JPS63206389A - Production of diamond thin film - Google Patents

Production of diamond thin film

Info

Publication number
JPS63206389A
JPS63206389A JP3757987A JP3757987A JPS63206389A JP S63206389 A JPS63206389 A JP S63206389A JP 3757987 A JP3757987 A JP 3757987A JP 3757987 A JP3757987 A JP 3757987A JP S63206389 A JPS63206389 A JP S63206389A
Authority
JP
Japan
Prior art keywords
carbon
substrate
thin film
ion
diamond thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3757987A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogata
潔 緒方
Yasunori Ando
靖典 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3757987A priority Critical patent/JPS63206389A/en
Priority to DE8888102388T priority patent/DE3874165T2/en
Priority to EP88102388A priority patent/EP0280198B1/en
Publication of JPS63206389A publication Critical patent/JPS63206389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form the titled thin film having excellent adhesivity and high quality, on a substrate in high efficiency, suppressing deposition of graphite, by carrying out carbon deposition in combination with carbon ion irradiation in vacuum. CONSTITUTION:A substrate 4 is attached to a holder 2 placed in a vacuum chamber evacuated to a vacuum of about 10<-5>-10<-7>Torr. Carbon 12 is heated and evaporated from an evaporation source 8 such as electron beam having an evaporation material 10 such as carbon pellet and is deposited on the substrate 4. Simultaneous or alternate to the carbon deposition process, ion beam 22 containing carbon ion and extracted from an ion source 20 is subjected to mass spectrum analysis with a mass analyzer 24. A low energy carbon ion beam 26 having an energy of <=10keV is optionally scanned along XY direction with a scanning electrode 28, etc., to expand the beam area and irradiated to the substrate 4 at an ion/carbon ratio of 0.1-100% in terms of particle ratio (compositional ratio) based on the deposited carbon 12. The titled thin film 6 can be formed on the substrate 4 by this process while monitoring the film thickness with a thickness monitor 14. The adhesivity of the thin film is improved by the presence of a mixed layer 5 composed of the constituent substances of the substrate 4 and of the thin film 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、真空蒸着とイオンビーム照射との併用によ
って、基体上にダイヤモンド薄膜を作製する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for producing a diamond thin film on a substrate by a combination of vacuum evaporation and ion beam irradiation.

〔従来の技′術〕[Conventional technology]

従来、基体上にダイヤモンド薄膜を作製(合成)する手
段としては、炭化水素や有機化合物系のガスを用いたプ
ラズマCVD法、光CVD法等の化学気相成長法が採ら
れていた。
Conventionally, as means for producing (synthesizing) a diamond thin film on a substrate, a chemical vapor deposition method such as a plasma CVD method using a hydrocarbon or organic compound gas or a photoCVD method has been adopted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが上記のような従来の方法においては、■炭化水
素や有機化合物系のガスではダイヤモンドの結晶成長と
同時にグラファイトの析出が生じる、■基体およびガス
雰囲気を高温(例えば800℃〜1000℃程度)に加
熱して処理する必要があるため、基体として使用できる
材質が大幅に限定される、等の問題があった。
However, in the conventional methods described above, (1) graphite precipitation occurs at the same time as diamond crystal growth occurs in hydrocarbon or organic compound gases, and (2) the substrate and gas atmosphere are heated to high temperatures (e.g., about 800°C to 1000°C). Since it is necessary to heat and process, there are problems such as the materials that can be used as the substrate are greatly limited.

そこでこの発明は、このような問題点を解決したダイヤ
モンド薄膜の作製方法を提供することを主たる目的とす
る。
Therefore, the main object of the present invention is to provide a method for manufacturing a diamond thin film that solves these problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のダイヤモンド薄膜の作製方法は、真空中で基
体に対して、炭素の蒸着と、炭素イオンビームの照射と
を行うことによって、前記基体上にダイヤモンド薄膜を
作製することを特徴とする。
The method for producing a diamond thin film of the present invention is characterized in that a diamond thin film is produced on a substrate by vapor depositing carbon and irradiating the substrate with a carbon ion beam in a vacuum.

〔作用〕[Effect]

基体に炭素の蒸着と炭素イオンビームの照射とを行うと
、照射炭素イオンが、基体に蒸着されたグラファイト構
造の炭素をダイヤモンドに結晶成長させるための核形成
エネルギー供給源として作用し、これによって基体上に
ダイヤモンド薄膜が作製される。
When the substrate is evaporated with carbon and irradiated with a carbon ion beam, the irradiated carbon ions act as a nucleation energy source to cause the graphite-structured carbon deposited on the substrate to grow into diamond crystals. A diamond thin film is fabricated on top.

〔実施例〕〔Example〕

第1図は、この発明に係る方法を実施する装置の一例を
示す概略図である。真空容器(図示省略)内に、例えば
ホルダ2に取り付けられて基体(例えば基板)4が収納
されており、当該基体4に向けて蒸発源8並びにイオン
源20、質量分析器24および走査電極28を備えるビ
ームラインが配置されている。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method according to the invention. A substrate (for example, a substrate) 4 is housed in a vacuum container (not shown) attached to, for example, a holder 2, and an evaporation source 8, an ion source 20, a mass spectrometer 24, and a scanning electrode 28 are directed toward the substrate 4. A beamline with a

蒸発源8は、図示例のものは電子ビーム窯発源であり、
蒸発材料10として炭素ベレットを有しており、それを
電子ビームによって加熱蒸気化して得られる炭素12を
基体4の表面に蒸着させることができる。もっとも、炭
素は昇華性であるため電子ビーム蒸発源では膜形成速度
が遅い場合もあり、その場合は蒸発源8を、炭素から成
るターゲットを不活性ガスイオンの照射やマグネトロン
放電によってスパッタさせる方式の蒸発源、あるいは炭
素から成るカソードにおける真空アーク放電によって炭
素を蒸発させる方式の蒸発源等としても良く、更には以
上のものを併用しても良い。
The evaporation source 8 in the illustrated example is an electron beam kiln source,
A carbon pellet is used as the evaporation material 10, and carbon 12 obtained by heating and vaporizing it with an electron beam can be deposited on the surface of the base 4. However, since carbon is sublimable, the film formation rate may be slow when using an electron beam evaporation source. It may be an evaporation source, or an evaporation source of a type in which carbon is evaporated by vacuum arc discharge at a cathode made of carbon, or the above may be used in combination.

イオン源20も特定の方式のものに限定されるものでは
なく、そこから炭素イオンを含むイオンビーム22を所
定のエネルギーで引出し、そしてそれを質量分析器24
等によって質量分析して炭素イオンビーム26を抽出し
、それを必要に応じて走査電極28等によってXY方向
に走査して面積を拡大して、基体4の表面に向けて照射
するようにしている。尚、14は基体4上に作製される
薄膜の膜厚モニタである。
The ion source 20 is also not limited to a specific type, and an ion beam 22 containing carbon ions is extracted from it at a predetermined energy, and then sent to a mass spectrometer 24.
The carbon ion beam 26 is extracted by mass spectrometry using a scanning electrode 28 or the like, and is scanned in the X and Y directions using a scanning electrode 28 or the like to enlarge the area and irradiate it toward the surface of the base 4. . Note that 14 is a film thickness monitor for a thin film produced on the substrate 4.

膜作製に際しては、真空容器内を例えば10−’〜10
−’To r r程度にまで排気した後、蒸発源8から
の炭素12を基体4上に蒸着させるのと同時に、または
それと交互に、上記のように質量分析された炭素イオン
ビーム26を基体4に向けて照射する。その際、照射炭
素イオンの蒸着炭素12に対する粒子比(組成比)イオ
ン/炭素は、0゜1%〜100%程度の範囲内にするの
が好ましく、具体的にはこの範囲内で炭素イオンビーム
26のエネルギーおよび炭素12の蒸着速度に応じて適
切な値が選択される。
When preparing the film, the inside of the vacuum container should be heated at a temperature of, for example, 10-' to 10-10
After evacuation to about -' Tor r, the carbon ion beam 26 subjected to mass spectrometry as described above is applied to the substrate 4 at the same time as or alternately with the carbon 12 from the evaporation source 8 being evaporated onto the substrate 4. irradiate towards. At that time, the particle ratio (composition ratio) ions/carbon of the irradiated carbon ions to the deposited carbon 12 is preferably within the range of about 0.1% to 100%, and specifically within this range, the carbon ion beam Appropriate values are selected depending on the energy of 26 and the deposition rate of carbon 12.

上記処理の結果、照射炭素イオンが、基体4上に蒸着さ
れたグラファイト構造の炭素12をダイヤモンドに結晶
成長させるための核形成エネルギー供給源として作用し
、これによって例えば第2図に示すように、基体4の表
面にダイヤモンド薄膜6が作製される。
As a result of the above treatment, the irradiated carbon ions act as a nucleation energy source for crystallizing the graphite-structured carbon 12 deposited on the substrate 4 into diamond, thereby e.g. A diamond thin film 6 is produced on the surface of the base 4.

その場合、炭素イオンビーム26のエネルギーは、その
照射によってダイヤモンド薄膜6の内部にダメージ(欠
陥部)が発生するのを極力少なくする観点から、10K
eV程度以下の低エネルギー、より好ましくは数百eV
程度以下にするのが良く、またその下限は特に、ないが
、イオン源20からイオンビーム22を引出せる限度か
ら、現実的には10eV程度以上になる。
In that case, the energy of the carbon ion beam 26 is set to 10K from the viewpoint of minimizing damage (defects) caused inside the diamond thin film 6 by the irradiation.
Low energy of about eV or less, more preferably several hundred eV
Although there is no particular lower limit, it is realistically about 10 eV or more, as it is the limit at which the ion beam 22 can be extracted from the ion source 20.

また、基体4に対する炭素イオンビーム26の照射角度
(基体4の表面における垂線と炭素イオンビーム26と
の間の角度)は、O°〜60’程度の範囲内にするのが
好ましく、そのようにすれば、炭素イオンビーム26の
照射に伴う蒸着炭素12のスパッタを小さく抑えること
ができる。
Further, the irradiation angle of the carbon ion beam 26 to the substrate 4 (the angle between the perpendicular to the surface of the substrate 4 and the carbon ion beam 26) is preferably within the range of about 0° to 60'; In this way, sputtering of the deposited carbon 12 due to irradiation with the carbon ion beam 26 can be suppressed.

また、膜作製時には、必要に応じて基体4を加熱手段(
図示省略)によって数百℃程度まで加熱、あるいは冷却
手段(図示省略)によって冷却しても良く、加熱すれば
熱励起によってダイヤモンド形成の反応を促進すること
ができると共に、ダイヤモンド薄膜6中に発生する欠陥
部を成膜中に除去することができ、また冷却すれば基体
4が熱に弱い場合にその保護を図ることができる。
In addition, during film production, the substrate 4 may be heated by heating means (
It may be heated to about several hundred degrees Celsius by heating (not shown) or cooled by a cooling means (not shown).Heating can promote the diamond formation reaction by thermal excitation, and the diamond formation reaction can be generated in the diamond thin film 6. Defects can be removed during film formation, and cooling can protect the base 4 if it is sensitive to heat.

上記のような製膜方法の特徴を列挙すれば次の通りであ
る。
The characteristics of the film forming method as described above are listed below.

■ 照射炭素イオンのエネルギーによってグラファイト
の析出を抑制でき、均質なダイヤモンド薄膜6が得られ
る。特にこの方法では、蒸着炭素12にそれと同質の炭
素イオンビーム26を照射するため、蒸着炭素12の励
起が容易でダイヤモンド形成の効率が良く、しかも不純
物混入のない高品質のダイヤモンド薄膜6が得られる。
(2) Precipitation of graphite can be suppressed by the energy of the irradiated carbon ions, and a homogeneous diamond thin film 6 can be obtained. In particular, in this method, the vapor deposited carbon 12 is irradiated with a carbon ion beam 26 of the same quality as the carbon ion beam 26, so that the vapor deposited carbon 12 can be excited easily, diamond formation is efficient, and a high quality diamond thin film 6 without contamination with impurities can be obtained. .

■ 熱励起を主体としていないため低温処理が可能であ
り、その結果基体4として使用できる材質の範囲が大幅
に広がる。
(2) Low-temperature processing is possible because thermal excitation is not the main component, and as a result, the range of materials that can be used as the substrate 4 is greatly expanded.

■ 従来の方法においては、気相中で生じるイオンの運
動エネルギーが小さいため、基体に対するダイヤモンド
薄膜の密着性が悪く剥離し易いという問題もあったが、
この例の方法では、炭素イオンビーム26のエネルギー
を前述した範囲内である程度大きくすれば、炭素イオン
の押込み(ノックオン)作用によって例えば第2図に示
すように基体4とダイヤモンド薄膜6との界面付近に両
者の構成物質から成る混合層(ミキシング層)5が形成
され、これが言わば模のような作用をするので、基体4
に対するダイヤモンド薄膜6の密着性が良く剥離しにく
くなる。
■ In the conventional method, the kinetic energy of the ions generated in the gas phase is small, so there was a problem that the adhesion of the diamond thin film to the substrate was poor and it was easy to peel off.
In the method of this example, if the energy of the carbon ion beam 26 is increased to a certain extent within the above-mentioned range, the knock-on effect of the carbon ions will cause the area near the interface between the substrate 4 and the diamond thin film 6 to appear, for example, as shown in FIG. A mixed layer 5 consisting of the constituent substances of the two is formed on the substrate 4, which acts like a model.
The adhesion of the diamond thin film 6 to the diamond film is good and it becomes difficult to peel off.

■ 炭素12の薄着と炭素イオンビーム26の照射とを
併用していて両者が共に膜形成に寄与するため、従来の
方法に比べて短時間で大きな膜厚が得られ、ダイヤモン
ド薄膜6の作製効率が良い。
■ Since thin deposition of carbon-12 and irradiation with carbon ion beam 26 are used together, and both contribute to film formation, a larger film thickness can be obtained in a shorter time than with conventional methods, increasing the production efficiency of diamond thin film 6. is good.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、グラファイトの析出を
抑制すると共に不純物混入のない高品質のダイヤモンド
薄膜を効率良く作製することができる。しかも低温処理
が可能であるため、基体として使用できる材質の範囲が
大幅に広がる。またダイヤモンド薄膜の基体に対する密
着性を向上させることも可能である。
As described above, according to the present invention, it is possible to efficiently produce a high quality diamond thin film that suppresses the precipitation of graphite and is free of impurities. Moreover, since low-temperature treatment is possible, the range of materials that can be used as a substrate is greatly expanded. It is also possible to improve the adhesion of the diamond thin film to the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る方法を実施する装置の一例を
示す概略図である。第2図は、この発明に係る方法によ
ってダイヤモンド薄膜が作製された基体の一例を拡大し
て部分的に示す概略断面図である。 4・・・基体、6・・・ダイヤモンド薄膜、88.。 蒸発源、12・・・炭素、20・・・イオン源、24・
・・質量分析器、26・・・炭素イオンビーム。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method according to the invention. FIG. 2 is a schematic cross-sectional view partially showing an enlarged example of a substrate on which a diamond thin film is formed by the method according to the present invention. 4... Substrate, 6... Diamond thin film, 88. . Evaporation source, 12... Carbon, 20... Ion source, 24.
...Mass spectrometer, 26...Carbon ion beam.

Claims (1)

【特許請求の範囲】[Claims] (1)真空中で基体に対して、炭素の蒸着と、炭素イオ
ンビームの照射とを行うことによって、前記基体上にダ
イヤモンド薄膜を作製することを特徴とするダイヤモン
ド薄膜の作製方法。
(1) A method for producing a diamond thin film, which comprises producing a diamond thin film on a substrate by vapor depositing carbon and irradiating the substrate with a carbon ion beam in a vacuum.
JP3757987A 1987-02-19 1987-02-19 Production of diamond thin film Pending JPS63206389A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3757987A JPS63206389A (en) 1987-02-19 1987-02-19 Production of diamond thin film
DE8888102388T DE3874165T2 (en) 1987-02-19 1988-02-18 METHOD FOR PRODUCING A DIAMOND LAYER.
EP88102388A EP0280198B1 (en) 1987-02-19 1988-02-18 Method of forming diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3757987A JPS63206389A (en) 1987-02-19 1987-02-19 Production of diamond thin film

Publications (1)

Publication Number Publication Date
JPS63206389A true JPS63206389A (en) 1988-08-25

Family

ID=12501447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3757987A Pending JPS63206389A (en) 1987-02-19 1987-02-19 Production of diamond thin film

Country Status (1)

Country Link
JP (1) JPS63206389A (en)

Similar Documents

Publication Publication Date Title
EP0245688B1 (en) Method of forming diamond film
JPS6223450B2 (en)
CN111139526A (en) Method for obtaining single crystal boron nitride film by ion beam sputtering deposition
JPS63206389A (en) Production of diamond thin film
EP0280198B1 (en) Method of forming diamond film
JPS63206387A (en) Production of diamond thin film
JPH04242933A (en) Formation of oxide film
JPS63206390A (en) Production of diamond thin film
JPH01162757A (en) Formation of carbon film
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JPS63206388A (en) Production of diamond thin film
JPS6293366A (en) Manufacture of boron nitride film
JPS63215596A (en) Production of diamond film or diamond like film
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
JPS62256794A (en) Formation of thin diamond film
JPS63129099A (en) Production of diamond thin film or diamondlike thin film
JPS61201693A (en) Production of diamond
JP3116093B1 (en) Method for producing TiO single crystal thin film
JPH01194373A (en) Thermoelectrical conversion material
JPS63262457A (en) Preparation of boron nitride film
Luches et al. Laser reactive ablation deposition of carbon nitride thin films
JPS62232180A (en) Superconducting material
JPS63250457A (en) Preparation of thin diamond film
JPS63254727A (en) X-ray exposure mask and manufacture thereof
JPH01145313A (en) Diamond film