JPH01161916A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH01161916A
JPH01161916A JP62320416A JP32041687A JPH01161916A JP H01161916 A JPH01161916 A JP H01161916A JP 62320416 A JP62320416 A JP 62320416A JP 32041687 A JP32041687 A JP 32041687A JP H01161916 A JPH01161916 A JP H01161916A
Authority
JP
Japan
Prior art keywords
output
current control
current
control circuit
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320416A
Other languages
Japanese (ja)
Inventor
Kazutaka Nogami
一孝 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62320416A priority Critical patent/JPH01161916A/en
Priority to US07/256,664 priority patent/US4894561A/en
Publication of JPH01161916A publication Critical patent/JPH01161916A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/245Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Logic Circuits (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To always attain high speed output by setting a circuit current characteristic of each current control circuit inversely corresponding to the power voltage dependancy and the temperature dependancy of the driving capability of a P and N-channel MOS transistor(TR). CONSTITUTION:The current with an output P-channel MOS TR Q1 turned on is controlled bi the current of a 1st current control circuit 1 when an output of a 1st logic circuit controlling the gate potential of the said TR changes to a ground potential. Similarly, the current with an output N-channel MOS TR Q2 turned on is controlled by the current of a 2nd current control circuit 2 when an output of a 2nd logic circuit controlling the gate potential of the N-channel TR changes to a power potential. Thus, it is possible to allow the current control circuits 1, 2 to control so that the power voltage dependancy and the temperature dependancy of the output MOS TRs are cancelled. Then the output waveform is immune to the change in the power voltage and temperature and output noise suppression and high speed output are attained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、MOS型(絶縁ゲート屋)の半導体集積回路
に係り、特に出力回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a MOS type (insulated gate type) semiconductor integrated circuit, and particularly to an output circuit.

(従来の技術) この種の従来の出力回路を第11図に示している。ここ
で、QIIQ2は出力用のPチャネル、NチャネルMO
Sトランジスタ、INIは上記Pチャネルトランジスタ
Qノのゲート電圧PDR 1 k制御するインバータで
あり、Pチャネルト2ンノスタQ3とNチャネルトラン
ジスタQ4とからなる。
(Prior Art) A conventional output circuit of this type is shown in FIG. Here, QIIQ2 is a P channel for output, an N channel MO
The S transistor INI is an inverter that controls the gate voltage PDR 1 k of the P channel transistor Q, and is composed of a P channel transistor Q3 and an N channel transistor Q4.

1N2は前記NチャネルトランノスタQ2のゲート電圧
NDR 1を制御するインバータであり,Pチャネルト
ランジスタQ5とNチャネルトランジスタロ6とからな
る。
1N2 is an inverter that controls the gate voltage NDR1 of the N-channel transistor Q2, and is composed of a P-channel transistor Q5 and an N-channel transistor R6.

上記出力回路において、出力電圧OUTとして高レベル
1H”を出力するときは、前段の出力制御回路からイン
バータINI,IN2への入力信号PDR 。
In the above output circuit, when outputting a high level 1H'' as the output voltage OUT, the input signal PDR is input from the output control circuit in the previous stage to the inverters INI and IN2.

NIlyRがそれぞれ低レベル″″L”→″″H’″H
’レベル、これに応じてy−ト電圧PDR J 、 N
DR 1がそれぞれ”H′→”L”に変わり、出力用ト
ランiスタQl,Q2が各対応してオン,オフ状態にな
る。
NIlyR is at low level ""L"→""H'"H
' level, and accordingly the y-t voltage PDR J, N
DR1 changes from "H' to "L", and the output transistors Ql and Q2 respectively turn on and off.

この状態では、vDD電源端子とva8電源端子(接地
端子)との間に貫通電流は流れない。
In this state, no through current flows between the vDD power supply terminal and the va8 power supply terminal (ground terminal).

上記とは逆に、出力電圧OUTとして″″L’L’レベ
ルするときは,入力信号PDR 、 NDRがL#→′
″H#に変わり、ゲート電圧PDR 1 、 NDR 
1が@L#→@H#に変わり、出力用トランゾスタQl
.Q2が各対応してオフ,オン状態になり,貫通電流は
流れない。このときのゲート電圧NDR J 、出力電
圧OUT C)動作波形を、VDD=5.5Vノ場合と
”DD= 4. 5 Vの場合とについて第12図に示
している。この2つの波形を比較すると,vDD′I!
圧が,高い方がPテヤネルトランノスタQ5の駆動能力
が大きいのでゲート電圧NDR 1の立上シが速く、出
力電圧OU丁の波形はより急峻になる。しかし、余り急
峻な出力波形になると,出力用トランiスタと電源端子
,接地端子との間の電源線、接地線のインダクタンス成
分による電圧変動が生じ、集積回路チッグ内部の電源線
、接地線に雑音(出力雑音)が発生し,チップ内部回路
の′誤動作の原因となる。これを避けるために、前記v
0電圧が高いとき(九とえば5. 5 V )に前記雑
音が発生しないように出力波形を十分緩やかに変化させ
るようにすると,vDD電源電圧が低いとき(たとえば
4.5V)には出力波形の変化が一層緩やかになってし
まい,出力遅延が大きくなってしまう。因みに、V,、
 = 4. 5 Vの場合は,出力遅延(出力波形の立
上り時点toから所定電圧0.8vに達する時点t1マ
テ)ハ、VDD=5.5Vの場合の出力遅延(t。
Contrary to the above, when the output voltage OUT is at the "L" level, the input signals PDR and NDR change from L# to '
"Changes to H#, gate voltage PDR 1, NDR
1 changes from @L# to @H#, and the output transistor Ql
.. Q2 is turned off and on correspondingly, and no through current flows. The operating waveforms of the gate voltage NDR J and output voltage OUT C) at this time are shown in Figure 12 for the case of VDD = 5.5 V and the case of DD = 4.5 V. Compare these two waveforms. Then, vDD'I!
The higher the voltage, the greater the driving ability of the P-Ternel transistor Q5, so the rise of the gate voltage NDR1 is faster, and the waveform of the output voltage OUT becomes steeper. However, if the output waveform becomes too steep, voltage fluctuations will occur due to the inductance components of the power and ground lines between the output transistor and the power and ground terminals, causing voltage fluctuations in the power and ground lines inside the integrated circuit chip. Noise (output noise) is generated, causing malfunction of the chip's internal circuits. To avoid this, the v
If the output waveform is changed slowly enough so that the noise does not occur when the zero voltage is high (for example, 5.5 V), the output waveform will change when the vDD power supply voltage is low (for example, 4.5 V). The change in output becomes even more gradual, resulting in a larger output delay. By the way, V...
= 4. In the case of 5 V, the output delay (time t1 from the rising time of the output waveform to the time when the predetermined voltage reaches 0.8 V), and the output delay (t) in the case of VDD = 5.5 V.

〜Lx  )の約1、3倍になる。然るに、半導体集積
回路の動作速度はvDD電圧が低い値で律速されている
ので、半導体集積回路の高速化に際して上記vDD電圧
が低い場合の出力遅延(to−tx)が問題になる。
~Lx). However, since the operating speed of a semiconductor integrated circuit is limited by the low value of the vDD voltage, the output delay (to-tx) when the vDD voltage is low becomes a problem when increasing the speed of the semiconductor integrated circuit.

一方、温度変化に対しても従来の出力回路は次のような
問題がある。即ち、第13図は、前記出力電圧OUTが
@H1→@L” K変化するときのゲート電圧NDR 
1 、出力電圧OUTの動作波形を、動作温度Ta=0
℃の場合とTa=85℃の場合とについて示している。
On the other hand, conventional output circuits have the following problems with respect to temperature changes. That is, FIG. 13 shows the gate voltage NDR when the output voltage OUT changes from @H1 to @L''K.
1. The operating waveform of the output voltage OUT is set to the operating temperature Ta=0.
℃ and Ta=85°C.

この2つの波形を比較すると、T.が低い場合(たとえ
ば0℃)には、MOS }ランジスタの駆動能力が大き
いので出力波形の変化が急峻になる。T1が高い場合(
たとえば85℃)には、MOS トランジスタの駆動能
力が小さいので出力波形の変化が緩やかになる。T,=
85℃での出力遅延(to=Ls)はT.=θ℃での出
力遅延(t(+−t4)の約1.5倍になる。したがっ
て、T,が低い場合に出力雑音によるチップ内部回路の
誤動作を防ぐために出力波形の変化を緩やかにさせよう
とすると、T1が高い場合に出力遅延が大きくなってし
まい、高速動作が要求される半導体集積回路では問題で
ある。
Comparing these two waveforms, T. When the temperature is low (for example, 0° C.), the driving ability of the MOS transistor is large, so the change in the output waveform becomes steep. If T1 is high (
For example, at 85° C.), the driving ability of the MOS transistor is small, so the change in the output waveform becomes gradual. T,=
The output delay (to=Ls) at 85°C is T. = approximately 1.5 times the output delay (t(+-t4)) at θ°C. Therefore, when T is low, the change in the output waveform is made gradual to prevent malfunction of the chip's internal circuitry due to output noise. However, if T1 is high, the output delay becomes large, which is a problem in semiconductor integrated circuits that require high-speed operation.

(発明が解決しようとする問題点) 本発明は、上記したようにMOSトランジスタの駆動能
力が電源電圧依存性および温度依存性を有することに起
因して高速化設計に際して出力波形の最適化が困難であ
るという問題点を解決すべくなされたもので、上記電源
゛電圧依存性および温度依存性が小さく、出力雑音の抑
制および高速出力が可能な半導体集積回路を提供するこ
とを目的とする。
(Problems to be Solved by the Invention) As described above, the drive capability of the MOS transistor has power supply voltage dependence and temperature dependence, which makes it difficult to optimize the output waveform when designing for high speed. The present invention has been developed to solve the problem that the above-mentioned power supply voltage dependence and temperature dependence are small, and it is an object of the present invention to provide a semiconductor integrated circuit that is capable of suppressing output noise and high-speed output.

[発明の構成コ (問題点を解決するための手段) 本発明の半導体集積回路は、電源ノードと接地ノードと
の間で直列に接続された出力用のPチャネルMOSトラ
ンジスタおよびNチャネルMOS )ランノスタと、上
記PチャネルMO8)ランソスタのゲート電位を制御す
る第1の論理回路と、この第1の論理回路の接地電位側
に流れる電流を制御する第1の電流制御回路と、前記N
チャネルMOSトランジスタのゲート電位を制御する第
2の論理回路と、この第2の論理回路の電源電位側に流
れる電流を制御する第2の電流制御回路とを具備し、前
記PチャネルMO8)ランソスタおよびNチャネルMO
S )う/ノスタの駆動能力の電源電圧依存性、温度依
存性に逆対応するように前記各′に光制御回路の制御電
流特性を設定してなることを特徴とする。
[Structure of the Invention (Means for Solving Problems) The semiconductor integrated circuit of the present invention includes an output P-channel MOS transistor and an N-channel MOS connected in series between a power supply node and a ground node. and a first logic circuit that controls the gate potential of the P channel MO8), a first current control circuit that controls the current flowing to the ground potential side of the first logic circuit, and the N
The P-channel MO8) includes a second logic circuit that controls the gate potential of the channel MOS transistor, and a second current control circuit that controls the current flowing to the power supply potential side of the second logic circuit. N channel MO
S) The control current characteristic of the optical control circuit is set for each of the above so as to correspond inversely to the power supply voltage dependence and temperature dependence of the driving capacity of the nostar.

(作 用) 出力用PチャネルMOSトランジスタがオンになるとき
の電流は、このトランジスタのゲート電位を制御する第
1の論理回路の出力が接地を位に変化するときの第1の
底流制御回路の1流で制御される。同様に、出力用Nチ
ャネルトランジスタがオンになるときの電流は、このト
ランジスタのゲート電位を制御する第2の論理回路の出
力が電源電位に変化するときの第2の電流制御回路の電
流で制御される。したがって、出力用MOSトランジス
タの電源電圧依存性および温度依存性を相殺するように
電流制御回路による制御を行わせることが可能になり、
出力波形が電源電圧および温度に殆んど変化しなくなり
、出力雑音の抑制および高速出力が可能になる。
(Function) The current when the output P-channel MOS transistor is turned on is the current of the first undercurrent control circuit when the output of the first logic circuit that controls the gate potential of this transistor changes from ground to ground. Controlled by the first stream. Similarly, the current when the output N-channel transistor is turned on is controlled by the current of the second current control circuit when the output of the second logic circuit that controls the gate potential of this transistor changes to the power supply potential. be done. Therefore, it becomes possible to perform control by the current control circuit so as to cancel out the power supply voltage dependence and temperature dependence of the output MOS transistor.
The output waveform hardly changes due to power supply voltage and temperature, making it possible to suppress output noise and achieve high-speed output.

(実施例) 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図はMO8d半導体集積回路の出力回路を示してお
り、QlおよびQ2はvDD電源ノードと接地ノードと
の間で直列に接続された出力用のPチャネルMOSトラ
ンジスタおよびNチャネルMOS )ランソスタでおる
。INIは上記出力用のPチャネルトランノスタQノの
ゲート電圧PDR1を制御するインバータであり、Pチ
ャネルトランジスタロ3とNチャネルトランノスタQ4
とが直列接続され、各ゲートが共通接続されている。こ
のPチャネルトランジスタロ3のソースはvDD′成源
ノードに接続されており、Nチャネルトランジスタロ4
のソースと接地ノードとの間に第1の電流制御回路1が
挿入されている。INJは前記出力用のNチャネルトラ
ンジスタQ2のゲート電圧NDR1を制御するインバー
タであり、PチャネルトランノスタQ5とNチャネルト
ランノスタQ6とが直列接続され、各ゲートが共通接続
されている。このNチャネルトランノスタQ6のソース
は接地ノードに接続されており、Pチャネルトランノス
タQ5のソースとvDD電源ノードとの間に第2の電流
制御回路2が挿入されている。
Figure 1 shows the output circuit of the MO8d semiconductor integrated circuit, where Ql and Q2 are an output P-channel MOS transistor and an N-channel MOS transistor connected in series between the vDD power supply node and the ground node. . INI is an inverter that controls the gate voltage PDR1 of the output P-channel transistor Q4, and is used to control the gate voltage PDR1 of the output P-channel transistor Q4.
are connected in series, and each gate is commonly connected. The source of this P-channel transistor 3 is connected to the vDD' source node, and the source of this P-channel transistor 4 is connected to the vDD' source node.
A first current control circuit 1 is inserted between the source and the ground node. INJ is an inverter that controls the gate voltage NDR1 of the output N-channel transistor Q2, and a P-channel trannostar Q5 and an N-channel trannostar Q6 are connected in series, and their gates are commonly connected. The source of this N-channel trannoster Q6 is connected to the ground node, and the second current control circuit 2 is inserted between the source of the P-channel trannoster Q5 and the vDD power supply node.

前記第2の電流制御回路2は、たとえば第2図に示すよ
うに構成されている。即ち、ff−)にvDD電圧が与
えられるNテヤネルトランソスタQ13のソースと抵抗
素子R11の一端とが共通接続されると共に電流制限用
のNテヤネルトランノスタQ14を介して接地されてい
る。上記トランジスタQ13のドレインとvDD′に源
ノードとの間に負荷用のゲート・ドレイン相互が接続さ
れたPチャネルトランジスタQJJが挿入されておシ。
The second current control circuit 2 is configured as shown in FIG. 2, for example. In other words, the source of the N-Tenyanel transistor Q13 to which the vDD voltage is applied to ff-) and one end of the resistive element R11 are commonly connected and grounded via the N-Tanyanel transistor Q14 for current limiting. . A P-channel transistor QJJ, whose gate and drain are connected to each other for loading, is inserted between the drain of the transistor Q13 and the source node of vDD'.

このトランジスタQ7Jにカレントミラー接続すれたP
チャネルトラ/ノスタQ12が前記抵抗索子R11の他
端とvDD電源ノードとの間に挿入されている。そして
、この抵抗素子RJJと上記トランジスタQ12との接
続点が電流制御用のPチャネルトランソスタQ15(こ
れは、前記インパ−夕IN2に直列に挿入されている)
のゲートに接続されている。なお、前記電流制限用のト
ランジスタQ14のゲート電位V。、として例えばv0
電圧が与えられる。
A current mirror is connected to this transistor Q7J.
A channel controller/nostar Q12 is inserted between the other end of the resistor wire R11 and the vDD power supply node. The connection point between this resistance element RJJ and the transistor Q12 is a P-channel transistor Q15 for current control (this is inserted in series with the impurator IN2).
connected to the gate. Note that the gate potential V of the current limiting transistor Q14. , for example v0
voltage is applied.

一方、前記第1の電流制御回路1は、たとえば第3図に
示すように構成されておシ、上記第キの電流制御回路キ
とは対称的に形成されている。即ち、f−トが接地され
たPチャネルトランジスタQ22のソースと抵抗素子R
21の一端とが共通接続されると共に電流制限用のPチ
ャネルトランノスタQ21を介してvDD電源ノードに
接続されている。上記トランジスタQ22のドレインと
接地ノードとの間に負荷用のe−)・ドレイン相互が接
続されたNチャネルトランノスタQ23が挿入されてお
り、このトランジスタQ23にカレントミラー接続され
たNチャネルトラジジスタQ24が前記抵′抗素子R2
1の他端と接地ノードとの間に接続されている。この抵
抗素子R21と上記トランジスタQ24との接続点が電
流制御用のNチャネルトランノスタQ25(これは、前
記インバータINZに直列に挿入されている)のf−)
に接続されている。なお、前記電流制限用のトランジス
タQ21のゲート電位vG2として例えば接地電位が与
えられている。
On the other hand, the first current control circuit 1 is configured, for example, as shown in FIG. 3, and is formed symmetrically with the above-mentioned first current control circuit. That is, the source of the P-channel transistor Q22 whose gate is grounded and the resistance element R
21 are connected in common, and also connected to the vDD power supply node via a current limiting P-channel transistor Q21. Between the drain of the transistor Q22 and the ground node is inserted an N-channel transistor Q23 whose e-) and drains are connected to each other for a load, and an N-channel transistor Q24 which is current mirror-connected to this transistor Q23. is the resistance element R2
1 and the ground node. The connection point between this resistance element R21 and the transistor Q24 is f-) of an N-channel transistor Q25 for current control (which is inserted in series with the inverter INZ).
It is connected to the. Note that, for example, a ground potential is applied as the gate potential vG2 of the current limiting transistor Q21.

なお、前記第2の電流制御回路2の抵抗素子RJJは、
たとえば、不純物を高濃度に含んだポリシリコン等によ
って形成され、抵抗値の温度依存性は殆んどない。そし
て、この抵抗素子allと共に差動増幅器Dklを形成
するNチャネルトランゾスタQ13はゲートがvDD電
源電圧になっている。このため、このトランジスタQ1
3の等価抵抗は電源電圧が高くなるにつれて小さくなる
Note that the resistance element RJJ of the second current control circuit 2 is
For example, it is formed of polysilicon or the like containing a high concentration of impurities, and its resistance value has almost no temperature dependence. The gate of the N-channel transistor Q13, which forms the differential amplifier Dkl together with the resistance element all, is set to the vDD power supply voltage. Therefore, this transistor Q1
The equivalent resistance of 3 becomes smaller as the power supply voltage becomes higher.

これにより、差動増幅器DAJの出力ノードNilの電
位Vllは電源電圧が高くなるにつれて高くなり、電流
制御用のトランジスタQJ5のゲート電位が高くなるの
で、このトランジスタQ15に流れる制御電流は小さく
なる。したがって、制御電流がMOS )ランノスタの
駆動力の電源電圧叡存性に逆対応するようになる。
As a result, the potential Vll of the output node Nil of the differential amplifier DAJ increases as the power supply voltage increases, and the gate potential of the current control transistor QJ5 increases, so that the control current flowing through the transistor Q15 becomes smaller. Therefore, the control current corresponds inversely to the power supply voltage dependency of the driving force of the MOS (MOS) lannostar.

ま念、温度が高くなるにつれ、差動増幅用のNチャネル
トランゾスタQlBの等価抵抗は大きくなる。これによ
り1m度が高くなるにつれて差動増幅器DAJの出力電
位Vllは低くなり、制御電流は大きくなる。し比がっ
て、制御wL訛がMOS トランジスタの駆動能力の温
度依存性に逆対応するようになる。
Note that as the temperature increases, the equivalent resistance of the N-channel transistor QlB for differential amplification increases. As a result, as the temperature increases by 1 m, the output potential Vll of the differential amplifier DAJ becomes lower and the control current becomes larger. As a result, the control wL characteristic corresponds inversely to the temperature dependence of the driving capability of the MOS transistor.

一方、前記第1の電流制御回路1においても、上記第2
の電流制御回路2に準じた動作が行われ、その制御電流
はMOS )ランノスータの駆動能力のvDD電圧依存
性、温度依存性に逆対応するようになる。なお、第3図
に示す第1の電流制御回路1において、DA2は差動増
幅器であり、その出力をV21で表わしている。
On the other hand, also in the first current control circuit 1, the second
The current control circuit 2 operates in accordance with the current control circuit 2, and its control current corresponds inversely to the vDD voltage dependence and temperature dependence of the drive capability of the MOS (MOS) Lanno-Suter. In the first current control circuit 1 shown in FIG. 3, DA2 is a differential amplifier, and its output is represented by V21.

即ち、上記各電流制御回路1.2における制御電流のv
DD′flL源心圧依存性は例えば第4図中に示すよう
になり、 MOS トランジスタの駆fIJJ能力のv
DD電圧依存性とは相殺し合うようになる。即ち。
That is, v of the control current in each of the above current control circuits 1.2
The dependence of DD'flL on the source heart pressure is as shown in Fig. 4, for example, and the v
This cancels out the DD voltage dependence. That is.

MOS)ランノスタの駆動能力はVDD== 5.5 
Vの場合にvDD = 5.0 Vの場合に比べて約1
5チ増加゛シ。
MOS) Runnostar driving capacity is VDD==5.5
When V, vDD = 5.0, about 1 compared to when V
Increased by 5.

V  =4.5V(D場合1cVDD=5.0V(D場
合に比べD て約15%減少する。これに対して、制御電流はvD、
 = 5. s v o場合にvDD= s、 o V
 O場会ニ比べて約15%減少し、vI)D=−4,s
vo場合ニvDD=5、Ovの場合に比べて約15%増
加するので、制御電流のvDD電圧依存性と駆動能力の
vDD電圧依存性とが相殺し合うことになる。
V = 4.5V (1cVDD = 5.0V in case of D (reduced by about 15% compared to case of D). On the other hand, the control current is vD,
= 5. If s vo, then vDD=s, o V
Approximately 15% decrease compared to O field, vI)D=-4,s
In the case of vo, vDD=5, which increases by about 15% compared to the case of Ov, so the vDD voltage dependence of the control current and the vDD voltage dependence of the drive ability cancel each other out.

したがって、第1図の出力回路において、出力用のPチ
ャネルトランソスタQノがオンになるときは、このトラ
ンジスタQノにゲート電位PDRJを与えるインバータ
INJ・の出力が接地電位に変化するときの第1の電流
制御回路10制御電流によりトランジスタQ1の駆動能
力が制御されるので、vDD電圧依存性が殆んど生じな
い。同様に、出力用のNテヤネルトランノスタQ2がオ
ンになるときは、このトランジスタQ 2 Kf −)
 [位NDRlを与えるインバータIN2の出力がvD
D電位に変化するときの第2の電流制御回路2の利l1
g1亀流尺よりトランジスタQ2の駆動能力が制御され
るので、vDDIt圧依存性が殆んど生じない。
Therefore, in the output circuit of FIG. 1, when the output P-channel transistor Q turns on, the output of the inverter INJ, which applies the gate potential PDRJ to the transistor Q, changes to the ground potential. Since the driving ability of the transistor Q1 is controlled by the control current of the first current control circuit 10, almost no vDD voltage dependence occurs. Similarly, when the output N-channel transistor Q2 is turned on, this transistor Q 2 Kf −)
[The output of inverter IN2 which provides NDRl is vD
The gain l1 of the second current control circuit 2 when changing to the D potential
Since the driving ability of the transistor Q2 is controlled by the g1 torque, there is almost no vDDIt pressure dependence.

なお、出力用のPチャネルトランノスタQ1がオフにな
るときは、PチャネルトランノスタQ3の駆動能力に従
ってオフになり、出力用のNチャネルトランジスタQ2
がオフになるときは、Nチャネルトランジスタロ6の駆
動能力に従ってオフになる。
Note that when the output P-channel transistor Q1 is turned off, it is turned off according to the driving ability of the P-channel transistor Q3, and the output N-channel transistor Q2 is turned off.
When turned off, it is turned off according to the driving ability of the N-channel transistor 6.

ここで、前記出力用の例えばNチャネルトランシ、X、
fiQ 2カ;4−7ニ’lルト*、vDD = 5.
5 V 。
Here, for example, an N-channel transistor for the output,
fiQ 2 times; 4-7 years *, vDD = 5.
5V.

V、、 = 4.5 V 12)場合Kj?けb’r”
−)’It位NDRJ、出力電圧OUTの動作波形を第
5図に示す。即ち、制御電流ハvDD=4.5V(7)
場合の方力VDD= 5.5Vの場合に比べて大きいの
で、ゲート電位NDR1はvDD = 4.5 Vの場
合の方1tvDD= s、 s v okm合に比べて
より運く立上る。したがって、vDD=4.sVの場合
の方がvDD= 5. s vの場合に比べてNチャネ
ルトランジスタQ2(Dソース・ドレイ/電圧がより小
さいことによる駆動能力の低下を補なうcとが可能ic
なり、VDD= 4.5 V IZ)場合でもvDD−
S、 S Vの場合と同等の速度で出力することが可能
になる。
V,, = 4.5 V 12) If Kj? "Keb'r"
-)' The operating waveforms of NDRJ and output voltage OUT are shown in FIG. That is, the control current vDD=4.5V (7)
Since the voltage in the case of VDD=5.5V is larger than that in the case of VDD=5.5V, the gate potential NDR1 rises more quickly in the case of vDD=4.5V than in the case of 1tvDD=s,svokm. Therefore, vDD=4. In the case of sV, vDD=5. Compared to the case of sv, it is possible to compensate for the decrease in driving ability due to the smaller N-channel transistor Q2 (D source/drain/voltage).
Even if VDD= 4.5 V IZ), vDD−
It becomes possible to output at the same speed as S and SV.

また、前記各を流制御回路1.2における制御電流の温
度依存性は、たとえば第6図中に示すようになり、MO
S )ランノスタの駆動能力の温度依存性とは相殺し合
うようになっている。即ち、MOS )ランノスタの駆
動能力は、温度が0℃の場合に85℃の場合に比べて約
50%増加するが、制御電流が85℃の場合に0℃の場
合に比べて約50qb増加するように設定しておけば、
互いの温度依存性が相殺し合う。これによって、第1図
の出力回路における出力用の例えばNチャネルトランノ
スタQ2がオフになるとき、温度が0℃、85℃の場合
におけるゲート電位NDRJ 、出力電圧OUTの動作
波形は第7図に示すようになる。即ち、制御電流は85
℃の場合の方が0℃の場合に比べて約50チも大きいの
で、ゲート電位NDR1は85℃の場合の方が0℃の場
合に比べてかなり速く立ち上がる。し九がって、85℃
の場合の方が0℃の場合に比べてMOS トランジスタ
Q2の駆動能力が約1/1.5に低下することを補なう
ことが可能になり、85℃の場合でも0℃の場合とほぼ
同等の速度で出力することが可能になる。
Further, the temperature dependence of the control current in each of the above current control circuits 1.2 is as shown in FIG. 6, for example, and the MO
S) The temperature dependence of the driving ability of the lannostar is canceled out. That is, the drive capacity of the MOS (MOS) runnostar increases by about 50% when the temperature is 0°C compared to 85°C, but when the control current is 85°C it increases by about 50 qb compared to 0°C. If you set it like this,
Their temperature dependencies cancel each other out. As a result, when the N-channel transnoster Q2 for output in the output circuit of FIG. 1 is turned off, the operating waveforms of the gate potential NDRJ and output voltage OUT at temperatures of 0°C and 85°C are shown in FIG. It comes to show. That is, the control current is 85
Since the temperature at 85° C. is about 50 degrees higher than that at 0° C., the gate potential NDR1 rises much faster at 85° C. than at 0° C. 85 degrees Celsius
In this case, it is possible to compensate for the drop in the driving ability of MOS transistor Q2 to about 1/1.5 compared to the case at 0°C, and even at 85°C it is almost the same as at 0°C. It becomes possible to output at the same speed.

上記実施例の出力回路によれば、電圧依存性および温度
依存性が殆んどないので、MOS )ランノスタの駆動
力が大さいときの出力雑音を抑制し得るように出力波形
を設定しておけば、MOS トランジスタの駆動力が小
さいときにも、駆動力が大きいときと同等の出力波形が
得られるので、出力遅延が小さい高速出力が可能になる
According to the output circuit of the above embodiment, there is almost no voltage dependence or temperature dependence, so the output waveform should be set so as to suppress the output noise when the driving force of the MOS) lannostar is large. For example, even when the driving force of the MOS transistor is small, an output waveform equivalent to that when the driving force is large can be obtained, so high-speed output with small output delay is possible.

なお、前記電流制御回路2の抵抗素子RJJをMOS)
ランソスタのf−)電極と同一層のポリシリコン配線等
で形成すると、プロセスのばらつきにより、若し、ゲー
トを極が多目にエツチングされて線幅が細めに出来た場
合には、その抵抗値はより高めになり、トランジスタの
駆動能力は太き目になる。したがって、差動増幅器DA
Jの出力′電位v11は高目になり、制御電流は少な目
になる。
Note that the resistance element RJJ of the current control circuit 2 is a MOS)
If it is formed using polysilicon wiring, etc. in the same layer as the Lansostar f-) electrode, if the gate is etched with many poles and the line width becomes narrower due to process variations, the resistance value will change. becomes higher, and the driving ability of the transistor becomes thicker. Therefore, the differential amplifier DA
The output potential v11 of J becomes high, and the control current becomes small.

逆に、上記ゲート電極が少な目にエツチングされて線幅
が太目に出来た場合には、その抵抗値はより低目になり
、MOSトランジスタの駆動能力は小さ目になり、差動
増幅器DAJの出力′電位Vllは低目になり、制?1
JJt流は多目になる。これと同様なことが、MOS 
トランジスタの閾値のプロセス上のばらつきについても
云える。また、上記と同様なことが、第1の電流制御回
路1についても言える。よって、プロセスのばらつきに
よるMOS)ランジスタの駆動力の変動に対しても制御
電流が逆対応するので、プロセスの変動に対して変動の
少ない出力回路が得られる。
On the other hand, if the gate electrode is etched less and the line width becomes thicker, its resistance value becomes lower, the driving ability of the MOS transistor becomes smaller, and the output of the differential amplifier DAJ becomes smaller. The potential Vll becomes low and is controlled? 1
The JJt style is multifaceted. A similar thing can be done with MOS
The same can be said about process variations in transistor threshold values. Further, the same thing as above can be said about the first current control circuit 1 as well. Therefore, since the control current responds inversely to variations in the driving force of the MOS transistor due to process variations, it is possible to obtain an output circuit with little variation in response to process variations.

なお、前記電流制御回路1,20′を流制限用のMOS
トランノスタQ21.Q14に代えて、vDD電圧依存
性および温度依存性の少ない抵抗素子(たとえばポリシ
リコン)を用いてもよい。
Note that the current control circuits 1 and 20' are MOS transistors for current limiting.
Tranostar Q21. In place of Q14, a resistance element (for example, polysilicon) with low vDD voltage dependence and low temperature dependence may be used.

また、前記電流制御回路1,2は、それぞれ差動増幅器
1段の出力電位により電流制御用トランジスタQ25.
Q15のゲート制御を行ったが、第2の電流制御回路2
として、たとえば第8図に示すように、また第1の電流
制御回路1として。
Further, the current control circuits 1 and 2 each have a current control transistor Q25.
Although the gate control of Q15 was performed, the second current control circuit 2
For example, as shown in FIG. 8, and as the first current control circuit 1.

たとえば第9図に示すように、差動増幅器DAJま念は
DAzをそれぞれ2段接続することによって。
For example, as shown in FIG. 9, differential amplifiers DAJ and DAZ are connected in two stages.

ti制御用のMOS トランジスタQ39.Q49の駆
動能力に応じてさらに大幅に亀流制#を行うことが可能
になる。
MOS transistor Q39 for ti control. Depending on the driving ability of the Q49, it becomes possible to perform even greater control over the tortoise flow.

また、前記実施例では、インバータlNl0接地電位側
にのみ第1の電流制御回路1f:挿入し、インバータI
N、?の電源電位側にのみ第2の電流制御回路2を挿入
したが、さらに第10図に示すように、インバータIN
Jの電源電位側にも第3の電流制御回路3(前記第2の
電流制御回路2と同様のもの)を挿入し、インバータI
N2の接地電位側にも第4の電流制御回路4(前記第1
の1!流制御回路1と同様のもの)を挿入してもよい。
Further, in the above embodiment, the first current control circuit 1f is inserted only on the ground potential side of the inverter INl0, and the inverter I
N.? Although the second current control circuit 2 is inserted only on the power supply potential side of the inverter IN, as shown in FIG.
A third current control circuit 3 (similar to the second current control circuit 2) is also inserted on the power supply potential side of the inverter I.
A fourth current control circuit 4 (the first
No. 1! A flow control circuit (similar to the flow control circuit 1) may be inserted.

このようにすれば、出力用のPチャネルトランジスタQ
ノがオフになるときのそのゲート電位PDR1の立上り
を第3の電流制御回路3で制御することが可能になり、
出力用のNチャネルトランジスタロ2がオフになるとき
のそのr−)電位NDR1の立下シを第4の電流制御回
路4で制御することが可能になる。
In this way, the output P-channel transistor Q
It becomes possible to control the rise of the gate potential PDR1 when the gate is turned off by the third current control circuit 3,
It becomes possible for the fourth current control circuit 4 to control the fall of the r-) potential NDR1 when the output N-channel transistor RO2 is turned off.

また、前記出力用トランジスタのゲート電位を制御する
論理回路として、インバータINi、IN2に限らず、
その他の論理回路(ナンド回路とかノア回路など)を用
いる場合にも本発明を適用することができる。
Furthermore, the logic circuit for controlling the gate potential of the output transistor is not limited to the inverters INi and IN2.
The present invention can also be applied to cases where other logic circuits (NAND circuits, NOR circuits, etc.) are used.

[発明の効果コ 上述したように本発明の半導体集積回路によれば、出力
回路の電源電圧依存性および温度依存性が殆んどないの
で、出力遅延を一定化することが可能になり、出力雑音
を抑制するように出力遅延を定めておいても、電源電圧
が低いときとか温度が高いときに出力遅延が大きくなる
ことはなく、高速出力が可能になる。
[Effects of the Invention] As described above, according to the semiconductor integrated circuit of the present invention, the output circuit has almost no power supply voltage dependence and temperature dependence, so it is possible to make the output delay constant, and the output Even if the output delay is determined to suppress noise, the output delay does not become large when the power supply voltage is low or the temperature is high, and high-speed output is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体集積回路における出力回路の一
実施例を示す回路構成図、第2図は第1図中の第2の電
流制御回路の一具体例を示す回路図、第3図は第1図中
の第1の電流制御回路の一具体例を示す回路図、第4図
は第2図、第3図の電流制御回路の制御電流と出力用M
OSトランジスタの駆動電流とのvDD電源電圧依存性
を示す特性図、第5図は第1図中の出力用Nチャネルト
ランジスタがオンになるときのゲート′戒位、出力電圧
のvDI)電圧依存性を示す特性図、第6図は第2図、
第3図の電流制御回路の制御電流と出力用MO8)う/
ジスタの駆動電流との温度依存性を示す特性図、第7図
は第1図中の出力用Nチャネルトランジスタがオンにな
るときのゲート電圧、出力電圧の温度依存性を示す特性
図、第8図および第9図はそれぞれ第2図および第3図
の電流制御回路の変形例を示す回路図、第10図は本発
明の他の実施例を示す回路jma図、第11図は従来の
出力回路を示す回路図、第12図は第11図の出力回路
の電源電圧依存性を示す特性図、第13図は第11図の
出力回路の温度依存性を示す特性図である。 Qノ+ Q J・・・出力用トランジスタ、INJ、I
N2・・・インバータ、1,2,3.4・・・電流制御
回路、Q11〜Q15.Q21〜Q25・・・トランジ
スタ。 R11,R21・・・抵抗素子、DAJ、DA、?・・
・差動増幅器。 出願人代理人 弁理士 鈴 江 武 彦Vo。 第 2t!1 7$J3図 i源1!及 第4図 を足 第5図 第 6rl!J 第7図 第8図 箪9図 Vo。 第10図 第11図 第12図 第13図
FIG. 1 is a circuit configuration diagram showing one embodiment of the output circuit in the semiconductor integrated circuit of the present invention, FIG. 2 is a circuit diagram showing one specific example of the second current control circuit in FIG. 1, and FIG. is a circuit diagram showing a specific example of the first current control circuit in FIG. 1, and FIG. 4 shows the control current and output M of the current control circuit in FIGS. 2 and 3.
A characteristic diagram showing the dependence of the drive current of the OS transistor on the vDD power supply voltage. Fig. 5 shows the voltage dependence of the output voltage on the gate when the output N-channel transistor in Fig. 1 is turned on, and the vDD voltage dependence of the output voltage. The characteristic diagram shown in Fig. 6 is Fig. 2,
Control current and output MO8) of the current control circuit in Figure 3
FIG. 7 is a characteristic diagram showing the temperature dependence of the transistor drive current and the gate voltage when the output N-channel transistor in FIG. 1 is turned on, and a characteristic diagram showing the temperature dependence of the output voltage. 9 and 9 are circuit diagrams showing modified examples of the current control circuits in FIGS. 2 and 3, respectively, FIG. 10 is a circuit jma diagram showing another embodiment of the present invention, and FIG. 11 is a conventional output FIG. 12 is a characteristic diagram showing the power supply voltage dependence of the output circuit of FIG. 11, and FIG. 13 is a characteristic diagram showing the temperature dependence of the output circuit of FIG. 11. Q + Q J... Output transistor, INJ, I
N2...Inverter, 1, 2, 3.4... Current control circuit, Q11 to Q15. Q21 to Q25...transistors. R11, R21...resistance element, DAJ, DA, ?・・・
・Differential amplifier. Applicant's agent Patent attorney Takehiko Suzue Vo. 2nd t! 1 7$J3 figure i source 1! And figure 4 foot figure 5 figure 6rl! J Figure 7 Figure 8 Figure 9 Vo. Figure 10 Figure 11 Figure 12 Figure 13

Claims (5)

【特許請求の範囲】[Claims] (1)電源ノードと接地ノードとの間で直列に接続され
た出力用のPチャネルMOSトランジスタおよびNチャ
ネルMOSトランジスタと、上記PチャネルMOSトラ
ンジスタのゲート電位を制御する第1の論理回路と、こ
の第1の論理回路の接地電位側に流れる電流を制御する
第1の電流制御回路と、前記NチャネルMOSトランジ
スタのゲート電位を制御する第2の論理回路と、この第
2の論理回路の電源電位側に流れる電流を制御する第2
の電流制御回路とを具備し、前記PチャネルMOSトラ
ンジスタおよびNチャネルMOSトランジスタの駆動能
力の電源電圧依存性、温度依存性に逆対応するように前
記各電流制御回路の制御電流特性を設定してなることを
特徴とする半導体集積回路。
(1) An output P-channel MOS transistor and an N-channel MOS transistor connected in series between a power supply node and a ground node, a first logic circuit that controls the gate potential of the P-channel MOS transistor, and a first current control circuit that controls the current flowing to the ground potential side of the first logic circuit; a second logic circuit that controls the gate potential of the N-channel MOS transistor; and a power supply potential of the second logic circuit. The second one controls the current flowing to the side.
and a current control circuit, the control current characteristics of each of the current control circuits being set so as to correspond inversely to the power supply voltage dependence and temperature dependence of the drive capability of the P-channel MOS transistor and the N-channel MOS transistor. A semiconductor integrated circuit characterized by:
(2)前記第2の電流制御回路は、差動接続されたNチ
ャネルMOSトランジスタと抵抗素子とを有する第1の
差動増幅器の出力を電流制御用のPチャネルMOSトラ
ンジスタのゲートに入力してなり、前記第1の電流制御
回路は、差動接続されたPチャネルMOSトランジスタ
と抵抗素子とを有する第2の差動増幅器の出力を電流制
御用のNチャネルMOSトランジスタのゲートに入力し
てなることを特徴とする前記特許請求の範囲第1項記載
の半導体集積回路。
(2) The second current control circuit inputs the output of a first differential amplifier having a differentially connected N-channel MOS transistor and a resistance element to the gate of a P-channel MOS transistor for current control. The first current control circuit is configured by inputting the output of a second differential amplifier having a differentially connected P-channel MOS transistor and a resistance element to the gate of an N-channel MOS transistor for current control. A semiconductor integrated circuit according to claim 1, characterized in that:
(3)前記第1の差動増幅器が2段接続され、前記第2
の差動増幅器が2段接続されていることを特徴とする前
記特許請求の範囲第2項記載の半導体集積回路。
(3) The first differential amplifier is connected in two stages, and the second
3. The semiconductor integrated circuit according to claim 2, wherein two stages of differential amplifiers are connected.
(4)前記各抵抗素子は前記MOSトランジスタのゲー
ト電極と同一材料により形成されていることを特徴とす
る前記特許請求の範囲第2項記載の半導体集積回路。
(4) The semiconductor integrated circuit according to claim 2, wherein each of the resistive elements is made of the same material as the gate electrode of the MOS transistor.
(5)前記第1の論理回路の電源電位側に流れる電流を
制御する第3の電流制御回路と、前記第2の論理回路の
接地電位側に流れる電流を制御する第4の電流制御回路
とをさらに具備し、上記第3の電流制御回路は前記第2
の電流制御回路と同様の構成を有し、前記第4の電流制
御回路は前記第1の電流制御回路と同様の構成を有する
ことを特徴とする前記特許請求の範囲第1項または第2
項または第4項記載の半導体集積回路。
(5) a third current control circuit that controls the current flowing to the power supply potential side of the first logic circuit; and a fourth current control circuit that controls the current flowing to the ground potential side of the second logic circuit. further comprising, the third current control circuit is connected to the second current control circuit.
Claims 1 or 2, characterized in that the fourth current control circuit has the same configuration as the first current control circuit, and the fourth current control circuit has the same configuration as the first current control circuit.
4. The semiconductor integrated circuit according to item 4.
JP62320416A 1987-12-18 1987-12-18 Semiconductor integrated circuit Pending JPH01161916A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62320416A JPH01161916A (en) 1987-12-18 1987-12-18 Semiconductor integrated circuit
US07/256,664 US4894561A (en) 1987-12-18 1988-10-13 CMOS inverter having temperature and supply voltage variation compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320416A JPH01161916A (en) 1987-12-18 1987-12-18 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH01161916A true JPH01161916A (en) 1989-06-26

Family

ID=18121211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320416A Pending JPH01161916A (en) 1987-12-18 1987-12-18 Semiconductor integrated circuit

Country Status (2)

Country Link
US (1) US4894561A (en)
JP (1) JPH01161916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233820A (en) * 1990-07-05 1992-08-21 American Teleph & Telegr Co <Att> Integrated circuit
JPH04345317A (en) * 1991-04-08 1992-12-01 Internatl Business Mach Corp <Ibm> Driver circuit, low noise driver circuit and low noise low vibration driver-receiver circuit

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975599A (en) * 1989-07-26 1990-12-04 International Business Machines Corporation Method and resulting devices for compensating for process variables in a CMOS device driver circuit
US4972101A (en) * 1989-09-19 1990-11-20 Digital Equipment Corporation Noise reduction in CMOS driver using capacitor discharge to generate a control voltage
US5066873A (en) * 1989-12-04 1991-11-19 Altera Corporation Integrated circuits with reduced switching noise
JP3288727B2 (en) * 1991-05-24 2002-06-04 株式会社東芝 Output circuit
US5168178A (en) * 1991-08-30 1992-12-01 Intel Corporation High speed NOR'ing inverting, MUX'ing and latching circuit with temperature compensated output noise control
US5304918A (en) * 1992-01-22 1994-04-19 Samsung Semiconductor, Inc. Reference circuit for high speed integrated circuits
US5248907A (en) * 1992-02-18 1993-09-28 Samsung Semiconductor, Inc. Output buffer with controlled output level
US5248906A (en) * 1992-06-12 1993-09-28 Advanced Micro Devices, Inc. High speed CMOS output buffer circuit minimizes output signal oscillation and steady state current
DE69223776T2 (en) * 1992-06-26 1998-07-16 Discovision Ass Logic output driver
GB9301934D0 (en) * 1993-02-01 1993-03-17 Immos Limited Transistor switching
JP2896305B2 (en) * 1993-05-15 1999-05-31 株式会社東芝 Semiconductor integrated circuit device
US5539341A (en) * 1993-06-08 1996-07-23 National Semiconductor Corporation CMOS bus and transmission line driver having programmable edge rate control
US5557223A (en) * 1993-06-08 1996-09-17 National Semiconductor Corporation CMOS bus and transmission line driver having compensated edge rate control
DE69411388T2 (en) * 1993-06-08 1999-02-25 Nat Semiconductor Corp BTL COMPATIBLE CMOS LINE DRIVER
KR100302890B1 (en) * 1993-06-08 2001-11-22 클라크 3세 존 엠. Programmable CMOS Bus and Transmission Line Drivers
US5543746A (en) * 1993-06-08 1996-08-06 National Semiconductor Corp. Programmable CMOS current source having positive temperature coefficient
US5483184A (en) * 1993-06-08 1996-01-09 National Semiconductor Corporation Programmable CMOS bus and transmission line receiver
US5457433A (en) * 1993-08-25 1995-10-10 Motorola, Inc. Low-power inverter for crystal oscillator buffer or the like
US5440258A (en) * 1994-02-08 1995-08-08 International Business Machines Corporation Off-chip driver with voltage regulated predrive
JP3311133B2 (en) * 1994-02-16 2002-08-05 株式会社東芝 Output circuit
US5532617A (en) * 1994-03-25 1996-07-02 Philips Electronics North America Corporation CMOS input with temperature and VCC compensated threshold
US5534790A (en) * 1994-04-13 1996-07-09 International Business Machines Corporation Current transition rate control circuit
DE69412788T2 (en) * 1994-04-22 1999-04-29 St Microelectronics Srl Integrated circuit for controlling the rate of current rise of an output buffer
US5428303A (en) * 1994-05-20 1995-06-27 National Semiconductor Corporation Bias generator for low ground bounce output driver
US5701090A (en) 1994-11-15 1997-12-23 Mitsubishi Denki Kabushiki Kaisha Data output circuit with reduced output noise
US5498977A (en) * 1995-03-03 1996-03-12 Hewlett-Packard Company Output driver having process, voltage and temperature compensation for delay and risetime
US6469493B1 (en) 1995-08-01 2002-10-22 Teradyne, Inc. Low cost CMOS tester with edge rate compensation
EP0765037A3 (en) * 1995-09-20 1998-01-14 Texas Instruments Incorporated Buffer for integrated circuit memories
KR0179786B1 (en) * 1995-12-23 1999-04-01 문정환 Output buffer
EP0782269B1 (en) * 1995-12-26 2002-06-05 Kabushiki Kaisha Toshiba Semiconductor integrated circuit
US5818260A (en) * 1996-04-24 1998-10-06 National Semiconductor Corporation Transmission line driver having controllable rise and fall times with variable output low and minimal on/off delay
KR19990012245A (en) * 1997-07-28 1999-02-25 윤종용 Inverter Circuit with Same Rise / Fall Times
US6073259A (en) * 1997-08-05 2000-06-06 Teradyne, Inc. Low cost CMOS tester with high channel density
US6072733A (en) * 1997-10-17 2000-06-06 Waferscale Integration, Inc. Programmable sense amplifier delay (PSAD) circuit which is matched to the memory array
DE19829487C1 (en) * 1998-07-01 1999-09-23 Siemens Ag Integrated semiconductor chip output driver e.g. with CMOS inverter-type switching stage
FR2781621A1 (en) * 1998-07-21 2000-01-28 St Microelectronics Sa CMOS output amplifier circuit providing compensation for temperature, supply voltage and component manufacturing quality uses subtracting circuit to provide compensating current reducing as measured current increases
KR100498437B1 (en) * 1998-09-28 2005-09-09 삼성전자주식회사 Semiconductor device having termination circuit and the method for matching swing voltage
US6437622B1 (en) * 2001-03-27 2002-08-20 Texas Instruments Incorporated Temperature compensated slew rate control circuit
US6683482B2 (en) * 2001-08-02 2004-01-27 Agilent Technologies, Inc. Slew rate control of output drivers using PVT controlled edge rates and delays
DE10162912B4 (en) * 2001-12-20 2006-09-28 Infineon Technologies Ag Crystal oscillator circuit
JP3919176B2 (en) * 2002-05-28 2007-05-23 シャープ株式会社 Correction circuit, delay circuit, and ring oscillator circuit
ITTO20020811A1 (en) * 2002-09-18 2004-03-19 Atmel Corp OUTPUT BUFFER WITH QUICK CONTROL.
US6903588B2 (en) * 2003-04-15 2005-06-07 Broadcom Corporation Slew rate controlled output buffer
KR100564602B1 (en) * 2003-12-30 2006-03-29 삼성전자주식회사 Set programming method of phase-change memory array and writing driver circuit
JP5747445B2 (en) * 2009-05-13 2015-07-15 富士電機株式会社 Gate drive device
JP5711116B2 (en) * 2009-12-03 2015-04-30 パナソニック株式会社 Semiconductor integrated circuit and booster circuit having the same
TWI511442B (en) * 2012-12-24 2015-12-01 Novatek Microelectronics Corp Data control circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772429A (en) * 1980-10-22 1982-05-06 Toshiba Corp Semiconductor integrated circuit device
JPS62109426A (en) * 1985-11-08 1987-05-20 Hitachi Ltd Output circuit

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137327A (en) * 1982-02-10 1983-08-15 Toshiba Corp Semiconductor integrated circuit
US4645948A (en) * 1984-10-01 1987-02-24 At&T Bell Laboratories Field effect transistor current source
JPS62220026A (en) * 1986-03-20 1987-09-28 Toshiba Corp Output buffer circuit
JPS62230220A (en) * 1986-03-31 1987-10-08 Toshiba Corp Complementary insulation gate type logic circuit
JPS635553A (en) * 1986-06-25 1988-01-11 Fujitsu Ltd Buffer circuit
US4749882A (en) * 1986-07-25 1988-06-07 Digital Equipment Corporation Apparatus and method for applying rapid transient signals to components on a printed circuit board
US4760292A (en) * 1986-10-29 1988-07-26 Eta Systems, Inc. Temperature compensated output buffer
US4792704A (en) * 1987-05-01 1988-12-20 International Business Machines Corporation Scaled voltage level translator circuit
US4797579A (en) * 1987-07-27 1989-01-10 Raytheon Company CMOS VLSI output driver with controlled rise and fall times
US4825101A (en) * 1988-02-11 1989-04-25 Advanced Micro Devices, Inc. Full-level, fast CMOS output buffer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772429A (en) * 1980-10-22 1982-05-06 Toshiba Corp Semiconductor integrated circuit device
JPS62109426A (en) * 1985-11-08 1987-05-20 Hitachi Ltd Output circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04233820A (en) * 1990-07-05 1992-08-21 American Teleph & Telegr Co <Att> Integrated circuit
JPH04345317A (en) * 1991-04-08 1992-12-01 Internatl Business Mach Corp <Ibm> Driver circuit, low noise driver circuit and low noise low vibration driver-receiver circuit

Also Published As

Publication number Publication date
US4894561A (en) 1990-01-16

Similar Documents

Publication Publication Date Title
JPH01161916A (en) Semiconductor integrated circuit
KR940001816B1 (en) Slew rate speed up circuit
JPH0319425A (en) Driver circuit
KR940005509B1 (en) Voltage up inhibition circuit and output buffer circuit with it
US5055713A (en) Output circuit of semiconductor integrated circuit
KR920010984B1 (en) Output buffer circuit
JP2764576B2 (en) Semiconductor memory sense amplifier output control circuit
KR900008917B1 (en) Data reading circuit for semiconductor memory device
JPS6237470B2 (en)
US5739719A (en) Bias circuit with low sensitivity to threshold variations
US4859882A (en) Sense amplifier
JPS591005B2 (en) Schmidt trigger circuit
JPS60170091A (en) Sensor circuit
US5471149A (en) High-speed large output amplitude voltage level shifting circuit
JPH0129096B2 (en)
JP3071034B2 (en) Output buffer circuit
JPS63263693A (en) Decoder circuit
JP3299071B2 (en) Output buffer circuit
JP2003078367A (en) Amplifier circuit
JPH03179814A (en) Level shift circuit
JPH0341698A (en) Sense circuit
JP2585128Y2 (en) Semiconductor integrated circuit
JPH01112815A (en) Semiconductor integrated circuit
JP2979627B2 (en) Differential circuit
JPH0240948A (en) Semiconductor integrated circuit