電材料薄帯は第2図に示す様
に熱伝導率の小さな有機樹脂4と積層する。
The thin strip thus obtained was 0.1 mm thick and 8 mm wide.Next, the thermoelectric material thin strip obtained in this way was made of an organic resin with low thermal conductivity, as shown in Figure 2. Layer with 4.

更に、この積層体を第3図に示す様に積層面に垂直に切
断する。これを再び有機樹脂と積層した後、第4図に示
すように電極5を形成し、更に絶縁N6、伝熱N7を形
成して熱電素子が完成される。
Furthermore, this laminate is cut perpendicular to the laminate surface as shown in FIG. After this is laminated again with an organic resin, an electrode 5 is formed as shown in FIG. 4, and an insulating layer N6 and a heat conducting layer N7 are further formed to complete the thermoelectric element.

融体からの急冷によって得た熱電材料薄帯は特性の向上
のため、300℃から500℃程度の温度で熱処理する
ことが望ましい。
The thermoelectric material ribbon obtained by rapid cooling from the melt is preferably heat-treated at a temperature of about 300° C. to 500° C. in order to improve its characteristics.

本発明の融体からの急冷で製造したCBi、5b)z 
 (Te、5e)s系材料は厚膜法などにより、形成し
たものより密度が大きく、ゼーベック係数や導電率がす
ぐれて、かつ機械的強度もすぐれている。
CBi produced by quenching from the melt according to the invention, 5b)z
(Te, 5e)s-based materials have a higher density than those formed by a thick film method or the like, have excellent Seebeck coefficients and conductivity, and have excellent mechanical strength.

又、最初から薄帯が得られるため、電子腕時計などの様
に微小な熱電材料片を多数結合する必要がある場合には
、溶製材や焼結体などを加工するよりはるかに簡易にか
つ効率よく製造できる。
In addition, since a thin strip can be obtained from the beginning, it is much easier and more efficient than processing melted lumber or sintered material when it is necessary to join together many small pieces of thermoelectric material, such as in electronic wristwatches. Can be manufactured well.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、融体からの急冷によ
り得た熱電材料薄帯を用いて、有機樹脂と複合して熱電
素子を製造することにより電子腕時計などの電力源とし
て使用できる小型で性能のよい熱電素子を簡易に製造す
ることが可能となる。
As described above, according to the present invention, a thermoelectric material ribbon obtained by rapid cooling from a melt is used to manufacture a thermoelectric element by combining it with an organic resin, thereby making it compact enough to be used as a power source for electronic wristwatches, etc. This makes it possible to easily manufacture thermoelectric elements with good performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は熱電素子の製造工程を示す図であり
、第4図は熱電素子の断面図である。 1・・・融体 2・・・回転ロール 3・・・熱電材料薄帯 4・・・有機樹脂 5・・・電極 6・・・絶縁層 7・・・伝熱層 以上 出願人 セイコー電子工業株式会社
1 to 3 are diagrams showing the manufacturing process of the thermoelectric element, and FIG. 4 is a sectional view of the thermoelectric element. 1... Melt body 2... Rotating roll 3... Thermoelectric material ribbon 4... Organic resin 5... Electrode 6... Insulating layer 7... Heat transfer layer and above Applicant Seiko Electronics Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  融体からの急冷により得た熱電材料薄帯を用いて製造
することを特徴とする熱電素子の製造方法。
A method for manufacturing a thermoelectric element, characterized in that the thermoelectric element is manufactured using a thermoelectric material ribbon obtained by rapid cooling from a melt.
JP62324731A 1987-12-21 1987-12-21 Manufacture of thermoelectric device Pending JPH01165183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62324731A JPH01165183A (en) 1987-12-21 1987-12-21 Manufacture of thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324731A JPH01165183A (en) 1987-12-21 1987-12-21 Manufacture of thermoelectric device

Publications (1)

Publication Number Publication Date
JPH01165183A true JPH01165183A (en) 1989-06-29

Family

ID=18169069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324731A Pending JPH01165183A (en) 1987-12-21 1987-12-21 Manufacture of thermoelectric device

Country Status (1)

Country Link
JP (1) JPH01165183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613663A (en) * 1992-06-25 1994-01-21 Toto Ltd Thermoelectric semiconductor material
EP1193774A1 (en) * 1999-06-02 2002-04-03 Asahi Kasei Kabushiki Kaisha Thermoelectric material and method for manufacturing the same
JP2009016495A (en) * 2007-07-03 2009-01-22 Daikin Ind Ltd Thermoelectric element, and its manufacturing method
US7765811B2 (en) 2007-06-29 2010-08-03 Laird Technologies, Inc. Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
US8193439B2 (en) 2009-06-23 2012-06-05 Laird Technologies, Inc. Thermoelectric modules and related methods

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613663A (en) * 1992-06-25 1994-01-21 Toto Ltd Thermoelectric semiconductor material
EP1193774A1 (en) * 1999-06-02 2002-04-03 Asahi Kasei Kabushiki Kaisha Thermoelectric material and method for manufacturing the same
EP1193774A4 (en) * 1999-06-02 2006-12-06 Asahi Chemical Ind Thermoelectric material and method for manufacturing the same
US7765811B2 (en) 2007-06-29 2010-08-03 Laird Technologies, Inc. Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
JP2009016495A (en) * 2007-07-03 2009-01-22 Daikin Ind Ltd Thermoelectric element, and its manufacturing method
US8193439B2 (en) 2009-06-23 2012-06-05 Laird Technologies, Inc. Thermoelectric modules and related methods

Similar Documents

Publication Publication Date Title
US4859250A (en) Thermoelectric pillow and blanket
CA1232363A (en) Thermoelectric generator and method for the fabrication thereof
JP2003133600A (en) Thermoelectric conversion member and manufacturing method therefor
US3261079A (en) Fabrication of thermoelectric apparatus
JPH01165183A (en) Manufacture of thermoelectric device
JPH01208876A (en) Thermoelectric device and manufacture thereof
US3775218A (en) Method for the production of semiconductor thermoelements
JPS6320880A (en) Manufacture of thermoelement for electronic wristwatch
JPH05152616A (en) Manufacture of chip of semiconductor element forming material and its thermoelectric conversion module
JP2602646B2 (en) Manufacturing method of thermoelectric element for electronic watch
JPH08222770A (en) Manufacture of thermoelectric element
JP2654504B2 (en) Manufacturing method of thermoelectric element for electronic watch
JPH098364A (en) Production of thermoelectric conversion element
JPH0613664A (en) Thermoelectric device and manufacture of thermoelectric device
JP2756960B2 (en) Manufacturing method of thermoelectric element for electronic watch
JP2544118B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JP2542498B2 (en) Method for manufacturing thermoelectric element for electronic wrist watch
JPH0787138B2 (en) Superconducting coil device
JPH06188464A (en) Thin film thermoelectric element and manufacture thereof
JPS63253678A (en) Thermoelectric conversion device
JPH01300574A (en) Manufacture of thermoelectric element
JPS63226980A (en) Manufacture of thermoelectric element for electronic wrist watch
JPH0322707B2 (en)
JP2639961B2 (en) Superconducting element manufacturing method
JPS5856220A (en) Magnetic head and its production