JPH01162757A - Formation of carbon film - Google Patents

Formation of carbon film

Info

Publication number
JPH01162757A
JPH01162757A JP32100487A JP32100487A JPH01162757A JP H01162757 A JPH01162757 A JP H01162757A JP 32100487 A JP32100487 A JP 32100487A JP 32100487 A JP32100487 A JP 32100487A JP H01162757 A JPH01162757 A JP H01162757A
Authority
JP
Japan
Prior art keywords
carbon
ions
base body
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32100487A
Other languages
Japanese (ja)
Other versions
JPH086171B2 (en
Inventor
Kiyoshi Ogata
潔 緒方
Yasunori Ando
靖典 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP32100487A priority Critical patent/JPH086171B2/en
Publication of JPH01162757A publication Critical patent/JPH01162757A/en
Publication of JPH086171B2 publication Critical patent/JPH086171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably form a carbon film with good adhesiveness by implanting ions of a material contg. carbon into a base body in a vacuum to form a carbide layer on the surface of the base body, then forming the carbon film thereon. CONSTITUTION:The ions 14 of the material contg. the carbon ions or carbon generated from a gas G by an ion source 12 are implanted onto the base body 2 on a holder 10 in a vacuum vessel (not shown). The energy of the implanted ions 14 is about 10eV-50keV and the quantity of the implantation is adequately about <=1X10<18>ions/cm<2>. The carbide layer 14 of the base body material is thereby formed on the surface layer part of the base body 2. The carbon 20 from a vapor source 18 is then deposited by evaporation on the surface of the base body 2 to form the carbon film 6 on the carbide layer 4 simultaneously or alternately with the implantation of the above-mentioned ions 14. This carbon film 6 has the good matching characteristic with the carbide layer 4. The carbon film is thereby formed stably on the base body 2 consisting of a stainless steel, etc., with good adhesiveness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、基体の表面に非晶質炭素膜やダイヤモンド
膜等の炭素系膜を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for forming a carbon-based film such as an amorphous carbon film or a diamond film on the surface of a substrate.

〔従来の技術〕[Conventional technology]

上記のような炭素系膜の形成は、従来は例えば、炭化水
素系や打機化合物系の反応ガスを用いたプラズマCVD
法、熱CVD法等のCVD法(化学気相成長法)、ある
いは蒸発炭素をイオン化し電界で加速して基体表面に蒸
着させるイオンブレーティング法によって行われていた
Formation of the carbon-based film as described above has conventionally been carried out by, for example, plasma CVD using a hydrocarbon-based or percussion compound-based reactive gas.
This has been done by a CVD method (chemical vapor deposition method) such as a thermal CVD method, or an ion blating method in which evaporated carbon is ionized and accelerated by an electric field to be deposited on the surface of a substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上記のようなCVD法やイオンブレーティング
法では、基体に到達する粒子のエネルギーが極めて小さ
い(例えば前者で高々100eV程度、後者で高々15
0eV程度)こと等が原因して、基体に対する上記のよ
うな炭素系膜の密着性が悪いという問題があった。
However, in the above-mentioned CVD method and ion blating method, the energy of particles reaching the substrate is extremely small (for example, the former has a maximum energy of about 100 eV, the latter a maximum of 15 eV).
There was a problem in that the adhesion of the above-mentioned carbon-based film to the substrate was poor due to factors such as (approximately 0 eV).

特に、ステンレス類の基体に対しては、ステンレスに対
する炭素系膜の整合性(合い性)が悪いこともあって、
上記のような炭素系膜を安定にかつ密着性良く形成する
ことは困難であった。
In particular, for stainless steel substrates, the compatibility of carbon-based films with stainless steel is poor.
It has been difficult to form the above carbon-based film stably and with good adhesion.

そこでこの発明は、ステンレスを含む様々な種類の基体
の表面に、非晶質炭素膜やダイヤモンド膜等の炭素系膜
を安定にかつ密着性良く形成することができる方法を提
供することを目的とする。
Therefore, the purpose of this invention is to provide a method that can stably form carbon-based films such as amorphous carbon films and diamond films with good adhesion on the surfaces of various types of substrates including stainless steel. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の炭素系膜の形成方法は、基体の表面に炭素系
膜を形成する際、真空中で当該基体に対して炭素イオン
および炭素を含む物質のイオンの内の少なくとも一種を
注入することによって当該基体の表層部に当該基体材料
の炭化層を予め形成し、次いでその上に前記炭素系膜を
形成することを特徴とする。
The method for forming a carbon-based film of the present invention includes injecting at least one of carbon ions and ions of a carbon-containing substance into the substrate in vacuum when forming a carbon-based film on the surface of a substrate. The method is characterized in that a carbonized layer of the base material is previously formed on the surface layer of the base, and then the carbon-based film is formed thereon.

〔作用〕[Effect]

イオン注入によって基体の表層部に当該基体材料の炭化
層を予め形成することによって、基体の表層部と後に形
成する炭素系膜とは共に炭素系の物質同士となり互いの
整合性が向上する。その結果、ステンレスを含む様々な
種類の基体の表面に、非晶質炭素膜やダイヤモンド膜等
の炭素系膜を安定にかつ密着性良く形成することができ
るようになる。
By previously forming a carbonized layer of the base material on the surface layer of the base by ion implantation, the surface layer of the base and the carbon-based film to be formed later become carbon-based substances, and their mutual consistency is improved. As a result, carbon-based films such as amorphous carbon films and diamond films can be stably formed with good adhesion on the surfaces of various types of substrates including stainless steel.

〔実施例〕〔Example〕

第1図は、この発明に係る方法を実施する装置の一例を
示す概略図である。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method according to the invention.

真空容器(図示省略)内に、例えばホルダ10に取り付
けられて基体2が収納されており、当該基体2に向けて
イオン源12が、更にこの例では・蒸発源18が配置さ
れている。
A substrate 2 is housed in a vacuum container (not shown), attached to, for example, a holder 10, and an ion source 12, and in this example, an evaporation source 18, are arranged facing the substrate 2.

イオン源12は、この例ではプラズマ閉じ込めに多極磁
場を用いるパケット型イオン源であり、供給されたガス
Gをイオン化して均一で大面積のイオン(イオンビーム
)14を基体2の表面に向けて加速することができるの
で、−度に大面積の処理が可能になる。
In this example, the ion source 12 is a packet type ion source that uses a multipolar magnetic field for plasma confinement, and ionizes the supplied gas G to direct uniform, large-area ions (ion beam) 14 toward the surface of the substrate 2. Since it is possible to accelerate the process by 2 degrees, it is possible to process a large area at once.

もっとも、このようなパケット型イオン源の代わりに、
カウフマン型等の他のタイプのイオン源を用いても良く
、あるいはイオン源から引き出され質量分析されたスポ
ット状のイオンビームを必要面積に亘リスキャンして照
射するようにしても良い。
However, instead of such a packet type ion source,
Other types of ion sources such as a Kauffman type ion source may be used, or a spot-shaped ion beam extracted from the ion source and subjected to mass analysis may be rescanned and irradiated over the required area.

蒸発源18は、後述する第2の工程にのみ用いるので、
これについては後述する。゛ 処理に際しては、真空容器内を例えば10−5〜10−
’To r r程度にまで排気した後、まず第1の工程
として、イオン源12にガスGとして例えば−酸化炭素
ガス、二酸化炭素ガス、炭化水素系ガス(例えばメタン
ガス、エタンガス等)、有機化合物系ガス(例えばアセ
トン等)等の組成上炭素を含むガスの少なくとも一種を
供給することによって、イオン源12からイオン14と
して、炭素イオンおよび炭素を含む物質のイオン(例え
ばCMイオン等)の内の少なくとも一種、即ちこれらの
単一イオンまたは混合イオンを引き出して、これを基体
2に注入する。このときの基体2に対するイオン14の
注入量は、例えばビームモニタ16によって計測するこ
とができる。
Since the evaporation source 18 is used only for the second step described below,
This will be discussed later.゛During the treatment, the inside of the vacuum container should be kept at a temperature of 10-5 to 10-5, for example.
After evacuation to about Torr, in the first step, the ion source 12 is supplied with a gas G such as carbon oxide gas, carbon dioxide gas, hydrocarbon gas (e.g. methane gas, ethane gas, etc.), organic compound gas, etc. By supplying at least one type of gas containing carbon in its composition such as a gas (for example, acetone, etc.), at least one of carbon ions and ions of a substance containing carbon (for example, CM ions, etc.) is supplied as ions 14 from the ion source 12. One type, ie a single ion or a mixture of these ions, is extracted and implanted into the substrate 2. The amount of ions 14 implanted into the substrate 2 at this time can be measured by, for example, the beam monitor 16.

それによって、例えば第2図に示すように、基体2の表
層部に当該基体材料の炭化層4が形成される。
As a result, a carbonized layer 4 of the base material is formed on the surface layer of the base 2, as shown in FIG. 2, for example.

その場合、注入イオン14のエネルギーは、基体2の種
類と当該イオン14の基体2内飛程により関係付けられ
るため特に限定されるものではないが、下限はイオン源
2からイオン14を引き出せる限度から現実的には10
eV程度以上になる。
In that case, the energy of the implanted ions 14 is not particularly limited as it is related to the type of the substrate 2 and the range of the ions 14 within the substrate 2, but the lower limit is from the limit that can extract the ions 14 from the ion source 2. Realistically 10
It becomes about eV or more.

また、上限は膜中または基板における損傷を軽減するた
めに、通常50KeV以下が好ましいが、50KeV以
上でも炭化層の形成は可能で、この場合には必要に応じ
てアニール処理をしても良い。
Further, the upper limit is usually preferably 50 KeV or less in order to reduce damage in the film or the substrate, but it is possible to form a carbonized layer even at 50 KeV or more, and in this case, annealing treatment may be performed as necessary.

また、基体2に対するイオン14の注入量も、基体2の
種類により炭化層4の形成状態が異なるため特に限定さ
れるものではないが、イオン注入による基体2内の損傷
を防止するため、例えば1×10′1イオン/ Cl1
1程度以下にするのが好ましい。
Further, the amount of ions 14 implanted into the base 2 is not particularly limited as the formation state of the carbonized layer 4 differs depending on the type of the base 2, but in order to prevent damage within the base 2 due to ion implantation, for example, the amount of ions 14 implanted into the base 2 is ×10′1 ion/Cl1
It is preferable to set it to about 1 or less.

また、イオン14の注入時は、それによる基体2の熱的
損傷を防止する観点から基体2の種類によってはそれを
冷却しても良く、あるいは炭化層が拡散し易くなる観点
から基体2をその変態温度以下で加熱しても良い。また
注入後、基体2に対して注入イオンと同種のガス中で損
傷回復のためにアニール処理を施しても良い。
In addition, when implanting the ions 14, depending on the type of the substrate 2, it may be cooled to prevent thermal damage to the substrate 2, or the substrate 2 may be cooled in order to facilitate diffusion of the carbonized layer. Heating may be performed below the transformation temperature. Further, after the implantation, the substrate 2 may be annealed in a gas of the same type as the implanted ions for damage recovery.

そして上記のようにして基体2の表層部に炭化層4を予
め形成した後、次いで第2の工程として、その上に非晶
質炭素膜やダイヤモンド膜等の炭素系膜6(第2図参照
)を形成する。
After the carbonized layer 4 is previously formed on the surface layer of the base 2 as described above, a carbon-based film 6 such as an amorphous carbon film or a diamond film is applied thereon as a second step (see FIG. 2). ) to form.

この炭素系膜6の形成は、前述したようなCVD法、イ
オンブレーティング法等の既存技術を用いて行っても良
いし、次に述べるような真空蒸着とイオン照射を併用す
る方法を用いて行っても良い。
The carbon-based film 6 may be formed using existing techniques such as the CVD method and ion blating method as described above, or may be performed using a method using a combination of vacuum evaporation and ion irradiation as described below. You can go.

いずれの方法によるにしても、基体20表層部と後に形
成する炭素系膜6とは共に炭素系の物質同士となるため
、互いの整合性が向上する。その結果、基体2に対する
炭素系H16の密着性が向上すると共に、様々な種類の
基体2に対して、例えば従来は非晶質炭素膜やダイヤモ
ンド膜等の炭素系膜6の形成が困難とされていたステン
レスのような基体2に対しても、これらの膜を安定にか
つ密着性良く形成することができるようになる。
Regardless of which method is used, the surface layer portion of the base 20 and the carbon-based film 6 to be formed later are both carbon-based substances, so that their mutual consistency is improved. As a result, the adhesion of the carbon-based H16 to the substrate 2 is improved, and it is difficult to form a carbon-based film 6 such as an amorphous carbon film or a diamond film on various types of substrates 2, for example. These films can now be formed stably and with good adhesion even on the substrate 2, such as stainless steel, which has been previously used.

次に、真空蒸着とイオン照射の併用によって前述した炭
素系膜6を形成する方法の例を説明する。
Next, an example of a method for forming the carbon-based film 6 described above using a combination of vacuum deposition and ion irradiation will be described.

この場合は、上記イオン源12と共に蒸発源1日を用い
る。
In this case, the ion source 12 and the evaporation source are used for one day.

蒸発源18は、例えば電子ビーム蒸発源であり、炭素2
0を蒸発させてそれを基体2の表面に蒸着させることが
できるが、他のタイプの蒸発源を用いても良い。22は
、基体2上に蒸着させる膜の膜厚等を計測する膜厚モニ
タである。
The evaporation source 18 is, for example, an electron beam evaporation source, and is a carbon 2
0 can be evaporated and deposited onto the surface of the substrate 2, but other types of evaporation sources may be used. 22 is a film thickness monitor that measures the film thickness etc. of the film deposited on the substrate 2.

またイオン源12に供給するガスGとしては、この場合
は前述したような炭化水素系ガス、有機化合物系ガスお
よび不活性ガス(例えばヘリウムガス、アルゴンガス等
)の内の少な(とも一種、即ちこれらの単一ガスまたは
混合ガスを用いる。
In this case, the gas G supplied to the ion source 12 is one of the above-mentioned hydrocarbon gases, organic compound gases, and inert gases (for example, helium gas, argon gas, etc.). These single gases or mixed gases are used.

これは、炭化水素系ガスや有機化合物系ガスを用いれば
、蒸着炭素にそれと同系の、即ち炭素系のイオン14が
照射されるため、それによって蒸着炭素をより励起し易
くなるからであり、不活性ガスを用いれば、イオン14
として照射される不活性元素は反応性が乏しいため、不
純物混入の無い良質の炭素系膜6が得られるからである
。また、ダイヤモンド形成を促進するため、上記のよう
なガスにケイ素系ガスおよび水素ガスの内の少な(とも
一方を混合しても良い。
This is because if a hydrocarbon-based gas or an organic compound-based gas is used, the vapor-deposited carbon is irradiated with ions 14 of the same type, that is, carbon-based, which makes it easier to excite the vapor-deposited carbon. If active gas is used, ions 14
This is because the inert element irradiated as a carbon-based film 6 has poor reactivity, so that a high-quality carbon-based film 6 without contamination with impurities can be obtained. Further, in order to promote diamond formation, a small amount of silicon-based gas and hydrogen gas may be mixed with the above-mentioned gases.

炭素系膜6の形成に際しては、この例では前記第1の工
程に引き続いて同一の真空容器内で、蒸発源18からの
炭素20を基体2上に(詳しくはその表層部の炭化層1
4上に)蒸着させるのと同時に、またはそれと交互に、
イオン源12からのイオン14を基体2に向けて連続的
にまたは間欠的に照射する。
In forming the carbon-based film 6, in this example, following the first step, carbon 20 from the evaporation source 18 is applied onto the substrate 2 (more specifically, the carbonized layer 1 on the surface layer thereof is
4) at the same time as, or alternatively,
Ions 14 from an ion source 12 are irradiated toward the substrate 2 continuously or intermittently.

これによって、例えば第2図に示すように基体2の表面
に、即ちその表層部の炭化114の上に、非晶質炭素膜
やダイヤモンド膜等の炭素系膜6が形成される。これは
、イオン14の照射によって、基体2に蒸着された炭素
を非晶質化したり、基体2に薄着されたグラファイト構
造の炭素に核形成エネルギーを供給してそれをダイヤモ
ンドに結晶成長させたりすることができるからである。
As a result, as shown in FIG. 2, for example, a carbon-based film 6 such as an amorphous carbon film or a diamond film is formed on the surface of the substrate 2, that is, on the carbonized surface layer 114 thereof. This is done by irradiating the ions 14 to amorphize the carbon deposited on the base 2 or supplying nucleation energy to the graphite-structured carbon thinly deposited on the base 2 to cause it to crystallize into diamond. This is because it is possible.

その場合、炭素系膜6の膜質、例えば当該膜中における
ダイヤモンド結晶と非晶質炭素との割合等は、基体2に
入射させるイオン/炭素の割合、イオン源12に供給す
る上記のような各種ガスの混合比、イオン14のエネル
ギー等の条件によって制’+I11することができる。
In that case, the film quality of the carbon-based film 6, such as the ratio of diamond crystals to amorphous carbon in the film, etc., is determined by the ion/carbon ratio incident on the substrate 2, the above-mentioned various types supplied to the ion source 12, etc. It can be controlled by conditions such as the gas mixture ratio and the energy of the ions 14.

また、この場合のイオン14のエネルギーは、その照射
によって炭素系膜6の内部にダメージ(欠陥部)が発生
するを極力少なくする観点から、10KeV程度以下の
低エネルギー、より好ましくは数百eV程度以下にする
のが良い。またその下限は、特に限定されるものではな
いが、前記の場合と同様に現実的には10eV程度以上
になる。
In addition, the energy of the ions 14 in this case is low energy of about 10 KeV or less, more preferably about several hundred eV, from the viewpoint of minimizing damage (defects) generated inside the carbon-based film 6 due to the irradiation. It is better to do the following. Although the lower limit is not particularly limited, it is realistically about 10 eV or more, as in the case described above.

また、この場合も膜形成時には、必要に応じて基体2を
加熱あるいは冷却しても良く、加熱すれば熱励起によっ
てダイヤモンド形成の反応を促進することができると共
に、炭素系膜6中に発生する欠陥部を成膜中に除去する
ことができ、また冷却すればイオン14の照射による基
体2の熱的損傷を防止することができる。
Also in this case, when forming the film, the substrate 2 may be heated or cooled as necessary.Heating can promote the reaction of diamond formation by thermal excitation, and the diamond formation reaction can be promoted in the carbon-based film 6. Defects can be removed during film formation, and cooling can prevent thermal damage to the substrate 2 due to irradiation with the ions 14.

上記方法によって炭素系膜6を形成する場合の特徴を列
挙すれば次の通りである。
The characteristics of forming the carbon-based film 6 by the above method are listed below.

■ CVD法と違って熱励起を主体としていないため、
低温処理が可能であり、その結果基体2として使用でき
る材質の範囲が大幅に広がる。
■ Unlike the CVD method, it does not mainly rely on thermal excitation, so
Low-temperature processing is possible, and as a result, the range of materials that can be used as the substrate 2 is greatly expanded.

■ イオン14の押し込み(ノックオン)作用によって
基体2と炭素系1116との界面付近に両者の混合層が
形成されることが期待でき、これによって基体2に対す
る炭素系膜6の密着性が一層良(なる。
■ It can be expected that a mixed layer of the base 2 and the carbon-based film 6 will be formed near the interface between the base 2 and the carbon-based film 1116 due to the knock-on action of the ions 14, thereby improving the adhesion of the carbon-based film 6 to the base 2 ( Become.

■ 炭素20の蒸着を併用するため、CDV法に比べて
短時間で大きな膜厚が得られ、炭素系膜6の形成効率が
良い。
(2) Since vapor deposition of carbon 20 is also used, a larger film thickness can be obtained in a shorter time than with the CDV method, and the carbon-based film 6 can be formed with good efficiency.

■ 同一の真空容器内で炭化層4の形成と連続して炭素
系膜6を形成することができるため、大気に汚染される
心配が全く無く、しかも処理効率も良い。
(2) Since the carbon-based film 6 can be formed in succession with the formation of the carbonized layer 4 in the same vacuum container, there is no fear of atmospheric contamination, and the processing efficiency is also good.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、イオン注入によって基
体の表層部に当該基体材料の炭化層を予め形成するよう
にしたので、ステンレスを含む様々な種類の基体の表面
に、非晶質炭素膜やダイヤモンド膜等の炭素系膜を安定
にかつ密着性良く形成することができるようになる。
As described above, according to the present invention, a carbonized layer of the base material is formed in advance on the surface layer of the base by ion implantation, so that an amorphous carbon film can be formed on the surface of various types of bases including stainless steel. It becomes possible to form carbon-based films such as carbon films and diamond films stably and with good adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る方法を実施する装置の一例を
示す概略図である。第2図は、炭素系膜等が形成された
基体の表面付近を部分的に示す概略断面図である。 216.基体、4.・、炭化層、6・・・炭素系膜、1
2・・・イオン源、14・・・イオン。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method according to the invention. FIG. 2 is a schematic cross-sectional view partially showing the vicinity of the surface of the substrate on which the carbon-based film and the like are formed. 216. Substrate, 4.・, carbonized layer, 6... carbon-based film, 1
2...Ion source, 14...Ion.

Claims (1)

【特許請求の範囲】[Claims] (1)基体の表面に炭素系膜を形成する際、真空中で当
該基体に対して炭素イオンおよび炭素を含む物質のイオ
ンの内の少なくとも一種を注入することによって当該基
体の表層部に当該基体材料の炭化層を予め形成し、次い
でその上に前記炭素系膜を形成することを特徴とする炭
素系膜の形成方法。
(1) When forming a carbon-based film on the surface of a substrate, at least one of carbon ions and ions of a substance containing carbon is injected into the surface of the substrate in a vacuum. A method for forming a carbon-based film, comprising forming a carbonized layer of a material in advance, and then forming the carbon-based film thereon.
JP32100487A 1987-12-18 1987-12-18 Method for forming carbon-based film Expired - Fee Related JPH086171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32100487A JPH086171B2 (en) 1987-12-18 1987-12-18 Method for forming carbon-based film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32100487A JPH086171B2 (en) 1987-12-18 1987-12-18 Method for forming carbon-based film

Publications (2)

Publication Number Publication Date
JPH01162757A true JPH01162757A (en) 1989-06-27
JPH086171B2 JPH086171B2 (en) 1996-01-24

Family

ID=18127713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32100487A Expired - Fee Related JPH086171B2 (en) 1987-12-18 1987-12-18 Method for forming carbon-based film

Country Status (1)

Country Link
JP (1) JPH086171B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204210A (en) * 1990-12-07 1993-04-20 Xerox Corporation Method for the direct patterning of diamond films
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701713B2 (en) * 2005-05-18 2015-04-15 トヨタ自動車株式会社 Carburized metal material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
US5204210A (en) * 1990-12-07 1993-04-20 Xerox Corporation Method for the direct patterning of diamond films

Also Published As

Publication number Publication date
JPH086171B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US5662965A (en) Method of depositing crystalline carbon-based thin films
Lifshitz et al. The influence of substrate temperature during ion beam deposition on the diamond-like or graphitic nature of carbon films
JPH11504753A (en) Carbon nitride cold cathode
JPH01162757A (en) Formation of carbon film
EP0280198B1 (en) Method of forming diamond film
JP3165536B2 (en) Method and apparatus for forming semiconductor diamond
JPH0555194A (en) Apparatus for forming thin film
JPH05213695A (en) Method for depositing thin diamond film
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JP3550665B2 (en) Method for producing silicon carbide thin film
JPS63206388A (en) Production of diamond thin film
JPS63206390A (en) Production of diamond thin film
JP2769404B2 (en) Method for forming carbon-nitrogen compound film
JPS63206387A (en) Production of diamond thin film
JPS63206389A (en) Production of diamond thin film
JP2791034B2 (en) Carbon ion beam generation method
JP2608957B2 (en) Method for manufacturing substrate for diamond thin film deposition
JPS6315346B2 (en)
JPS6225249B2 (en)
JPS63262457A (en) Preparation of boron nitride film
JPS6293366A (en) Manufacture of boron nitride film
JP3189400B2 (en) Method of forming polycrystalline silicon film
JPS62256794A (en) Formation of thin diamond film
JPH05345696A (en) Production of diamond film
JPH0524999A (en) Production of silicon carbide thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees