JPH01112815A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH01112815A
JPH01112815A JP62269711A JP26971187A JPH01112815A JP H01112815 A JPH01112815 A JP H01112815A JP 62269711 A JP62269711 A JP 62269711A JP 26971187 A JP26971187 A JP 26971187A JP H01112815 A JPH01112815 A JP H01112815A
Authority
JP
Japan
Prior art keywords
output
circuit
voltage
power supply
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62269711A
Other languages
Japanese (ja)
Other versions
JPH0563965B2 (en
Inventor
Yoichi Suzuki
洋一 鈴木
Shigeo Oshima
成夫 大島
Makoto Segawa
瀬川 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62269711A priority Critical patent/JPH01112815A/en
Publication of JPH01112815A publication Critical patent/JPH01112815A/en
Publication of JPH0563965B2 publication Critical patent/JPH0563965B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Electronic Switches (AREA)
  • Logic Circuits (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To attain stable circuit operation over a wide range of a power voltage by supplying a lower voltage than a conventional power supply fed to an integrated internal circuit as the power voltage of the output stage. CONSTITUTION:A data output circuit 2 consists of AND gates 8, 9 whose one end is connected to a couple of input/output data lines 6, 7 of the memory and whose other end receives a control signal phiout generated in the memory inside and a precharge/discharge type output buffer in which two N-channel MOS TRs 10, 11 whose gate receives an output of the AND gates 8, 9 respectively are connected in series between a voltage drop output node 6 of a voltage drop circuit 3 and a ground line 5. The voltage drop circuit 3 decreases a VDD power voltage supplied at the outside of the chip and supplies it as the power voltage VDW of the data output buffer. Moreover, the P-channel MOS TR T4 and the MOS TR T5 are connected between the power line 4 and the ground line 5.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体メモリなどの半導体集積回路に係シ、
特にデータ出力回路に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to semiconductor integrated circuits such as semiconductor memories.
In particular, it relates to data output circuits.

(従来の技術) 第5図は、従来の半導体メモリチツf50上のデータ出
力回路に対する電源供給系および出力負荷系を示してい
る.即ち、データ出力回路51は、メモリの一対の入出
力データ線52.53に各一端が接続され、各他端にメ
モリ内部で発生された制御信号φoutが与えられるア
ンドゲート54、55と、このアンドグート54,55
の各出力が対応してダートに与えられた2個のNチャネ
/I/MOSトランジスタ56.57がチップ上の電源
線58と接地線59との間に直列に接続されたプリチャ
ージ・ディスチャージ型の出力バッファとからなる.6
0はチップ50のVDD電源ピンでI)F)%61はチ
ップ上の前記電源線5gK寄生する抵抗成分、62はチ
ップ50の接地ピンであフ、63はチップ上の接地線5
9に寄生する抵抗成分、64はチップ50の出力ピンで
あって前記出力バッフ1の出力ノードに接続されている
(Prior Art) FIG. 5 shows a power supply system and an output load system for a data output circuit on a conventional semiconductor memory chip F50. That is, the data output circuit 51 includes AND gates 54 and 55, each of which has one end connected to a pair of input/output data lines 52 and 53 of the memory, and the other end of which is supplied with a control signal φout generated inside the memory. Andgut 54, 55
A precharge/discharge type transistor in which two N-channel/I/MOS transistors 56 and 57, each output of which is given to a corresponding dart, are connected in series between a power supply line 58 and a ground line 59 on the chip. It consists of an output buffer and an output buffer. 6
0 is the VDD power pin of the chip 50, 61 is the parasitic resistance component of the power line 5gK on the chip, 62 is the ground pin of the chip 50, and 63 is the ground line 5 on the chip.
A parasitic resistance component 64 is an output pin of the chip 50 and is connected to the output node of the output buffer 1.

一方、チップ外部において、65はチップ5。On the other hand, 65 is chip 5 outside the chip.

にVDD電源を供給する直流電源、66は上記電源の安
定化容量、61は電源線、68は接地端、69は接地線
、70および11は電源線errtc寄生する抵抗成分
およびインダクタンス成分、72  ・および73は接
地線69に寄生する抵抗成分およびインダクタンス成分
、14は出力線、15は出力負荷容置、76および77
は出力線74に寄生する抵抗成分およびインダクタンス
成分である。
66 is a stabilizing capacitor of the power supply, 61 is a power line, 68 is a grounding end, 69 is a grounding line, 70 and 11 are resistance components and inductance components parasitic to the power line errtc, 72. and 73 are resistance components and inductance components parasitic to the grounding wire 69, 14 is an output line, 15 is an output load container, 76 and 77
are resistance components and inductance components parasitic to the output line 74.

上記メモリチップ50のデータ出力時には、出力負荷容
量75を高速に充放電することに伴って電源電位と接地
電位との変動が発生する。特に1ダータ10”を出力す
る場合に発生する接地電位のオーバーシュートは、デー
タ@1″を出力する場合に発生する接地電位のアンダー
シュートに比べて大きく、チップ50の内部回路の誤動
作を引き起こす原因となる。上記接地電位のオーバーシ
ェードは、出力負荷容量15の急激な放電に伴う接地線
59.69への放電電流工の時間的増分dr/d t 
sおよび放電電流経路に寄生的に存在するインダクタン
ス成分りの@ L dI/dtにより大半が占められる
。そして、使用電源電圧が高くなると、データ出力回路
51のトランジスタのgm  (相互コンダクタンス)
が上が9、メモリチップ50の雑音感度も上がるので、
上記したようなオーパークニー)Kよって内部回路の誤
動作が益々生じ易くなる。
When data is output from the memory chip 50, fluctuations occur between the power supply potential and the ground potential as the output load capacitor 75 is charged and discharged at high speed. In particular, the overshoot of the ground potential that occurs when outputting 1 data 10'' is larger than the undershoot of the ground potential that occurs when outputting data @1'', which causes malfunction of the internal circuit of the chip 50. becomes. The above-mentioned overshading of the ground potential is caused by the time increment dr/d t of the discharge current applied to the ground wire 59.69 due to the rapid discharge of the output load capacity 15.
The majority is occupied by @L dI/dt, which is an inductance component parasitically present in the discharge current path. When the power supply voltage used increases, the gm (mutual conductance) of the transistor of the data output circuit 51 increases.
The upper value is 9, and the noise sensitivity of the memory chip 50 also increases, so
Due to the above-mentioned open knee), malfunctions of the internal circuit become more likely to occur.

ここで、第5図中のデータ出力回路51Vcおけるダー
タ′″O′″出力時の動作を第6図(a) 、 (b)
を参照して詳細に説明する。データ@0″出力時には、
一方のデータ線52が低電位、他方のデータ線53が高
電位になっておシ、制御信号φoutが高電位になると
、アンドグーj−54,55のウチの一方55が選択さ
れ、この選択されたアンドダート55の出力ノードN2
の電位がトランジスタ51の閾値電aE V?H以上に
上昇してトランジスタ51を導通させ、これKよりて出
力負荷容量75の放電を生じさせて出力ピン64のデー
タ出力D outを低電位とすることでデータ′″0”
の読み出しを行う、上記出力負荷容Rvsの放電にょシ
、トランジスタ57を介して大きな放電電流Idが生じ
、この放電電流Idの経路(図示矢印で示す)に存在す
る抵抗成分76.63.72およびインダクタンス成分
71.73によって、チッf50の接地ピン62の電位
はwX6図(bJ Ic示すように大キナオーバーシェ
ードを持つ、また、この接地電位のオーパージニートが
チップ基板を介してチップ50の電源電位に現われる。
Here, the operation when the data output circuit 51Vc in FIG. 5 outputs data ``O'' is shown in FIGS. 6(a) and (b).
This will be explained in detail with reference to . When outputting data @0″,
When one data line 52 becomes a low potential and the other data line 53 becomes a high potential, and the control signal φout becomes a high potential, one of the AND GO J-54 and 55, 55, is selected. Output node N2 of and dart 55
The potential of the transistor 51 is the threshold voltage aEV? The voltage rises above H, making the transistor 51 conductive, causing the output load capacitance 75 to be discharged, and setting the data output D out of the output pin 64 to a low potential, thereby reducing the data ``0''.
When the output load capacitance Rvs is discharged, a large discharge current Id is generated through the transistor 57, and the resistance components 76, 63, 72 and Due to the inductance component 71.73, the potential of the ground pin 62 of the chip 50 has a large kina overshade as shown in the diagram w Appears in electric potential.

従って、特に複数の出力ピンを有するメモリチップの場
合、各出力ピンに各対応するデータ出力回路からそれぞ
れデータ10”を出力する場合、前記オーバーシェード
が著しくなシ、アドレスバッフ1.入力バッフ7等のメ
モリ内部回路を誤動作させるおそれがある。
Therefore, especially in the case of a memory chip having a plurality of output pins, when outputting data 10'' from each corresponding data output circuit to each output pin, the overshading is significant. This may cause the internal circuits of the memory to malfunction.

従来、上記データ出力回路のように、出力ピン1個につ
き接地側駆動用トランジスタが1個しか存在しない場合
、前記したような回路誤動作を抑制するためKは上記駆
動用トランジスタ57のチャネル幅を縮小するか、第6
図(aJ中に点線で示すように、ノードN2の電位の立
ち上り速度を遅める(立ち上り波形の変化を緩やかにす
る)ことKより上記駆動用トランジスタ51の電流駆動
能力を大幅に抑え込むことによって、第6図(bJ中に
点線で示すようにオーバーシェードを抑禾込むよう、 
にしていた、しかし、このようにすると、出力ピン64
の電位も第6図(a)中に点線で示すようは緩やかに低
下するようKな夛、メモリの′″O”出力のアクセスタ
イムが大幅に遅れ、メモリの高速性を大きく犠牲にしな
ければならなくなる。このことは、データアクセスの高
速性を重視する場合には不都合であった。
Conventionally, when there is only one ground-side driving transistor per output pin as in the data output circuit described above, K reduces the channel width of the driving transistor 57 in order to suppress the circuit malfunction as described above. Or, the 6th
As shown by the dotted line in the figure (aJ), by slowing down the rising speed of the potential of the node N2 (slowing down the change in the rising waveform), and by significantly suppressing the current driving capability of the driving transistor 51, , Fig. 6 (as shown by the dotted line in bJ, to suppress the overshade,
But when I do this, output pin 64
As the potential of K gradually decreases as shown by the dotted line in Figure 6(a), the access time of the ``O'' output of the memory is significantly delayed, and the high-speed performance of the memory must be sacrificed significantly. It will stop happening. This is inconvenient when high speed data access is important.

(発明が解決しようとする問題点) 本発明は、上記したようにデータ出力時の電源変動を抑
制するためにデータ出力速度を大きく犠牲にしなければ
ならないという問題点を解決すべくなされたもので、デ
ータ出力速度を大幅に犠牲にすることなく、”o’″デ
ータ出力に伴なう接地電位のオーバーシュートを抑制し
て内部回路の誤動作を防ぐことができ、電源電圧の広範
囲にわたシ安定な回路動作を行6せ得る半導体集積回路
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned problem that data output speed must be sacrificed significantly in order to suppress power fluctuations during data output. , it is possible to suppress the overshoot of the ground potential associated with "o'" data output and prevent malfunction of the internal circuit without significantly sacrificing the data output speed, and the system is stable over a wide range of power supply voltages. An object of the present invention is to provide a semiconductor integrated circuit that can perform various circuit operations.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の半導体集積回路は、データ出力回路の出力段の
電源電圧として、集積回路内部回路に供給古れる通常の
電源電圧よ〕低い降圧電圧を供給するようKしてなるこ
とを特徴とする。
(Means for Solving the Problems) The semiconductor integrated circuit of the present invention supplies a lower step-down voltage as the power supply voltage of the output stage of the data output circuit than the normal power supply voltage that is supplied to the internal circuits of the integrated circuit. It is characterized by being K.

(作用) データ出力@1″が降圧電圧になっているので、′″0
′データ出力時に出力負荷から放電する電流の時間的増
分が減少し、接地電位のオーバーシュートが小さくなる
。従りて、データ出力速度を大幅に犠牲にすることなく
データ出力時の電源変動を抑制でき、電源マージンに対
して内部回路の誤動作を引き起すことなく、電源電圧の
広範囲にわた〕安定な動作を行わせることが可能になる
(Function) Since the data output @1″ is a step-down voltage,
'The temporal increment of the current discharged from the output load during data output is reduced, and the overshoot of the ground potential is reduced. Therefore, power fluctuations during data output can be suppressed without significantly sacrificing data output speed, and stable operation can be achieved over a wide range of power supply voltages without causing internal circuit malfunctions relative to the power supply margin. It becomes possible to have the

(実施例) 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、半導体メモリチツf1上のデータ出力回路2
および降圧回路3と、チップ上の電源線4および接地線
5と、チップ外部の電源供給系および出力負荷系を示し
ている。即ち、データ出力回路2は、メモリの一対の入
出力データ線6.1に各一端が接続され、各他端にメモ
リ内部で発生された面制御信号φoutが与えられるア
ンドゲート8.9と、このアンドf−) 8.9の各出
力が対応してグー)K与えられた2個のNチャネルMO
8トランジスタ10 、11が降圧回路3の降圧出力ノ
ードN6と接地線5との間に直列に接続されたプリチャ
ージ・ディスチャージ型の出力バッフ1とからなる。上
記降圧回路3は、チップ外部から供給されるVDD電源
電圧を降圧して上記データ出力バッフ1の電源電圧Vl
)iFとして供給する(21:お、前記アンドゲート8
,9およびその他のメモリ内部回路は前記外部電源電E
EVDDが供給される)ものでア)、たとえば第2図に
示すように構成されている。即ち、電源線4と接地線5
との間に1それぞれ基板・ソース相互が接続されると共
に、ゲート・ドレイン相互が接続された3個のPチャネ
ルMO8)ランジスタT7.’r、?、’I’、?が直
列に接続されている。また、基板・ソース相互が接続さ
れたPチャネルMO8)ランジ諷りT4と、基板・ソー
スが接続されると共にゲート・ドレイン相互が接続され
たPチャネルMO8)ランジスタTs’Hが、前記電源
線4と接地線5との間に接続されている。そして、前記
トランジスタT2゜T3の直列接続点(ノードN7)が
前記トランジスタT4のゲートに接続されている。この
場合、上記ノードN7の電位がVDD −21VTPl
 (VTPはPチャネルトランジスタのゲート閾値電圧
)になるようにトランジスタTI、T、2.TJの帥比
を設定しておき、トランジスタT4.T5の直列接続点
(降圧出力ノードN5)に所要の降圧電圧VDWが得ら
れるようにトランジスタT4.T5のgm比゛が設定さ
れている。ここで、上記降圧回路3の特性(電源電圧V
DD対出力降圧電圧VDW )の−例を第3図に示して
いる。降圧電圧VDWは、電源電圧VDDの使用範囲の
最小値VMMIN付近まではVDD −21VTPIO
値で上昇し、VDDがVDDMIN以上ノ範囲テはVD
DMIN −21VTP I K近い定電圧になる。コ
ノ定電圧はs VDI]jIN電圧での出力バッフ1の
高レベル出力電圧VOH%出力電流(流出電流)IOH
および流入電流IOHを保障し得る値に設定されている
FIG. 1 shows the data output circuit 2 on the semiconductor memory chip f1.
Also shown are a step-down circuit 3, a power supply line 4 and a ground line 5 on the chip, and a power supply system and an output load system outside the chip. That is, the data output circuit 2 includes an AND gate 8.9, one end of which is connected to a pair of input/output data lines 6.1 of the memory, and the other end of which is supplied with a surface control signal φout generated inside the memory; Each output of this AND f-) 8.9 corresponds to two N-channel MOs given K
A precharge/discharge type output buffer 1 includes eight transistors 10 and 11 connected in series between a step-down output node N6 of a step-down circuit 3 and a ground line 5. The step-down circuit 3 steps down the VDD power supply voltage supplied from outside the chip to provide the power supply voltage Vl of the data output buffer 1.
) Supplied as iF (21: Oh, the above AND gate 8
, 9 and other memory internal circuits are connected to the external power supply E.
EVDD is supplied) and a) is configured as shown in FIG. 2, for example. That is, the power line 4 and the ground line 5
Three P-channel MO8) transistors T7.1 and T7.1 each have their substrates and sources connected to each other, and have their gates and drains connected to each other. 'r,? ,'I',? are connected in series. Further, a P-channel MO8) transistor Ts'H having a substrate and a source connected to each other and a P-channel MO8) transistor Ts'H having a substrate and a source connected to each other and a gate and a drain connected to each other is connected to the power supply line 4. and the ground wire 5. The series connection point (node N7) of the transistors T2 and T3 is connected to the gate of the transistor T4. In this case, the potential of the node N7 is VDD −21VTPl
(VTP is the gate threshold voltage of a P-channel transistor) so that transistors TI, T, 2. The voltage ratio of TJ is set, and the transistor T4. Transistors T4. The gm ratio of T5 is set. Here, the characteristics of the step-down circuit 3 (power supply voltage V
An example of DD versus output step-down voltage (VDW) is shown in FIG. The step-down voltage VDW is VDD −21VTPIO up to around the minimum value VMMIN of the usage range of the power supply voltage VDD.
When VDD is higher than or equal to VDDMIN, the range is VDD
DMIN -21VTP I It becomes a constant voltage close to K. The constant voltage is s VDI]j High level output voltage of output buffer 1 at IN voltage VOH% Output current (outflow current) IOH
and is set to a value that can guarantee the inflow current IOH.

なお、第1図中において、上記説明部分以外の各部は第
5図を参照したものと同様であシ、第5図中と同一符号
を付してその説明を省略する。
Note that in FIG. 1, each part other than the above-mentioned explanation part is the same as that with reference to FIG. 5, and is given the same reference numeral as in FIG. 5, and the explanation thereof will be omitted.

次に、上記データ出力回路2におけるデータ出力時の動
作を第4図11+ 、 (bJを参照して説明する。
Next, the operation of the data output circuit 2 when outputting data will be explained with reference to FIG.

vDD電圧がVDDMIN電田ヨシ大きい場合、VDD
MIN −21VTPIK近い定電圧の降圧電圧VDW
が出力バッフ1の電源電圧として与えられている。”l
”データの読み出し時には、一方の入出力データ線6が
高レベル、他方の入出力データ線1が低レベルになって
お〕、制御信号φ0TJTがオンのときにトランジスタ
10のゲートが高レベルにな夛、トランジスタ10がオ
ンになりて出力負荷容量15が充電される。この場合、
充電電位は降圧電EVDWであって電源電EEVDDよ
り低いので、出力バッフ1にVDD電源電圧を与えてお
く場合に比べて充電電流の変化は緩やかであシ、電源線
4および接地線5の電位のアンダーシュートは小さい、
一方、@0″データ読み出し時には、一方の入出力デー
タ線6が低レベル、他方の入出力データ線7が高レベル
になつておシ、制御信号φOUTがオンのときにトラン
ジスタ11のゲート(ノードNZ)が高レベルにな)、
トランジスタ11がオンになりて出力負荷容量25の放
電が行われる。この場合、放電開始電位は降圧電圧vn
wであって電源電圧vDDより低いので、トランジスタ
11を流れる放電電流Idの時間的増分d I / d
 tが減少する。従って、放電電流経路に存在するイン
ダクタンス成分りと上記ax/dtとの積は小さくなシ
、電泳線4や接地線5の変動(アンデータニート)の大
きさ、幅とも小さい。
If the vDD voltage is greater than VDDMIN, VDD
Constant voltage step-down voltage VDW close to MIN -21VTPIK
is given as the power supply voltage of the output buffer 1. "l
``When reading data, one input/output data line 6 is at a high level and the other input/output data line 1 is at a low level], and when the control signal φ0TJT is on, the gate of the transistor 10 is at a high level. Then, the transistor 10 is turned on and the output load capacitor 15 is charged. In this case,
Since the charging potential is a step-down voltage EVDW and is lower than the power supply voltage EEVDD, the change in the charging current is gradual compared to the case where the VDD power supply voltage is applied to the output buffer 1, and the potentials of the power supply line 4 and the ground line 5 The undershoot of is small,
On the other hand, when reading @0'' data, one input/output data line 6 is at a low level and the other input/output data line 7 is at a high level, and when the control signal φOUT is on, the gate of the transistor 11 (node NZ) is at a high level),
Transistor 11 is turned on and output load capacitance 25 is discharged. In this case, the discharge starting potential is the step-down voltage vn
Since w is lower than the power supply voltage vDD, the temporal increment d I/d of the discharge current Id flowing through the transistor 11 is
t decreases. Therefore, the product of the inductance component existing in the discharge current path and the above ax/dt is small, and the magnitude and width of fluctuations (undaterination) in the electrophoretic wire 4 and the ground wire 5 are also small.

なお、上記したような電源線4や接地線5の変動はVD
D電源電圧がさらに上昇した場合でも、出力/(ツ77
 )電源は降圧電圧VDW (= VDDMIN −2
1VTP+)で一定に設定されているので、出力バッフ
1の電源がvDDの上昇とともに大きくなることはない
In addition, fluctuations in the power supply line 4 and ground line 5 as described above are caused by VD.
Even if the D power supply voltage increases further, the output/(T77
) The power supply is a step-down voltage VDW (= VDDMIN −2
1VTP+), the power supply of the output buffer 1 does not increase as vDD increases.

即ち、上記したような降圧回路を有するメモリチップに
よれば、降圧電圧VDWが出力バッフ1の電源として供
給されているので、出力バッフ1用トランジスタ10ま
たは11のグー)K急峻な波形のゲート駆動電圧が与え
られた場合でも電源変動は小さく、データ出力速度を大
幅に犠牲にしなくて済む、しかも、広い電源電圧範囲に
わたって電源変動が小さく、データ出力速度の低下とか
、チップ内部回路の誤動作を引き起こすことがなく、安
定な動作を行わせることが可能になる。また、降圧電E
 VDWは、VDD辺NtEHにおける出力バッフ7の
高レベル出力電圧vow s出力電流IOHおよびIO
Lを保障できる電圧に設定されているので、これらの出
力特性の仕様を満足することができる。
That is, according to the memory chip having the step-down circuit as described above, since the step-down voltage VDW is supplied as a power source for the output buffer 1, the gate drive of the output buffer 1 transistor 10 or 11 with a steep waveform is performed. Even when a voltage is applied, the power supply fluctuations are small, so there is no need to sacrifice data output speed significantly.Furthermore, power fluctuations are small over a wide power supply voltage range, causing a reduction in data output speed or malfunction of the chip's internal circuits. This makes it possible to perform stable operation without any problems. In addition, the step-down voltage E
VDW is the high level output voltage of the output buffer 7 at the VDD side NtEH, and the output currents IOH and IO
Since the voltage is set to ensure L, the specifications of these output characteristics can be satisfied.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明の半導体集積回路によれば、デー
タ出力速度を大@に犠牲にすることなく、″O″データ
出力に伴なう接地電位のオーバーシーートを抑制して内
部回路の誤動作を°防ぐことができ、電源電圧の広範囲
にわたって安定な回路動作を行わせることができる。従
って、複数ピットのデータを同時に出力する複数のデー
タ出力回路を有する半導体メモリなどに本発明を適用し
た場合、データアクセスの高速性を犠牲にすることなζ
、安定した回路動作が得られるようになる。
As described above, according to the semiconductor integrated circuit of the present invention, the oversheet of the ground potential accompanying the "O" data output is suppressed and the malfunction of the internal circuit is prevented without significantly sacrificing the data output speed. This enables stable circuit operation over a wide range of power supply voltages. Therefore, when the present invention is applied to a semiconductor memory having multiple data output circuits that simultaneously output data from multiple pits, it is possible to avoid sacrificing the high speed of data access.
, stable circuit operation can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体集積回路の一実施例に係るメモ
リチップおよび外部の電源系、出力負荷系を示す回路図
、第2図は第1図中の降圧回路の一具体例を示す回路図
、第3図は第2図の降圧回路の特性を示す図、第4図(
a) 、 (b)は第1図のメモリチップ中のデータ出
力回路の動作および接地線の電源変動を示す電圧波形図
、第5図は従来のメモリチップおよび外部の電源系、出
力負荷系を示す回路図、第6図(a) e (b)は第
5図のメモリチップ中のデータ出力回路の動作および電
源線、接地線の電源変動を示す電圧波形図である。 1・・・メモリチップ、2・・・データ出力回路、3.
・・降圧回路、8.9・・・アンドゲート、10.11
・・・出力段トランジスタ・ 出願人代理人弁理士 鈴 江 武 彦 −電S凰電圧V(1) 第3図 一時間 一時間 第4図 −時間 第6図
FIG. 1 is a circuit diagram showing a memory chip, an external power supply system, and an output load system according to an embodiment of the semiconductor integrated circuit of the present invention, and FIG. 2 is a circuit diagram showing a specific example of the step-down circuit in FIG. 1. 3 shows the characteristics of the step-down circuit shown in FIG.
a) and (b) are voltage waveform diagrams showing the operation of the data output circuit in the memory chip in Figure 1 and power supply fluctuations of the ground line, and Figure 5 is a diagram showing the conventional memory chip, external power supply system, and output load system. The circuit diagrams shown in FIGS. 6(a) and 6(b) are voltage waveform diagrams showing the operation of the data output circuit in the memory chip of FIG. 5 and power fluctuations of the power supply line and the ground line. 1...Memory chip, 2...Data output circuit, 3.
...Step-down circuit, 8.9...AND gate, 10.11
...Output stage transistor Patent attorney for applicant Takehiko Suzue - Electric power supply voltage V (1) Fig. 3 1 hour 1 hour Fig. 4 - Time Fig. 6

Claims (2)

【特許請求の範囲】[Claims] (1)データ出力回路を内蔵し、このデータ出力回路の
出力段の電源電圧として、集積回路内部回路に供給され
る通常の電源電圧より低い降圧電圧を供給することを特
徴とする半導体集積回路。
(1) A semiconductor integrated circuit comprising a built-in data output circuit and supplying a step-down voltage lower than the normal power supply voltage supplied to the internal circuits of the integrated circuit as the power supply voltage of the output stage of the data output circuit.
(2)前記通常の電源電圧のある設定値以上で上記電源
電圧より低い定電圧の降圧電圧を出力する降圧回路を内
蔵することを特徴とする前記特許請求の範囲第1項記載
の半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, further comprising a step-down circuit that outputs a constant step-down voltage that is higher than a certain set value of the normal power supply voltage and lower than the power supply voltage. .
JP62269711A 1987-10-26 1987-10-26 Semiconductor integrated circuit Granted JPH01112815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62269711A JPH01112815A (en) 1987-10-26 1987-10-26 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62269711A JPH01112815A (en) 1987-10-26 1987-10-26 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH01112815A true JPH01112815A (en) 1989-05-01
JPH0563965B2 JPH0563965B2 (en) 1993-09-13

Family

ID=17476110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62269711A Granted JPH01112815A (en) 1987-10-26 1987-10-26 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH01112815A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306494A (en) * 1989-05-11 1990-12-19 Samsung Electron Co Ltd Reference voltage generation circuit
JPH03142778A (en) * 1989-10-24 1991-06-18 Samsung Electron Co Ltd Reference voltage stabilization circuit for memory device
US5677643A (en) * 1994-02-17 1997-10-14 Kabushiki Kaisha Toshiba Potential detecting circuit which suppresses the adverse effects and eliminates dependency of detected potential on power supply potential

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237724A (en) * 1984-05-11 1985-11-26 Hitachi Ltd Complementary mos logical gate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60237724A (en) * 1984-05-11 1985-11-26 Hitachi Ltd Complementary mos logical gate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02306494A (en) * 1989-05-11 1990-12-19 Samsung Electron Co Ltd Reference voltage generation circuit
JPH03142778A (en) * 1989-10-24 1991-06-18 Samsung Electron Co Ltd Reference voltage stabilization circuit for memory device
US5677643A (en) * 1994-02-17 1997-10-14 Kabushiki Kaisha Toshiba Potential detecting circuit which suppresses the adverse effects and eliminates dependency of detected potential on power supply potential

Also Published As

Publication number Publication date
JPH0563965B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
US4486753A (en) Bus line drive circuit
US4918339A (en) Data output circuit
JPH0529995B2 (en)
US4883978A (en) Semiconductor device having reduced potential fluctuations
US5055713A (en) Output circuit of semiconductor integrated circuit
US5517142A (en) Output buffer with a reduced transient bouncing phenomenon
US6621329B2 (en) Semiconductor device
KR100416625B1 (en) Input/output buffer of differential type for reducing variation of reference voltage
JPS6137709B2 (en)
KR920010824B1 (en) Semiconductor memory
CN109427371B (en) Power switch, memory device and method for providing power switch voltage output
US6563351B2 (en) Semiconductor integrated circuit having output buffer
JPH05347550A (en) Semiconductor integrated circuit
US6489815B2 (en) Low-noise buffer circuit that suppresses current variation
US5710516A (en) Input logic signal buffer circuits
JPH01112815A (en) Semiconductor integrated circuit
JP3190086B2 (en) Boost circuit
JP3255159B2 (en) Semiconductor integrated circuit
KR100407991B1 (en) Level Shifter
JP3255158B2 (en) Semiconductor integrated circuit
JP3299071B2 (en) Output buffer circuit
US6559678B1 (en) Node predisposition circuit
KR950012028B1 (en) Semiconductor memory device with low noise output structure
KR20070076112A (en) Level shifter
JP2659794B2 (en) Data output circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees