JPH01163967A - Manufacture of zinc electrode for alkaline storage battery - Google Patents

Manufacture of zinc electrode for alkaline storage battery

Info

Publication number
JPH01163967A
JPH01163967A JP62322531A JP32253187A JPH01163967A JP H01163967 A JPH01163967 A JP H01163967A JP 62322531 A JP62322531 A JP 62322531A JP 32253187 A JP32253187 A JP 32253187A JP H01163967 A JPH01163967 A JP H01163967A
Authority
JP
Japan
Prior art keywords
zinc
powder
active material
current collector
thallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62322531A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Mitsuzo Nogami
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62322531A priority Critical patent/JPH01163967A/en
Publication of JPH01163967A publication Critical patent/JPH01163967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent the peeling off of an active material from a current collector and to increase the cycle performance of an electrode by kneading zinc, calcium hydroxide, thallium oxide, and water, drying, and crushing to obtain mixed powder, then kneading the mixed powder, zinc powder, zinc oxide powder, an additive, and a binder to form active material paste, and applying the paste to the current collector. CONSTITUTION:Zinc, calcium hydroxide, thallium oxide, and water are kneaded, dried, and crushed to obtain mixed powder. The powder in which thallium is deposited near calcium zincate is obtained. This powder is mixed with zinc powder, zinc oxide powder, and a binder, and they are kneaded to form active material paste, then the paste is applied to a current collector. Since this active material paste is not solidified even in a dry state, the peeling off from the current collector is prevented. Although calcium zincate is part of starting substance, cycle performance is kept good since metallic thallium exists. The molar ratio of zinc to calcium hydroxide in powder preparation is 2 or more.

Description

【発明の詳細な説明】 「ノ 産業上の利用分野 本発明は、ニッケルー亜鉛蓄電池や銀−亜鉛蓄電池等の
隘極として用いらnる、亜鉛価の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a zinc value used as a polarity in nickel-zinc storage batteries, silver-zinc storage batteries, and the like.

に)従来の技術 亜鉛価で、活物質として用いら几る亜鉛は、単位重量る
之りのエネルギー密度が大きく、かつ安価であるという
利点がある。ところが、この種のアルカリ蓄電池に用い
らnる亜鉛極では、放電時に亜鉛がアルカリ電解液中に
溶出して、生じた亜鉛酸イオンが、光電時には、亜鉛極
表面に樹枝状あるいは海線状に電析し成長する。し次が
って充放電の繰り返しにより、との電析亜鉛が、セパレ
ータを貫通し、陽極に接触して電池内部短絡を引き起こ
したり、あるいは、亜鉛極表面が高密度化して電池放電
容量が低下する結果、電池のす・fクル寿命が非常に短
くなるという欠点がある。
B) Conventional technology Zinc, which has a high zinc value and is not used as an active material, has the advantage of having a high energy density per unit weight and being inexpensive. However, in the zinc electrode used in this type of alkaline storage battery, zinc is eluted into the alkaline electrolyte during discharge, and the generated zincate ions form a dendritic or sea-line shape on the surface of the zinc electrode during photovoltage. Electrodeposit and grow. Then, due to repeated charging and discharging, the deposited zinc may penetrate the separator and come into contact with the anode, causing an internal short circuit in the battery, or the surface of the zinc electrode may become denser, reducing the battery's discharge capacity. As a result, there is a drawback that the battery life is extremely short.

この欠点に対処し、電池のサイクル寿命を改善する方法
として1例えば特公昭54−9696号公報に記載され
ているように、亜鉛活物質の利用率を上げる働きをする
カドミウム、鉛、インジクム、スズ等の金属と共に、亜
鉛極中に水酸化カルシウムを添加、含有させることが提
案さnている。
To address this shortcoming and improve the cycle life of batteries, 1. For example, as described in Japanese Patent Publication No. 54-9696, cadmium, lead, indicum, and tin are used to increase the utilization rate of zinc active materials. It has been proposed to add and contain calcium hydroxide in the zinc electrode together with metals such as.

亜鉛極の放電生成物である上記亜鉛酸イオンは、この水
酸化カルシウムと反応して、不溶化合物である亜鉛酸カ
ルシウム(CaZnz(OH)6・2f(zo)となっ
て、亜鉛極中に固足さ几る。その結果放電時の亜鉛酸イ
オンの溶出、逸散が抑制さn、光放電に伴う電析亜鉛の
生長や、亜鉛極表面のi密度化が効果的に防止されて、
アルカリ蓄電池の長寿命化が図れる。
The zincate ion, which is a discharge product of the zinc electrode, reacts with this calcium hydroxide to become an insoluble compound, calcium zincate (CaZnz(OH)6.2f(zo)), which is solidified in the zinc electrode. As a result, the elution and dissipation of zincate ions during discharge are suppressed, and the growth of deposited zinc and the increase in density on the surface of the zinc electrode due to photodischarge are effectively prevented.
The lifespan of alkaline storage batteries can be extended.

しかしながら、上記水酸他方ルシウムの亜鉛極への添加
、含有は、亜鉛酸イオンの固定によって。
However, on the other hand, lucium is added to the zinc electrode by fixing zincate ions.

電池特注特にナイクル寿命の向上に寄与する働きがある
ものの、放電時に生成し之亜鉛酸カルシクムが、久の光
IE時に元の亜鉛と水酸化カルシウムに戻る反応がおこ
りに<<、尤tt圧の上昇を招くという問題点があった
。この問題点は急速光電を行なった時等に顕著に現わn
1逆に水酸化カルシウムを添加しない時エフもサイクル
待命が短くなるとい5問題があった。
Custom-made batteries have a function that contributes to improving the battery life, but the calcium zincate produced during discharge undergoes a reaction that returns to the original zinc and calcium hydroxide during Hisanohiko IE. There was a problem in that it led to an increase in the price. This problem becomes noticeable when performing rapid photoelectric conversion.
1. On the other hand, when calcium hydroxide was not added, the cycle life of F was also shortened, which was a problem.

この問題点を解決するために、本発明者らは特開昭62
−243253号公報に示した様に、水酸化カルシウム
とともにタリウムあるいは、タリウム化合物を、亜鉛価
に含有させることを提案した。このようにすることで、
タリウムは、亜鉛酸カルシウムの分散全促進し、光電反
応、すなわち亜鉛酸カルシウムが水酸化カルシウムと亜
鉛になる反応を円滑にさせることが可能tなる。このた
め、急速光1時にも、従来のLうに光電電圧の上昇を招
くことはなくなJ。
In order to solve this problem, the inventors of the present invention
As shown in Japanese Patent No. 243253, it was proposed to include thallium or a thallium compound in the zinc value together with calcium hydroxide. By doing this,
Thallium completely promotes the dispersion of calcium zincate, making it possible to smooth the photoelectric reaction, that is, the reaction in which calcium zincate turns into calcium hydroxide and zinc. For this reason, even at 1 o'clock rapid light, the photoelectric voltage does not increase as compared to conventional L.

このようにして水酸化カルシウムを添加した時の光放電
反応に関する問題点は解決さn、e。
In this way, the problems regarding the photodischarge reaction when adding calcium hydroxide are solved.

一方1通常亜鉛極はある程度の放電リデープを呆持し、
ま良電子伝導性を良くする目的で、亜鉛粉末を添加する
。ところで亜鉛粉末と水酸化カルヒ シクムを両方含んだ粉末に、水を加えて混練し、八 活物質ペーストを作成すると、このペーストが乾燥する
過程で、水と酸素と亜鉛と水酸化カルシウムが反応し、
亜鉛酸カルシウムが生成する。この時にペーストは急激
に固化する九めに、活物質ペーストと集電体とのはく離
が生じる。集電体とのはく離が生じると、集電が不充分
となり、サイクル初期から光分な容量が得らnない。
On the other hand, 1 normal zinc electrode retains a certain degree of discharge redaping,
Zinc powder is added to improve electron conductivity. By the way, when a powder containing both zinc powder and calcium hydroxide is mixed with water and kneaded to create a paste of eight active materials, in the process of drying this paste, water, oxygen, zinc, and calcium hydroxide react,
Calcium zincate is formed. At this time, the paste rapidly solidifies, and peeling occurs between the active material paste and the current collector. When separation from the current collector occurs, current collection becomes insufficient, and a sufficient optical capacity cannot be obtained from the beginning of the cycle.

このようなペースト乾燥時の固化を防止する方法として
は、酸素のない雰囲気で乾燥させる方法。
One way to prevent the paste from solidifying when drying is to dry it in an oxygen-free atmosphere.

有機溶媒で混練する方法等が考えられるが、前者は作業
、操作が複雑化し、後者は有機溶媒が亜鉛W電極反応の
妨害物質になるという欠点がある。
A method of kneading with an organic solvent is considered, but the former has the disadvantage that the work and operation are complicated, and the latter has the disadvantage that the organic solvent becomes a substance that interferes with the zinc W electrode reaction.

またペースト乾燥時の固化を防止する方法としては、特
開昭51−15125号公報に開示さnているように、
亜鉛酸カルシウムを出発物質とする方法がある。しかし
、前述した様に亜鉛酸カルシウムは光電されにくいため
、亜鉛極製造時の出発物質としては不適当である。
Furthermore, as a method for preventing solidification during paste drying, as disclosed in Japanese Patent Application Laid-Open No. 51-15125,
There is a method using calcium zincate as a starting material. However, as mentioned above, calcium zincate is not easily photoelectrified and is therefore unsuitable as a starting material for manufacturing zinc electrodes.

(/9 発明が解決しようとする問題点本発明は前記問
題点に鑑みなさnたものであって、活物質ペーストの固
化を抑制し、集電体からのはく離を抑え、ナイクル特注
にfnた、アルカリ蓄電池用亜鉛極を提供しようとする
ものである。
(/9 Problems to be Solved by the Invention The present invention has been made in view of the above-mentioned problems. It suppresses the solidification of the active material paste, suppresses its peeling from the current collector, and solves the problems that the invention aims to solve. , which aims to provide a zinc electrode for alkaline storage batteries.

に)問題点を解決するための手段 本発明のアルカリ蓄シ池用亜鉛極の製造方法は、亜鉛と
、水酸化カルシウムと、酸化タリウムと、水とを混練し
、乾燥後粉砕して粉末を得%該粉末に亜鉛粉末と、酸化
亜鉛粉末と、添加剤と、結着剤とを混練して活物質ペー
ストをf′F:成し、該活物質ペーストを集電体に塗着
することを特徴とするものである。
2) Means for Solving the Problems The method of manufacturing zinc electrodes for alkaline storage batteries of the present invention involves kneading zinc, calcium hydroxide, thallium oxide, and water, drying and pulverizing to form a powder. knead zinc powder, zinc oxide powder, additives, and binder to the obtained powder to form an active material paste, and apply the active material paste to a current collector. It is characterized by:

(ホ)作用 亜鉛と、水酸化カルシウムと、酸化タリウムと、水とを
混練すると、乾燥時に、亜鉛と水酸化カルシウムと水と
酸素が反応して亜鉛酸カルシウムが生成するとともに、
金属亜鉛により酸化タリウムが還元されて金属タリウム
が析出する。こnを粉砕して得ら几る粉末は、亜鉛酸カ
ルシウムの近傍にタリウムが析出した状態のものである
口この粉末と、亜鉛粉末、rIR化亜鉛亜鉛粉末fA刀
■剤を混合し、水とで混練して得らf′L九活物質ペー
ストは、乾燥時にも固化しないので、集電体からのはく
離が生じに<<、亜鉛極における集電を損なうことはな
い。
(E) Effect When zinc, calcium hydroxide, thallium oxide, and water are kneaded, during drying, zinc, calcium hydroxide, water, and oxygen react to produce calcium zincate.
Thallium oxide is reduced by metallic zinc and metallic thallium is precipitated. The powder obtained by crushing this powder is obtained by mixing powder in which thallium is precipitated in the vicinity of calcium zincate, zinc powder, and IR-reinforced zinc powder. Since the f'L9 active material paste obtained by kneading with and does not solidify even when dried, current collection at the zinc electrode will not be impaired even if it peels off from the current collector.

しかも、亜鉛酸カルシウムを出発物質の一部としている
が、金属タリウムを近傍に存在させているために、可逆
的な光電反応が可能であり、電池#性を損なうことなく
、しかも長寿命のナイクルが得ら几る。
Furthermore, although calcium zincate is used as part of the starting material, metal thallium is present nearby, making it possible to perform a reversible photoelectric reaction, without impairing battery properties, and with long life. is obtained.

ま九、亜鉛醗カルシクムの分子式は、CaZn(OH)
6・2HzOで示さnることがら明らかなように、粉末
化W、時の亜鉛と水酸化力ルシウムのモル比は、2以上
が好ましい。
Nine, the molecular formula of zinc-calcicum is CaZn(OH)
As is clear from 6.2 HzO, the molar ratio of zinc to lucium hydroxide in powdered W is preferably 2 or more.

(へ)実施例 以下に1本発明実施例と、比較例とを列6cE(、、詳
述する。
(v) Examples Below, an example of the present invention and a comparative example will be described in detail in column 6cE.

(実施例1) 亜鉛と、水酸化カルシウムと、酸化タリクムを、重量比
で、30:10:IV)割合で混合し、水で練って%8
0℃で乾燥させた。こ几を粉砕して、粉末を得た。この
ときの、亜鉛と水酸化力ルシウムのモル比は、2.65
である。
(Example 1) Zinc, calcium hydroxide, and talicum oxide were mixed at a weight ratio of 30:10:IV) and kneaded with water to give a concentration of 8%.
It was dried at 0°C. The powder was obtained by crushing the powder. At this time, the molar ratio of zinc and lucium hydroxide is 2.65
It is.

久に酸化亜鉛粉末10000重部対して、亜鉛粉末20
重量部、上記粉末41重量部、TI#加剤としての酸化
水銀3重量部と結着剤とを混ぜて水で混練し、活物質ペ
ーストを作成した。このペーストを銅板(集電板〕に圧
清し九後、乾燥させて亜鉛極を得た。この亜鉛極を、本
発明電極Aとした。
20 parts of zinc powder per 10,000 parts of zinc oxide powder
41 parts by weight of the above powder, 3 parts by weight of mercury oxide as a TI# additive, and a binder were mixed and kneaded with water to prepare an active material paste. This paste was pressed onto a copper plate (current collector plate) and dried to obtain a zinc electrode.This zinc electrode was designated as electrode A of the present invention.

(比較例1) 比較例1として、酸化亜鉛粉末100重量部に対して亜
鉛粉末50重量部、水酸化力ルシウム10重量部、酸化
水銀3重量部を使用し活物質ペーストを得、以下同様に
作成した亜鉛極を得た。
(Comparative Example 1) As Comparative Example 1, an active material paste was obtained by using 50 parts by weight of zinc powder, 10 parts by weight of lucium hydroxide, and 3 parts by weight of mercury oxide with respect to 100 parts by weight of zinc oxide powder. A zinc electrode was obtained.

この亜鉛極を、比較室WBとした。This zinc electrode was used as a comparison chamber WB.

(比較例2ン 比較例2として、設化亜鉛粉末100重量部に対して亜
鉛粉末50重部、水酸化力ルシウムlO重量部、酸化タ
リウム1重量部、酸化水銀3重量部を使用し活物質ペー
ストを得、以下同様に作成し之亜鉛fr1を得比。この
亜鉛極を、比較1憧Cとし次。
(Comparative Example 2) As Comparative Example 2, 50 parts by weight of zinc powder, 1 part by weight of lucium hydroxide, 1 part by weight of thallium oxide, and 3 parts by weight of mercury oxide were used for 100 parts by weight of zinc powder. A paste was obtained, and the following steps were made in the same manner to obtain zinc fr1.This zinc electrode was used as comparison 1 and C.

(比較例・3,1) 比較例3として、亜鉛と水酸化力ルシウムだけを、水で
混練し、乾燥、粉砕した以外は、すべて実施例1と同様
の1m極を作成し九。この亜鉛極を、比較11CF!H
Dとした。
(Comparative Example 3, 1) As Comparative Example 3, a 1 m pole was prepared in the same manner as in Example 1, except that only zinc and lucium hydroxide were kneaded with water, dried, and crushed. Compare this zinc electrode with 11CF! H
It was set as D.

本発明電[Aと、比較室[B、Dとを用い、公知の焼結
式ニッケル極と組合せ、夫々セパレータを介して渦巻電
極群を作製し、電池缶に収納し九後、アルカリ電解液を
注入してニッケル亜鉛蓄電池(公称容11500ffA
H)を得た。こnらの電池ftzo@ずつ試作した。そ
してこnらの電池について、4時間率の電流値で充放電
サイクルを繰り返し行な、九時の、初期不良率と、初期
不良をおこし次電池を除いた時の、平均サイクル寿命を
検討した。放!深ffは100%として行っている。
Using the inventive battery [A] and the comparison chambers [B and D], a spiral electrode group was prepared by combining them with known sintered nickel electrodes through separators, and storing them in a battery can. Injected with nickel zinc storage battery (nominal capacity 11500ffA)
H) was obtained. We made prototypes of these batteries. These batteries were then repeatedly charged and discharged at a current value of 4 hours, and the initial failure rate at 9 o'clock and the average cycle life when batteries with initial failure were removed were examined. . Release! The depth ff is set to 100%.

この結果を、?X、表に示す。This result? X, shown in the table.

表 表から明らかなように、本発明の亜鉛極を備えたアルカ
リ蓄電池は、集電体と活物質のはく離による初期不良が
生じにくり、サイクル寿命も同上していることがわかる
As is clear from the table, it can be seen that the alkaline storage battery equipped with the zinc electrode of the present invention is less prone to initial defects due to delamination of the current collector and active material, and has a cycle life as well.

(トノ発明の効果 本発明のアルカリ蓄[池用亜鉛侃の製造方法によnば、
電FM襄造直後の組立不良がなく、かかる亜j[を用い
たアルカリ蓄電池の高容量、長寿命化を可能とするもの
でろり、その工業的価値はきわめて大きい。
(Effects of the Invention According to the method for producing the alkaline storage tank of the present invention,
There will be no assembly defects immediately after the electric FM lining is made, and it will be possible to achieve high capacity and long life of alkaline storage batteries using such aluminum, and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛と、水酸化カルシウムと、酸化タリウムと、
水とを混練し、乾燥後粉砕して粉末を得、該粉末に亜鉛
粉末と、酸化亜鉛粉末と、添加剤と、結着剤とを混練し
て活物質ペーストを作成し、該活物質ペーストを集電体
に塗着することを特徴とするアルカリ蓄電池用亜鉛極の
製造方法。
(1) Zinc, calcium hydroxide, thallium oxide,
The powder is kneaded with water, dried and pulverized to obtain a powder, and the powder is kneaded with zinc powder, zinc oxide powder, additives, and a binder to create an active material paste. 1. A method for producing a zinc electrode for an alkaline storage battery, which comprises applying the following to a current collector.
(2)前記亜鉛と水酸化カルシウムのモル比が、2以上
であることを特徴とする特許請求の範囲第(1)項記載
のアルカリ蓄電池用亜鉛極の製造方法。
(2) The method for manufacturing a zinc electrode for an alkaline storage battery according to claim (1), wherein the molar ratio of the zinc to calcium hydroxide is 2 or more.
JP62322531A 1987-12-18 1987-12-18 Manufacture of zinc electrode for alkaline storage battery Pending JPH01163967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62322531A JPH01163967A (en) 1987-12-18 1987-12-18 Manufacture of zinc electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62322531A JPH01163967A (en) 1987-12-18 1987-12-18 Manufacture of zinc electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH01163967A true JPH01163967A (en) 1989-06-28

Family

ID=18144707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62322531A Pending JPH01163967A (en) 1987-12-18 1987-12-18 Manufacture of zinc electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH01163967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027767A1 (en) 2011-08-23 2013-02-28 株式会社日本触媒 Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027767A1 (en) 2011-08-23 2013-02-28 株式会社日本触媒 Negative electrode mixture or gel electrolyte, and battery using said negative electrode mixture or said gel electrolyte

Similar Documents

Publication Publication Date Title
KR100416140B1 (en) Negative active material for lithium secondary battery and method of preparing same
JP4667513B2 (en) Hydrogen storage alloy powder and surface treatment method thereof, negative electrode for alkaline storage battery, and alkaline storage battery
CN1248071A (en) Alkaline accumulator, hydrogen alloy electrode and production method thereof
JP2002050353A (en) Manufacturing method of non-aqueous electrolyte secondary battery and its negative electrode plate
JPH01163967A (en) Manufacture of zinc electrode for alkaline storage battery
JPH03152868A (en) Treatment of hydrogen storage alloy for alkaline second battery
JP5861099B2 (en) Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
JP2847791B2 (en) Manufacturing method of nickel cadmium storage battery
JP2800214B2 (en) Manufacturing method of nickel cadmium storage battery
JPS62139250A (en) Manufacture of lithium-aluminum alloy electrode
JP2770360B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JP4626130B2 (en) Nickel-hydrogen storage battery
KR100217786B1 (en) Manufacturing method of lead storage battery
JPS62139252A (en) Manufacture of lithium-aluminum alloy electrode
JPS63158750A (en) Zink electrode for alkaline storage battery
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP2773253B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPS58137964A (en) Alkaline zinc storage battery
JPH02216763A (en) Alkaline storage battery and manufacture thereof
JP2558759B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPH0568073B2 (en)