JPH01157751A - Submerged nozzle for continuous casting - Google Patents

Submerged nozzle for continuous casting

Info

Publication number
JPH01157751A
JPH01157751A JP62316144A JP31614487A JPH01157751A JP H01157751 A JPH01157751 A JP H01157751A JP 62316144 A JP62316144 A JP 62316144A JP 31614487 A JP31614487 A JP 31614487A JP H01157751 A JPH01157751 A JP H01157751A
Authority
JP
Japan
Prior art keywords
molten steel
sectional area
nozzle
cross sectional
submerged nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62316144A
Other languages
Japanese (ja)
Other versions
JPH0461739B2 (en
Inventor
Koji Hosoya
浩二 細谷
San Nakato
中戸 参
Kenji Saito
健志 斎藤
Masao Oguchi
征男 小口
Haruyuki Okuda
治志 奥田
Kenichi Tanmachi
反町 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62316144A priority Critical patent/JPH01157751A/en
Priority to US07/283,789 priority patent/US4949778A/en
Priority to EP88311821A priority patent/EP0321206B1/en
Priority to DE8888311821T priority patent/DE3861957D1/en
Priority to KR1019880016815A priority patent/KR960004421B1/en
Priority to CA000585951A priority patent/CA1318766C/en
Priority to BR888806679A priority patent/BR8806679A/en
Publication of JPH01157751A publication Critical patent/JPH01157751A/en
Publication of JPH0461739B2 publication Critical patent/JPH0461739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve the quality of a cast slab by reducing the cross sectional area of molten steel passage in a submerged nozzle toward the lower part, forming discharging holes at the upper part and the lower part thereof and specifying the cross sectional area of the discharging holes and the molten steel passage. CONSTITUTION:The cross sectional area for the molten steel passage 3 in the submerged nozzle 1 is formed as reducing to the sectional areas S1, S2...Sn in order from the upper part and the discharging holes 2 having the cross sectional area s1, s2...sn are arranged in order at upper part and lower part of each reduced part. Then, coefficient of discharge K is set to 0.7<=K<=1.0 and the cross sectional area S1-Sn for each passage 3 and the cross sectional area s1-sn for each discharging hole 2 are set so as to satisfy each equation based on the consecutive equation and Bernoulli's equation. By this method, as the discharging speed of the molten steel from each discharging hole s1-sn in the submerged nozzle 1 is almost uniformized, the invading depth of the molten steel flow into the inner face in the cast slab is made to shallow and the enclosure of the inclusion is reduced. Therefore, the quality of the cast slab is improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、鋼の製造特にパウダー性介在物、酸化物系非
金属介在物の少ない清浄鋼の連続鋳造に用いる浸漬ノズ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an immersion nozzle used for manufacturing steel, particularly for continuous casting of clean steel with few powdery inclusions and oxide nonmetallic inclusions.

〈従来の技術〉 従来、鋼の連続鋳造に際して、注入溶鋼中に含まれてい
る酸化物系非金属介在物などが注入溶鋼流によって鋳片
内部に深く巻きこまれることが問題となっており、特に
、湾曲型の連鋳機では、−旦深く巻き込まれた非金属介
在物がメニスカス部分にまで浮上することがなく、凝固
殻の下面に把えられ、圧延後の鋼板の表面にスリバー、
ブリスター等の欠陥が発生するという問題が生じている
<Conventional technology> Conventionally, during continuous casting of steel, it has been a problem that oxide-based nonmetallic inclusions contained in the poured molten steel are deeply engulfed inside the slab by the poured molten steel flow. In a curved continuous casting machine, the non-metallic inclusions that are deeply rolled up do not float up to the meniscus area and are caught on the lower surface of the solidified shell, forming a sliver on the surface of the steel plate after rolling.
A problem has arisen in which defects such as blisters occur.

上記した問題を解決する技術として特開昭61−235
58号(先行技術l)、実開昭55−88347号(先
行技術2)に浸漬ノズルを改良して溶鋼流の未凝固域内
への侵入を防ぐ技術が開示されている。
Japanese Patent Application Laid-Open No. 61-235 as a technology to solve the above problems.
No. 58 (prior art 1) and Utility Model Application Publication No. 55-88347 (prior art 2) disclose a technique for improving a submerged nozzle to prevent the molten steel flow from entering the unsolidified region.

第5図に示した先行技術lにかかる浸漬ノズルは、!ズ
ル先端が半球状に湾曲しておりそこに設けられた3個以
上の吐出孔から溶鋼を流出させるものである。また第6
rjgJに示した浸漬ノズルは、ノズル下端に互いに反
対方向に水平または斜め上向きに開孔した2個の吐出孔
の直上に斜め下向きに開孔した2個の吐出孔を有し、流
出する溶鋼を衝突させようとするものである。
The immersion nozzle according to the prior art l shown in FIG. The tip of the slurry is curved into a hemispherical shape, and the molten steel flows out from three or more discharge holes provided therein. Also the 6th
The immersion nozzle shown in rjgJ has two discharge holes that are opened diagonally downward and directly above two discharge holes that are opened horizontally or diagonally upward in opposite directions at the lower end of the nozzle. It is intended to cause a collision.

これらのノズルについては、ノズル内部を通過する溶鋼
流速が大きくなると、下端の吐出孔のみから溶鋼は流出
し、かえって下向の速い流れを助長し溶鋼の侵入深さを
大きくしてしまうという問題点がある。
The problem with these nozzles is that when the flow velocity of the molten steel inside the nozzle increases, the molten steel flows out only from the discharge hole at the bottom end, instead promoting a fast downward flow and increasing the penetration depth of the molten steel. There is.

〈発明が解決しようとする問題点〉 本発明は、従来の浸漬ノズルでは溶鋼流の鋳片内部への
侵入深さが深く、非金属介在物の巻き込みを完全に防止
することが困難であったので、吐出孔からの流出速度を
均一化し溶鋼流に伴う気泡、非金属介在物の浮上を促進
させ欠陥のより少ない鋳片を製造する浸漬ノズルを提供
するためになされたものである。
<Problems to be Solved by the Invention> The present invention solves the problem that with conventional immersion nozzles, the penetration depth of the molten steel flow into the inside of the slab is deep, making it difficult to completely prevent nonmetallic inclusions from being entrained. Therefore, this method was developed in order to provide a submerged nozzle that uniformizes the outflow velocity from the discharge hole, promotes the floating of bubbles and nonmetallic inclusions accompanying the flow of molten steel, and produces slabs with fewer defects.

〈問題点を解決するための手段〉 本発明者らは、浸漬ノズルの吐出孔からの流出速度の均
一化について鋭意研究を重ねた結果、左右対称に、かつ
縦方向にそれぞれ複数個の吐出孔を設け、浸漬ノズルの
溶鋼通路を下部はど小さくすることによって目的を達成
できるとの知見を得、この知見にもとづいて本発明をな
すに至った。
<Means for Solving the Problems> As a result of extensive research into making the flow rate uniform from the discharge holes of the immersion nozzle, the present inventors discovered that a plurality of discharge holes are arranged symmetrically and vertically. The present inventors have found that the objective can be achieved by providing a molten steel passage of the immersion nozzle and making the lower part of the molten steel passage smaller. Based on this knowledge, the present invention has been completed.

本発明は、有底円筒ノズルの高さ方向に吐出口を左右対
称に複数個設けてなる浸漬ノズルであって、浸漬ノズル
の高さ方向に貫通する溶鋼通路の断面積を下部に向かっ
て絞り、絞った部分の上下部に吐出孔を開口せしめると
共に、各吐出孔の断面積(上から順に31+ s富、・
” !11−1+ s、 )と各吐出孔に対応する溶鋼
通路の断面積(上から順にSl+S2・・・5II−8
S11)について下記の関係を満足させたことを特徴と
する連続鋳造用浸漬ノズルである。
The present invention is an immersion nozzle in which a plurality of discharge ports are symmetrically provided in the height direction of a bottomed cylindrical nozzle, and the cross-sectional area of the molten steel passage passing through the immersion nozzle in the height direction is narrowed toward the bottom. , the discharge holes are opened at the top and bottom of the narrowed part, and the cross-sectional area of each discharge hole (31 + s wealth from the top, ・
!11-1+s, ) and the cross-sectional area of the molten steel passage corresponding to each discharge hole (Sl+S2...5II-8 in order from the top)
This immersion nozzle for continuous casting is characterized by satisfying the following relationship regarding S11).

・・・・・−・・・・・・・・・ は)0.7≦ K≦
1.0 く作 用〉。
・・・・・・−・・・・・・・・・ is)0.7≦K≦
1.0 Effect〉.

本発明に係る浸漬ノズル形状の一例を第1図に示した。An example of the shape of the submerged nozzle according to the present invention is shown in FIG.

この形状を選んだ理由を以下に説明する。The reason for choosing this shape will be explained below.

吐出孔を浸漬ノズルの縦方向に設置する場合に吐出孔面
積、溶鋼通路断面積の関係で必ずしも溶鋼流は、各吐出
孔から均一には流出しない。
When the discharge holes are installed in the vertical direction of the immersion nozzle, the molten steel flow does not necessarily flow uniformly from each discharge hole due to the relationship between the discharge hole area and the molten steel passage cross-sectional area.

下部吐出孔のみから溶鋼が流出するときには、速い下降
流となり、溶鋼流が鋳片の深(まで侵入する。また上部
の吐出孔のみから溶鋼が流出するときには、場面変動が
激しくなりパウダの巻き込みを生ずる。これらを防ぐた
めには各吐出孔からWjtmが等速度で流出できるよう
にすることが肝要である。
When molten steel flows out only from the lower discharge hole, it becomes a fast downward flow and penetrates deep into the slab. Also, when molten steel flows out only from the upper discharge hole, the scene changes rapidly and powder is not entrained. In order to prevent this, it is important to allow Wjtm to flow out from each discharge hole at a uniform speed.

本発明者らの研究の結果、円筒形浸漬ノズルにおける上
部吐出孔と下部吐出孔とからの溶鋼吐出流のアンバラン
スは、ノズル内流速の速い上部はベルヌーイの法則にし
たがって静圧が小さいためであることに起因することが
判明した。従って、浸漬ノズルの下部を細くすることに
よって溶鋼吐出流のバランスが得ら、れることが判った
As a result of the research conducted by the present inventors, the unbalance of the molten steel discharge flow from the upper discharge hole and the lower discharge hole in a cylindrical submerged nozzle is due to the fact that the static pressure is small in the upper part, where the flow velocity inside the nozzle is faster, according to Bernoulli's law. It turned out that it was caused by something. Therefore, it has been found that the balance of the molten steel discharge flow can be achieved by making the lower part of the immersion nozzle narrower.

ここで、吐出孔面積と溶鋼通路の絞り方の条件を以下に
説明する。
Here, the conditions for the discharge hole area and how to narrow the molten steel passage will be explained below.

第2図に本発明の浸漬ノズルにおける溶鋼通路面積、吐
出孔面積、溶鋼流速の関係をそれぞれ記号で示した。な
お、上部吐出孔からの流出の駆動力は絞り部で発生する
動圧によるものとする。
FIG. 2 shows the relationships among the molten steel passage area, discharge hole area, and molten steel flow rate in the immersion nozzle of the present invention, respectively, using symbols. Note that the driving force for outflow from the upper discharge hole is due to the dynamic pressure generated in the constriction section.

吐出孔2段の場合; 連続の式 ’ KSzUz  = 2に’  s 、 [1−−−
−(2)ベルヌーイの式 %式%(4) 吐出孔3段の場合; 連続の式 ベルヌーイの式 (6)〜Cりより ・・・・・・・−・・ 031 以上の式によって吐出孔面積と溶鋼′i!i路面積の関
係が決まる。
In the case of two stages of discharge holes; Continuity equation 'KSzUz = 2's, [1---
-(2) Bernoulli's formula % formula % (4) In the case of three stages of discharge holes; From the continuous formula Bernoulli's formula (6) to C... 031 The discharge hole is determined by the above formula. Area and molten steel'i! The relationship between i-road areas is determined.

なお、吐出孔を4段以上にすることもできるが上部吐出
孔がメニスカスに近づき場面変動を増大させる恐れがあ
るので吐出孔は2〜3段が最適である。
Although it is possible to have four or more stages of ejection holes, it is best to have two to three stages of ejection holes because the upper ejection holes may approach the meniscus and increase scene fluctuations.

ここでに、に’は流出係数であり、厳密には各流出部に
おけるに、に’の値は異なる訳であるが、近似的に縦方
向の流出係数はK、横方向の流出係数はに’  (これ
は式の導出過程で消去され、実用的影響はない)でそれ
ぞれ一定であると仮定できる。
Here, ni' is the runoff coefficient. Strictly speaking, the value of ni' in each outflow section is different, but approximately, the vertical runoff coefficient is K, and the horizontal runoff coefficient is K. ' (this is eliminated in the process of deriving the formula and has no practical effect), and can be assumed to be constant.

Kは前記のとおり流出係数で、経験的に0.8程度の値
となるものである。各流路断面としては0り。
As mentioned above, K is the runoff coefficient, which empirically has a value of about 0.8. The cross section of each channel is 0.

開式を満足する理想条件を多少外れても実用上は許され
る。実用上杵される断面積の範囲をKに含めて表現しな
おした許容係数(×K)をあらためてKと定義しなおす
とKが1以下0.7以上の条件が本発明における許容好
適範囲といえる。第3図に斜線で示した適正範囲は、K
が0.7以上1.0以下になるための吐出孔面積と溶鋼
通路断面積比との関係を示したものであり、ノズルの設
計にあたり、この適正範囲を満足させるように吐出孔断
面積比、溶鋼通路断面積比を設定すればよい。
In practice, it is permissible to deviate somewhat from the ideal conditions that satisfy the opening formula. If we redefine the tolerance coefficient (×K) as K, which is expressed by including the range of the cross-sectional area to be punched in practical use, then the condition where K is 1 or less and 0.7 or more is the preferred tolerance range in the present invention. I can say that. The appropriate range indicated by diagonal lines in Figure 3 is K
This shows the relationship between the discharge hole area and the molten steel passage cross-sectional area ratio so that the ratio is 0.7 or more and 1.0 or less. , the molten steel passage cross-sectional area ratio may be set.

吐出孔が2段の場合、あらかじめ吐出孔面積溶鋼通路面
積はノズルの大きさによって制限されるから、許容でき
る範囲で、Slを定めると38も計算される。
When there are two discharge holes, the discharge hole area and the molten steel passage area are limited in advance by the size of the nozzle, so if Sl is determined within an allowable range, 38 is calculated.

吐出孔が3段の場合も同様に、3つの吐出孔面積!++
 s宜、3.を決めておく、まず、の下部2段の面積比
が決まり、S、をノズルの大きさに従って決めるとS□
が計算される。また、S、の大きさも、 の計算によって算出した、Sl+ 5!+ s3+ S
l+ sxをを代入することによって求められる。
Similarly, if there are three discharge holes, the area of the three discharge holes! ++
s Yi, 3. First, the area ratio of the lower two stages of is determined, and if S is determined according to the nozzle size, S□
is calculated. Also, the size of S was calculated by the following calculation: Sl+5! + s3+ S
It is obtained by substituting l+sx.

この式より計算される上下の吐出流速を均一にする吐出
孔面積比(上部/上部十下部)と溶鋼通路面積比(下部
/上部)の範囲は第3図の実線にはさまれる範囲である
。しかしながら水モデルで検証した結果、上部吐出孔も
しくは下部吐出孔が著しく小さくなった場合、偏流、負
圧領域の増加がおこり、吐出孔面積比(上部/上部十下
部)が0.2〜0.8の範囲でないと流速の均一性が保
たれなかった、よって、適正範囲は第3図の斜線の範囲
である。また第3図中には上下吐出孔における最大流速
比の等高線も示しである。斜線部はほぼ最大流速比1.
4以内にある。
The range of the discharge hole area ratio (upper/upper/lower) and the molten steel passage area ratio (lower/upper) that makes the upper and lower discharge flow velocity uniform, calculated from this formula, is the range sandwiched between the solid lines in Figure 3. . However, as a result of verification using a water model, when the upper or lower discharge holes become significantly smaller, drifting and an increase in the negative pressure area occur, resulting in a discharge hole area ratio (upper/upper/lower) of 0.2 to 0. 8, the uniformity of the flow rate could not be maintained. Therefore, the appropriate range is the shaded range in FIG. Also shown in FIG. 3 are contour lines of the maximum flow velocity ratio in the upper and lower discharge holes. The shaded area is approximately the maximum flow velocity ratio of 1.
Within 4.

吐出孔面積を通常のノズルの1.7倍にし、上下の吐出
孔における最大流速比が1.0〜1.9の各ノズルを用
い、鋳込速度1.5m/sinで鋳造し、鋳片中に検出
された介在物の評価を第4図に示す。
Using each nozzle with a discharge hole area 1.7 times that of a normal nozzle and a maximum flow velocity ratio of 1.0 to 1.9 between the upper and lower discharge holes, casting was performed at a casting speed of 1.5 m/sin, and the slab was cast. Figure 4 shows the evaluation of inclusions detected inside.

最大流速比が、1.4以上になると、介在物が増加する
。また通常のノズルでは介在物評点は5.0であった。
When the maximum flow velocity ratio becomes 1.4 or more, inclusions increase. In addition, the inclusion rating for the normal nozzle was 5.0.

〈実施例〉 (5)式に基づいた吐出孔2段の本発明に係る浸漬ノズ
ル゛を製作し2.5t/sin、 4.Ot/sinの
給湯量の場合に、各吐出孔における流速比をあらかじめ
水モデルを用いピトー管で測定し、またそのヒートの鋳
片から試料を採取して介在物の評価を行った。
<Example> A submerged nozzle according to the present invention with two stages of discharge holes was manufactured based on equation (5), and the output was 2.5 t/sin.4. In the case of a hot water supply amount of Ot/sin, the flow rate ratio at each discharge hole was measured in advance using a pitot tube using a water model, and samples were taken from the slab of the heat to evaluate inclusions.

同時に第6図に示すような従来浸漬ノズルについても、
好適範囲から外れる比較例として同一条件で鋳造し、同
様に測定、評価を行い、その結果を第1表に示した。
At the same time, regarding the conventional immersion nozzle as shown in Figure 6,
As a comparative example outside the preferred range, it was cast under the same conditions and similarly measured and evaluated, and the results are shown in Table 1.

第1表かられかるように本発明の浸漬ノズルを使用する
ことによって介在物評点が半減しており成品の品質向上
に効果があることが明らかである。
As shown in Table 1, by using the immersion nozzle of the present invention, the inclusion score was halved, and it is clear that the use of the immersion nozzle of the present invention is effective in improving the quality of finished products.

第1表 〈発明の効果〉 本発明の浸漬ノズルを使用することによって、溶鋼流の
鋳片内部への侵入深さを浅くし、非金属介在物の鋳片へ
の巻き込み量を低減し、鋳片の品質の向上ができた。
Table 1 <Effects of the Invention> By using the immersion nozzle of the present invention, the penetration depth of the molten steel flow into the slab can be reduced, the amount of nonmetallic inclusions caught in the slab can be reduced, and the The quality of the pieces was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、本発明の浸漬ノズルの正面図、第1図
(ロ)はその側面図、第2図は、本発明の浸漬ノズルの
吐出孔面積、溶鋼通路面積の説明図、第3図は、吐出孔
面積比とf!Jf/!4通路面積比の適正範囲を示す特
性図、第4図は、浸漬ノズルの最大流速比と介在物評点
との関係を示す特性図、第5図(a)は、従来ノズルの
正面断面図、第5図(ロ)はその側面図、第6図は、従
来ノズルの正面断面図である。 l・・・浸漬ノズル、 2・・・吐出孔、 3・・・溶鋼通路。 特許出願人   川崎製鉄株式会社 第  1  図 (a)     (b) 第  2  図 吐出孔2段の場合         吐出孔3段の場合
第  3  図 吐出孔面積比 (上部/上部十下部)B第  4  図 最  大  流  速  比 第  5  図 第  6  図
FIG. 1(a) is a front view of the immersion nozzle of the present invention, FIG. 1(b) is a side view thereof, and FIG. 2 is an explanatory diagram of the discharge hole area and molten steel passage area of the immersion nozzle of the present invention. Figure 3 shows the discharge hole area ratio and f! Jf/! FIG. 4 is a characteristic diagram showing the appropriate range of the four-passage area ratio; FIG. 4 is a characteristic diagram showing the relationship between the maximum flow velocity ratio of the submerged nozzle and the inclusion score; FIG. 5(a) is a front sectional view of a conventional nozzle; FIG. 5(b) is a side view thereof, and FIG. 6 is a front sectional view of the conventional nozzle. l... Immersion nozzle, 2... Discharge hole, 3... Molten steel passage. Patent applicant: Kawasaki Steel Corporation Figure 1 (a) (b) Figure 2 In the case of two stages of discharge holes In the case of three stages of discharge holes Figure 3 Discharge hole area ratio (upper/upper ten lower) B Figure 4 Large flow velocity ratio Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 有底円筒ノズルの高さ方向に吐出口を左右対称に複数個
設けてなる浸漬ノズルであって、浸漬ノズルの高さ方向
に貫通する溶鋼通路の断面積を下部に向かって絞り、絞
った部分の上下部に吐出孔を開口せしめると共に、各吐
出孔の断面積(上から順にs_1、s_2・・・s_n
_−_1、s_n)と各吐出孔に対応する溶鋼通路の断
面積(上から順にS_1、S_2・・・S_n_−_1
、S_n)について下記の関係を満足させたことを特徴
とする連続鋳造用浸漬ノズル。 記 K^2〔S_2/S_1〕^3=〔S_2+…+S_n
/S_1+S_2+…+S_n〕^2……(1) 〔S_3/S_2〕^3=〔S_3+…+S_n/S_
2+S_3+…+S_n〕^2……(2) 〔S_n/S_n_−_1〕^3=〔S_n/S_n_
−_1+S_n〕^2……(n) 0.7≦K≦1.0
[Claims] A submerged nozzle comprising a bottomed cylindrical nozzle with a plurality of discharge ports symmetrically provided in the height direction, the cross-sectional area of the molten steel passage passing through the submerged nozzle in the height direction toward the bottom. to open the discharge holes at the top and bottom of the squeezed part, and the cross-sectional area of each discharge hole (s_1, s_2...s_n in order from the top)
_-_1, s_n) and the cross-sectional area of the molten steel passage corresponding to each discharge hole (S_1, S_2...S_n_-_1
, S_n), the submerged nozzle for continuous casting is characterized by satisfying the following relationship. Note K^2 [S_2/S_1]^3=[S_2+…+S_n
/S_1+S_2+...+S_n]^2...(1) [S_3/S_2]^3=[S_3+...+S_n/S_
2+S_3+...+S_n]^2...(2) [S_n/S_n_-_1]^3=[S_n/S_n_
-_1+S_n]^2...(n) 0.7≦K≦1.0
JP62316144A 1987-12-16 1987-12-16 Submerged nozzle for continuous casting Granted JPH01157751A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62316144A JPH01157751A (en) 1987-12-16 1987-12-16 Submerged nozzle for continuous casting
US07/283,789 US4949778A (en) 1987-12-16 1988-12-13 Immersion nozzle for continuous casting
EP88311821A EP0321206B1 (en) 1987-12-16 1988-12-14 Immersion nozzle for continuous casting
DE8888311821T DE3861957D1 (en) 1987-12-16 1988-12-14 SUBMERSIBLE PIPE FOR CONTINUOUS CASTING.
KR1019880016815A KR960004421B1 (en) 1987-12-16 1988-12-15 Immersion nozzle for continuous casting
CA000585951A CA1318766C (en) 1987-12-16 1988-12-15 Immersion nozzle for continuous casting
BR888806679A BR8806679A (en) 1987-12-16 1988-12-16 IMMERSION TUBE FOR CONTINUOUS CASTING AND CONTINUOUS CASTING PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316144A JPH01157751A (en) 1987-12-16 1987-12-16 Submerged nozzle for continuous casting

Publications (2)

Publication Number Publication Date
JPH01157751A true JPH01157751A (en) 1989-06-21
JPH0461739B2 JPH0461739B2 (en) 1992-10-01

Family

ID=18073754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316144A Granted JPH01157751A (en) 1987-12-16 1987-12-16 Submerged nozzle for continuous casting

Country Status (1)

Country Link
JP (1) JPH01157751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198655A (en) * 2005-01-20 2006-08-03 Nippon Steel Corp Porous immersion nozzle, and continuous casting method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198655A (en) * 2005-01-20 2006-08-03 Nippon Steel Corp Porous immersion nozzle, and continuous casting method using the same

Also Published As

Publication number Publication date
JPH0461739B2 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
EP0321206B1 (en) Immersion nozzle for continuous casting
JPH01157751A (en) Submerged nozzle for continuous casting
CN106041042B (en) Special-shaped stainless steel continuous casting tundish
CN109047695A (en) A kind of immersed nozzle for continuous casting mould Argon control method
KR20090073500A (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
US3703924A (en) Apparatus for introducing molten metal into a strand casting mold
JPS564349A (en) Tundish for continuous casting
JP6818980B2 (en) Bottom pouring ingot equipment
JPH0422538A (en) Method for continuously casting beam blank
CN210188475U (en) Casting spoon for casting triangular test piece
CN220515409U (en) Slag blocking weir structure for steel continuous casting machine
JPH0238058B2 (en)
JPH10128506A (en) Immersion nozzle for continuous casting
CN209050112U (en) A kind of submersed nozzle
JP3697040B2 (en) Immersion nozzle for continuous casting of steel and method for continuous casting of steel using the same
JPS6264461A (en) Device for accelerating flotation of inclusion in molten steel
JPH04238658A (en) Immersion nozzle for continuous casting
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JPH0270354A (en) Method for casting extremely low carbon titanium killed steel
Hang et al. Full-scale Water Modeling on Flow Field of Continuous Casting Mold
JPS6235565Y2 (en)
JPS6372452A (en) Tundish weir
JPH0866751A (en) Continuous casting method and immersion nozzle
JPS623867A (en) Production of vertically short steel ingot
JPS55128356A (en) Decreasing method for inclusion in molten steel at continuous cast pouring time

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees