JP6818980B2 - Bottom pouring ingot equipment - Google Patents

Bottom pouring ingot equipment Download PDF

Info

Publication number
JP6818980B2
JP6818980B2 JP2017154260A JP2017154260A JP6818980B2 JP 6818980 B2 JP6818980 B2 JP 6818980B2 JP 2017154260 A JP2017154260 A JP 2017154260A JP 2017154260 A JP2017154260 A JP 2017154260A JP 6818980 B2 JP6818980 B2 JP 6818980B2
Authority
JP
Japan
Prior art keywords
molten steel
runner
mold
branch
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017154260A
Other languages
Japanese (ja)
Other versions
JP2018058109A (en
Inventor
上田 直樹
直樹 上田
宏忠 新井
宏忠 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2018058109A publication Critical patent/JP2018058109A/en
Application granted granted Critical
Publication of JP6818980B2 publication Critical patent/JP6818980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、型内剤の巻込みを防止して、介在物欠陥の発生が抑えられた鋼塊を鋳造する下注ぎ造塊設備に関するものである。 The present invention relates to a bottom pouring ingot making facility for casting a steel ingot in which the entrainment of an in-mold agent is prevented and the occurrence of inclusion defects is suppressed.

従来より、鋳型を用いて鋼塊を製造する造塊には、溶鋼の注入方向の違いから「下注ぎ造塊」と「上注造塊」の2種類がある。「上注ぎ造塊」は、取鍋の溶鋼を、鋳型の上部より直接鋳型内に注ぎ込むものである。これに対して、「下注ぎ造塊」は、取鍋の溶鋼を、水平方向に沿って形成された湯道、及び上下方向に沿って垂直に設けられた注入管や注湯管などを経由して、鋳型の底部に設けられた注入口、つまり取鍋の下側から鋳型内に注ぎ込むものとなっている。 Conventionally, there are two types of ingots for producing steel ingots using a mold, "bottom-pouring ingots" and "top-pouring ingots", depending on the difference in the injection direction of molten steel. "Top pouring ingot" is to pour the molten steel of the ladle directly into the mold from the top of the mold. On the other hand, in the "bottom pouring ingot", the molten steel of the ladle is passed through a runner formed in the horizontal direction and an injection pipe or a pouring pipe provided vertically along the vertical direction. Then, it is poured into the mold from the injection port provided at the bottom of the mold, that is, from the lower side of the ladle.

ところで、上述した「下注ぎ造塊」では、通常、溶鋼の酸化防止や鋳片肌を改善する目的で、鋳型内にパウダー状の型内剤が使用される。このとき、鋳型の底部の注入口から上向きに噴出された溶鋼が、鋳型内で注入流を発生させる。特に、鋳造初期には、この注入流によって鋳型内に添加された型内剤が溶鋼中に巻き込まれ、鋼塊内に捕捉されてしまうことがある。このような溶鋼への型内剤の巻き込みが生じると、鋼塊側面の凝固殻に捕捉された型内剤が介在物欠陥を生じさせる可能性がある。 By the way, in the above-mentioned "bottom-pouring ingot", a powder-like in-mold agent is usually used in a mold for the purpose of preventing oxidation of molten steel and improving the surface of slabs. At this time, the molten steel ejected upward from the injection port at the bottom of the mold generates an injection flow in the mold. In particular, in the initial stage of casting, the in-mold agent added to the mold by this injection flow may be caught in the molten steel and trapped in the ingot. When the in-mold agent is involved in such molten steel, the in-mold agent trapped in the solidified shell on the side surface of the ingot may cause inclusion defects.

このような型内剤の巻き込みを防止するために、従来の下注造塊方法では、以下の特許文献1〜特許文献3に示すような手段を設けている。
例えば、特許文献1には、鋳型の底部に設けられた吐出口から溶融金属を鋳型内に吐出する下注ぎ方式の注湯方法に使用される注湯管に関する発明であって、先端部が前記吐出孔に連通している注湯管において、前記吐出口から下方へ長さLまでの領域内の注湯管の内孔の形状が、横方向断面(溶融金属進行方向に垂直な方向の断面をいう)の径が前記吐出口たる起点から下方向に向かって漸次曲線で縮径し、かつその漸次縮径する曲線が、注湯管の中心軸を通過する縦方向断面において所定の式によって表される形状を有することを特徴とするものが開示されている。この特許文献1の注湯管を用いれば、溶融金属の下注ぎ方式の注湯方法において、注湯速度を低下させることなく、複雑な装置を設置する等の生産性低下やコスト上昇等を招来することのない簡易な方法で、注湯中の鋳型内溶融金属の湯面方向(直上方向)の流速を低減させ、非金属介在物や酸化に伴う金属鋳塊の品質低下を低減することできるとされている。
In order to prevent such entrainment of the in-mold agent, the conventional under-injection mass-forming method is provided with means as shown in Patent Documents 1 to 3 below.
For example, Patent Document 1 describes an invention relating to a pouring pipe used in a pouring method of a bottom pouring method in which molten metal is discharged into a mold from a discharge port provided at the bottom of the mold, wherein the tip portion is described above. In the pouring pipe communicating with the discharge hole, the shape of the inner hole of the pouring pipe in the region from the discharge port to the length L downward is a cross section (a cross section in the direction perpendicular to the molten metal advancing direction). ) Is gradually reduced in diameter from the starting point of the discharge port downward, and the gradually reduced diameter curve is formed by a predetermined formula in the vertical cross section passing through the central axis of the pouring pipe. Those characterized by having the represented shape are disclosed. If the pouring pipe of Patent Document 1 is used, in the pouring method of the molten metal bottom pouring method, productivity and cost increase such as installation of a complicated device are caused without lowering the pouring speed. It is possible to reduce the flow velocity of the molten metal in the mold during pouring in the direction of the molten metal surface (directly above) and reduce the deterioration of the quality of the metal ingot due to non-metal inclusions and oxidation by a simple method that does not require any work. It is said that.

また、特許文献2には、湯道形状を変更することで、鋳込流量を変更することなく、吐出圧を低減させ、型内材巻き込みを低減する下注ぎ造塊の技術が開示されている。つまり、下注ぎ造塊において吐出圧が大きい場合、溶鋼表面の型内材が外周部に追いやられ、目玉と呼ばれる裸湯ゾーンが形成されることで、再酸化や水素ピックアップ、溶鋼温度低下などの問題が発生する。そのため、裸湯ゾーンの形成を抑制できるように型内材を多量に添加する必要があるが、型内材の多量添加は型内材の巻き込みを増長する。吐出圧を減少させて型内材の巻き込みを低減することもできるが、吐出圧の減少は製造効率の観点から鋳込流量を減少させることができない。 Further, Patent Document 2 discloses a technique of bottom pouring ingot that reduces the discharge pressure and reduces the entrainment of the inner material in the mold without changing the casting flow rate by changing the shape of the runner. .. In other words, when the discharge pressure is large in the bottom pouring ingot, the inner material of the mold on the surface of the molten steel is driven to the outer periphery, and a bare water zone called the centerpiece is formed, which causes reoxidation, hydrogen pickup, lowering of the molten steel temperature, etc. Problems occur. Therefore, it is necessary to add a large amount of the inner material in the mold so as to suppress the formation of the bare hot water zone, but the large amount of the inner material in the mold increases the entrainment of the inner material in the mold. Although the discharge pressure can be reduced to reduce the entrainment of the inner material in the mold, the reduction in the discharge pressure cannot reduce the casting flow rate from the viewpoint of manufacturing efficiency.

さらに、特許文献3には、2つ以上並設された鋳型への下注ぎ造塊する際に、従来から注入管寄りの鋳型において観察されることが多かった鋳造欠陥に対して、この鋳造欠陥の発生を防止することができる造塊技術が開示されている。つまり、2つ以上並設された鋳型に下注ぎ造塊を行う場合、溶鋼注入初期においては鋳型内の静水圧抵抗が少ないので注入管に近い鋳型ほど勢いよく溶鋼が流れ込んで鋳型内の溶鋼の乱れが大きくなり、溶鋼表面が溶鋼被覆剤で完全に覆われなくなり、大気接触によって再酸化が生じたり、溶鋼被覆剤が溶鋼に巻き込まれたりするといった問題があった。そこで、特許文献3の技術では、鋳型下部に形成される湯道断面積を上流ほど大きく形成することで吐出圧を低減し、注入管寄り鋳型において観察されることの多かった鋳造欠陥を防止するとともに、溶鋼被覆剤を節約することを可能にしている。 Further, in Patent Document 3, when pouring and ingoting into two or more side-by-side molds, this casting defect is opposed to a casting defect that has been often observed in a mold near the injection pipe. The ingot-forming technology that can prevent the occurrence of In other words, when pouring ingots into two or more molds arranged side by side, the hydrostatic pressure resistance in the mold is small at the initial stage of molten steel injection, so the mold closer to the injection pipe is more vigorous and the molten steel flows into the mold. There are problems that the turbulence becomes large, the surface of the molten steel is not completely covered with the molten steel coating agent, reoxidation occurs due to atmospheric contact, and the molten steel coating agent is caught in the molten steel. Therefore, in the technique of Patent Document 3, the discharge pressure is reduced by forming the runner cross-sectional area formed in the lower part of the mold larger toward the upstream side, and the casting defect often observed in the mold near the injection pipe is prevented. It makes it possible to save molten steel coating.

特開2012−086233号公報Japanese Unexamined Patent Publication No. 2012-086233 特開平9−239494号公報Japanese Unexamined Patent Publication No. 9-239494 特開昭61−023555号公報Japanese Unexamined Patent Publication No. 61-023555

ところで、従来より、造塊における生産性向上の要求から、1本の湯道から複数の鋳型に対して注湯を行う造塊設備が採用されている。このような1本の湯道から複数の鋳型に注湯を行う造塊設備では、湯道の溶鋼の一部が湯道に対してT字状に分岐した分岐路に分流され、分岐路を経由してそれぞれの鋳型に注湯が行われる。
しかしながら、湯道の途中にT字状に分岐した分岐部を設けると、分岐部では溶鋼の流れに偏りが発生しやすいため、この溶鋼の流れの偏り(以降、偏流という)が注入口での溶鋼の流れにも大きな偏りを発生させることになる。上述した偏流が大きくなるかどうかは湯道から分岐路に流れ込む溶鋼の流入速度に影響されるものであり、分岐路に流れ込む溶鋼の流入速度は取鍋に近い鋳型ほど大きくなるため、偏流の発生状態も鋳型によって異なったものとなる。
By the way, conventionally, in order to improve productivity in ingot making, a ingot making facility for pouring hot water from one runner into a plurality of molds has been adopted. In such an ingot making facility that pours hot water from one runner into a plurality of molds, a part of the molten steel of the runner is divided into a T-shaped branch with respect to the runner, and the branch is formed. Hot water is poured into each mold via.
However, if a T-shaped branch is provided in the middle of the runner, the flow of molten steel tends to be biased at the branch, and this bias in the flow of molten steel (hereinafter referred to as drift) occurs at the injection port. It will also cause a large bias in the flow of molten steel. Whether or not the above-mentioned drift becomes large depends on the inflow rate of molten steel flowing from the runner into the branch path, and the inflow rate of molten steel flowing into the branch path increases as the mold is closer to the ladle, so that the drift occurs. The state also differs depending on the mold.

つまり、上述した特許文献1や特許文献2の技術は、鋳型ごとに異なる偏流の発生状態を考慮したものとなっておらず、1本の湯道から複数の鋳型に対して注湯を行う造塊設備に対応したものとはなっていない。当然、特許文献1や特許文献2の技術を用いても、十分な吐出圧低下効果が得られる可能性は低い。
また、特許文献3の造塊技術は、上流側から下流側に欠けて断面積が段階的に小さくなる湯道を用いたものである。このような湯道を設ければ、取鍋に近い上流側の湯道での溶鋼の流速を低減することができ、上流側の鋳型で大きな偏流が発生することを抑制でき、溶鋼被覆剤の巻き込み低減も可能となる。しかし、上述した断面積が段階的に小さくなる湯道を設けると、造塊設備の構成が複雑となり、初期設置コストやランニングコストも大きいものとなる。
That is, the techniques of Patent Document 1 and Patent Document 2 described above do not take into consideration the state of occurrence of drift that differs for each mold, and a structure in which hot water is poured into a plurality of molds from one runner. It is not compatible with mass equipment. Of course, even if the techniques of Patent Document 1 and Patent Document 2 are used, it is unlikely that a sufficient discharge pressure lowering effect can be obtained.
Further, the ingot-forming technique of Patent Document 3 uses a runner that is chipped from the upstream side to the downstream side and the cross-sectional area is gradually reduced. If such a runner is provided, the flow velocity of the molten steel in the runner on the upstream side near the ladle can be reduced, the occurrence of large drift in the mold on the upstream side can be suppressed, and the molten steel coating agent can be used. Entrainment can also be reduced. However, if the above-mentioned runner whose cross-sectional area is gradually reduced is provided, the configuration of the ingot making facility becomes complicated, and the initial installation cost and the running cost become large.

本発明は、上述の問題に鑑みてなされたものであり、1本の湯道から複数の鋳型に対して下注ぎで注湯を行う場合において、鋳型の注入口での偏流発生と型内材の巻き込みを効果的に抑制でき、健全且つ高清浄な鋼塊を簡便な設備構成を用いて低コストで製造することができる下注ぎ造塊設備を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and when pouring water from one runner into a plurality of molds by pouring underneath, the occurrence of drift at the injection port of the mold and the material inside the mold. It is an object of the present invention to provide a bottom pouring ingot making facility capable of effectively suppressing the entrainment of steel and producing a healthy and highly clean steel ingot at a low cost by using a simple facility configuration.

上記課題を解決するため、本発明の下注ぎ造塊設備は以下の技術的手段を講じている。
即ち、本発明の下注ぎ造塊設備は、湯道からT字状に分岐した分岐路に溶鋼を導き入れて、当該分岐路の先にある鋳型に溶鋼を注入して造塊を行う造塊設備であって、前記湯道から分岐路が上方に向かってT字状に分岐している分岐部には、当該分岐部の上隅が上方に向かって角箱形状に凹んだ角箱部と、角箱部と分岐路との角が丸面取りされた丸面取部と、が形成されており、前記角箱部の湯道に沿った寸法をX、前記丸面取部の曲率半径をR、前記湯道及び分岐路の吐出口側の内径をdとした際に、前記角箱部の寸法X、前記丸面取部の曲率半径R、前記内径dとの間に、以下の式(2)の関係が成り立つことを特徴とする。
[数2]
d×0.2≦X≦d×0.7
d×0.1≦R≦d×0.5・・・(2)
好ましくは、前記湯道には、当該湯道における溶鋼の流れ方向に沿って少なくとも2基以上の鋳型が並んで配設されており、前記角箱部及び丸面取部が、前記溶鋼の流れ方向における上流側に配設された鋳型に溶鋼を分岐する分岐部に形成されているとよい。
In order to solve the above problems, the bottom pouring ingot making facility of the present invention takes the following technical measures.
That is, in the bottom pouring ingot making facility of the present invention, molten steel is introduced into a branch path branched into a T shape from a runner, and molten steel is injected into a mold at the end of the branch path to ingot. In the equipment, the branching part where the branching path branches upward from the runner in a T-shape has a square box part in which the upper corner of the branching part is recessed upward in a square box shape. , A round chamfered portion with rounded corners between the square box portion and the branch path is formed, the dimension of the square box portion along the runner is X, and the radius of curvature of the round chamfered portion is When R, the inner diameter on the discharge port side of the runner and the branch path is d, the following formula is formed between the dimension X of the square box portion, the radius of curvature R of the round chamfered portion, and the inner diameter d. The feature is that the relationship (2) is established.
[Number 2]
d × 0.2 ≦ X ≦ d × 0.7
d × 0.1 ≦ R ≦ d × 0.5 ... (2)
Preferably, at least two or more molds are arranged side by side in the runner along the flow direction of the molten steel in the runner, and the square box portion and the round chamfer portion form the flow of the molten steel. It is preferable that it is formed at a branch portion where molten steel is branched into a mold arranged on the upstream side in the direction.

好ましくは、前記角箱部及び丸面取部は、前記湯道における溶鋼の流れ方向に対して、前記分岐部における流れ方向の下流側に形成されているとよい。 Preferably, the square box portion and the round chamfered portion are formed on the downstream side of the flow direction of the branch portion with respect to the flow direction of the molten steel in the runner.

本発明の下注ぎ造塊設備によれば、1本の湯道から複数の鋳型に対して下注ぎで注湯を行う場合において、鋳型の注入口での偏流発生と型内材の巻き込みを効果的に抑制でき、健全且つ高清浄な鋼塊を簡便な設備構成を用いて低コストで製造することができる。 According to the bottom-pouring ingot-making equipment of the present invention, when pouring hot water from one runner into a plurality of molds by pouring, it is effective to generate drift at the injection port of the mold and entrain the inner material of the mold. It is possible to produce a healthy and highly clean steel ingot at low cost by using a simple equipment configuration.

第1実施形態の下注ぎ造塊設備を模式的に示した図である。It is a figure which showed typically the underpouring ingot making equipment of 1st Embodiment. 第1実施形態の下注ぎ造塊設備の湯道配置を示した図である。It is a figure which showed the runner arrangement of the bottom pouring mass-forming equipment of the 1st Embodiment. 図2のA部分を拡大して示した断面図である。It is sectional drawing which showed the part A of FIG. 2 enlarged. 分岐管内部に発生する溶鋼の流動状態を、従来の分岐管と第1実施形態の分岐管とで比較して示した図である。It is a figure which showed the flow state of molten steel generated in the branch pipe by comparison with the conventional branch pipe and the branch pipe of 1st Embodiment. 図1の拡大図である。It is an enlarged view of FIG. 第1実施形態の下注ぎ造塊設備において湯道平均流速と吐出口最大流速との関係をグラフとして示したものである。The relationship between the average flow velocity of the runner and the maximum flow velocity of the discharge port in the bottom pouring ingot mass equipment of the first embodiment is shown as a graph. 従来の下注ぎ造塊設備の鋳型内に発生する溶鋼の流れを示した図である。It is a figure which showed the flow of molten steel generated in the mold of the conventional bottom pouring ingot making equipment. 第2実施形態の下注ぎ造塊設備を示した図である。It is a figure which showed the bottom pouring mass-forming equipment of the 2nd Embodiment. 第2実施形態の下注ぎ造塊設備の分岐部を拡大して示した図である。It is an enlarged view which showed the branch part of the bottom pouring ingot mass production facility of 2nd Embodiment. 従来の下注ぎ造塊設備に設けられた分岐管内部に発生する溶鋼の流動状態を示した図である。It is a figure which showed the flow state of molten steel generated in the branch pipe provided in the conventional bottom pouring ingot building equipment. 分岐部に角箱部のみを形成した分岐管内部に発生する溶鋼の流動状態を示した図である。It is a figure which showed the flow state of the molten steel generated in the branch pipe which formed only the square box part in the branch part. 分岐部に角箱部及び丸面取部を形成した第2実施形態の分岐管内部に発生する溶鋼の流動状態を示した図である。It is a figure which showed the flow state of the molten steel generated in the branch pipe of the 2nd Embodiment which formed the square box part and the round chamfer part in the branch part. 第2実施形態の下注ぎ造塊設備における湯道平均流速と吐出口最大流速との関係を、角箱部の寸法ごとに比較して示したグラフである。It is a graph which showed the relationship between the average flow velocity of a runner and the maximum flow velocity of a discharge port in the bottom pouring ingot mass equipment of 2nd Embodiment by comparison for each dimension of the square box part. 第2実施形態の下注ぎ造塊設備における湯道平均流速と吐出口最大流速との関係を、丸面取部の曲率半径ごとに比較して示したグラフである。It is a graph which showed the relationship between the average flow velocity of a runway and the maximum flow velocity of a discharge port in the bottom pouring ingot mass equipment of 2nd Embodiment by comparison for each radius of curvature of a round chamfering part.

[第1実施形態]
以下、本発明の下注ぎ造塊設備1の実施形態を、図面に基づき詳しく説明する。
一般的に鋼塊を造塊する方法としては、鋳型内で溶鋼を凝固させて鋼片を製造する際の溶鋼の注入方法によって、下注ぎ造塊と上注ぎ造塊の2種類が知られている。上注ぎ造塊は取鍋の溶鋼を鋳型の上部の開口部から直接鋳型にを注ぎ込んで鋳造するのに対し、下注ぎ造塊は、ロート状の注ぎ口が上端に設けられた注入管2と呼ばれる垂直の管に溶鋼を注ぎ込み、注入管2の下端に接続された湯道3を介して溶鋼を水平方向に流通させ、湯道3から注湯管を介して溶鋼を鋳型5の下側から注湯できるようになっている。下注ぎ造塊は上注ぎ造塊よりも良好な鋳肌が得られるという利点があり、品質が重視される高級鋼の製造などに適用される。また、一度の造塊で1本の鋼片(鋼塊)しか生産できない上注ぎ造塊と比較して、下注ぎ造塊は一つの注入管2から湯道3(ランナー3)を介して溶鋼を分岐させることで、複数の鋳型5で鋼片(鋼塊)を同時に鋳込むことができる。そのため、上注ぎ造塊よりも生産性が高い下注ぎ造塊は連続鋳造法で鋳造できない鋼種や大断面の鋼塊製造において広く行われている。なお、第1実施形態及び第2実施形態の下注ぎ造塊設備1は、上述した2つの造塊法のうち、下注ぎ造塊を対象するものとなっている。
[First Embodiment]
Hereinafter, an embodiment of the bottom pouring ingot making facility 1 of the present invention will be described in detail with reference to the drawings.
Generally, there are two known methods for ingot steel, one is bottom pouring and the other is top pouring, depending on the method of injecting molten steel when solidifying molten steel in a mold to produce steel pieces. There is. In the top pouring ingot, the molten steel of the ladle is poured directly into the mold through the opening at the top of the mold and cast, whereas in the bottom pouring ingot, the injection pipe 2 having a funnel-shaped spout at the upper end Molten steel is poured into a vertical pipe called, molten steel is circulated in the horizontal direction through a runner 3 connected to the lower end of the injection pipe 2, and molten steel is poured from the lower side of the mold 5 from the runner 3 through the pouring pipe. You can pour hot water. The bottom-pouring ingot has the advantage of obtaining a better casting surface than the top-pouring ingot, and is applied to the production of high-grade steel where quality is important. In addition, compared to the top-pouring ingot, which can produce only one piece of steel (steel ingot) at one time, the bottom-pouring ingot is made of molten steel from one injection pipe 2 via a runner 3 (runner 3). By branching, steel pieces (steel ingots) can be cast at the same time with a plurality of molds 5. Therefore, the bottom pouring ingot, which has higher productivity than the top pouring ingot, is widely used in the production of steel types and large cross-section steel ingots that cannot be cast by the continuous casting method. The bottom-pouring ingot-forming equipment 1 of the first embodiment and the second embodiment is intended for the under-pouring ingot-forming method of the above-mentioned two ingot-forming methods.

図1に示すように、上述した下注ぎ造塊を行う本実施形態の下注ぎ造塊設備1は、鋳造に用いる溶鋼が装入された取鍋6と、取鍋6の下方に設けられると共に上下方向に沿って垂直に起立した注入管2と、を備えている。この注入管2の上端は取鍋6に繋がっており、取鍋6内の溶鋼を注入管2の内部を通して下方に案内できるようになっている。また、注入管2の下側には、溶鋼を水平方向に送る湯道3が配備されており、湯道3の中途側には複数本の分岐路4が設けられていて、湯道3及び分岐路4を経由して複数の鋳型5のそれぞれに溶鋼を注入可能となっている。 As shown in FIG. 1, the underpouring ingot making facility 1 of the present embodiment for performing the above-mentioned underpouring ingot is provided in the ladle 6 in which the molten steel used for casting is charged and below the ladle 6. It includes an injection pipe 2 that stands vertically along the vertical direction. The upper end of the injection pipe 2 is connected to the ladle 6, and the molten steel in the ladle 6 can be guided downward through the inside of the injection pipe 2. Further, a runner 3 for sending molten steel in the horizontal direction is provided on the lower side of the injection pipe 2, and a plurality of branch paths 4 are provided on the middle side of the runner 3, and the runner 3 and Molten steel can be injected into each of the plurality of molds 5 via the branch path 4.

具体的には、第1実施形態の下注ぎ造塊設備1は、床面などに対して水平方向に移動可能とされた定盤上に台盤7を配置し、台盤7上に上述した鋳型5(モールド)が配置されている。また、定盤と台盤7の双方を上下方向に貫通するように湯道3用の貫通孔8が形成されている。この貫通孔8の内壁には耐火煉瓦が内張りされていて、丸孔状の湯道3が形成されている。また、取鍋6の下部には注入ノズル9が設置されており、注入ノズル9から上述した注入管2のロート状の注ぎ口に溶鋼を注ぎ込み、注入管2の下側に接続された湯道3を経由して、鋳型5側に溶鋼が送られる。このようにして鋳型5側に送られてきた溶鋼は、鋳型5の底部の注入口から鋳型5内に下方から流し込まれ、流し込まれた溶鋼を凝固させることで鋼片(鋼塊)が製造される。 Specifically, in the bottom-pouring ingot-forming facility 1 of the first embodiment, the base plate 7 is arranged on a surface plate that can be moved in the horizontal direction with respect to the floor surface or the like, and the base plate 7 is described above. A mold 5 (mold) is arranged. Further, a through hole 8 for the runner 3 is formed so as to penetrate both the surface plate and the base plate 7 in the vertical direction. Refractory bricks are lined on the inner wall of the through hole 8 to form a round hole-shaped runner 3. Further, an injection nozzle 9 is installed in the lower part of the ladle 6, and molten steel is poured from the injection nozzle 9 into the funnel-shaped spout of the injection pipe 2 described above, and a runner connected to the lower side of the injection pipe 2. The molten steel is sent to the mold 5 side via 3. The molten steel sent to the mold 5 side in this way is poured into the mold 5 from below through the injection port at the bottom of the mold 5, and the molten steel poured is solidified to produce steel pieces (steel ingots). Ru.

なお、上述した下注ぎ造塊法では、鋳込み時の溶鋼の大気酸化や溶鋼温度の低下などを防ぐために、鋳型5内の溶鋼表面を型内材(溶鋼被覆剤)で覆うようにして造塊が行われる。
また、図2に示すように、上述した湯道3は、注入管2の下端から外側に向かって水平方向に沿って形成されており、注入管2の下端から左右もしくは前後の多方向に向かって複数に分岐された湯道3を経由して取鍋6の溶鋼が流通されている。そして、複数の湯道3の溶鋼は、それぞれの湯道3に設けられた分岐路4を通って各鋳型5に導かれ、各鋳型5の底の注入口から当該鋳型5に溶鋼が注湯される。第1実施形態の下注ぎ造塊設備1の場合、1本の注入管2の下端に、注入管2の下端を起点として放射状に伸びるように4本の湯道3が形成されている。つまり、これら4本の湯道3のそれぞれはランナー3とも呼ばれており、それぞれのランナー3には5基の鋳型5が配備されていて、第1実施形態の下注ぎ造塊設備1は4本のランナー3と合計で20基の鋳型5を有したものとなっている。
In the above-mentioned bottom pouring ingot method, the surface of the molten steel in the mold 5 is covered with an inner mold material (molten steel coating agent) in order to prevent atmospheric oxidation of the molten steel and a decrease in the molten steel temperature during casting. Is done.
Further, as shown in FIG. 2, the above-mentioned runway 3 is formed along the horizontal direction from the lower end of the injection pipe 2 toward the outside, and faces from the lower end of the injection pipe 2 in multiple directions of left and right or front and back. The molten steel of the ladle 6 is distributed via the runner 3 branched into a plurality of branches. Then, the molten steel of the plurality of runners 3 is guided to each mold 5 through the branch passage 4 provided in each runner 3, and the molten steel is poured into the mold 5 from the injection port at the bottom of each mold 5. Will be done. In the case of the lower pouring ingot mass equipment 1 of the first embodiment, four runners 3 are formed at the lower end of one injection pipe 2 so as to extend radially from the lower end of the injection pipe 2. That is, each of these four runners 3 is also called a runner 3, and each runner 3 is provided with five molds 5, and the bottom pouring incubator 1 of the first embodiment is four. It has a total of 20 molds 5 together with the book runner 3.

なお、第1実施形態の下注ぎ造塊設備1は、大量の鋼片(インゴット)を効率よく鋳造工場から搬出するため、鋳造した鋼片を鋳型5、注入管2、湯道3ともども運搬用列車の台車に積載して移動させる構成とされている。また、鋳造工場の省スペース化の観点から、湯道3は、台車の長手方向、すなわち図1の紙面における左右方向に沿った配列となっている。 The bottom pouring ingot equipment 1 of the first embodiment transports the cast steel pieces together with the mold 5, the injection pipe 2, and the runner 3 in order to efficiently carry out a large amount of steel pieces (ingots) from the casting factory. It is configured to be loaded and moved on a train bogie. Further, from the viewpoint of saving space in the foundry, the runners 3 are arranged along the longitudinal direction of the carriage, that is, the left-right direction on the paper surface of FIG.

上述した複数のランナー3のそれぞれには、複数の鋳型5が配備されている。例えば、図2の右上(Aで示された部分)に位置するランナー3を拡大して示したものが図3である。図3に示すように、1本のランナー3(湯道)には、ランナー3の伸長方向に沿って複数(図例では5本)の鋳型5が並んで配備されている。これら複数の鋳型5は、隣り合う鋳型5同士が接触しない程度の距離をあけて配備されている。また、これらの鋳型5は、ランナー3の上側に位置する台盤7上に起立した状態で設けられている。 A plurality of molds 5 are provided in each of the plurality of runners 3 described above. For example, FIG. 3 is an enlarged view of the runner 3 located at the upper right (the portion indicated by A) in FIG. As shown in FIG. 3, a plurality of molds 5 (five in the example) are arranged side by side in one runner 3 (runner) along the extension direction of the runner 3. These plurality of molds 5 are arranged at a distance such that adjacent molds 5 do not come into contact with each other. Further, these molds 5 are provided in an upright state on a base plate 7 located above the runner 3.

上述したランナー3と鋳型5との間には、上下方向に沿って伸びる分岐路4がそれぞれ形成されており、それぞれの分岐路4を介して湯道3の溶鋼を鋳型5に流通可能となっている。この分岐路4の下端はランナー3に対して正面から見るとT字状となるように直交状態で交差しており、それぞれの分岐路4は湯道3に沿って流れてきた溶鋼の流通方向を90°切り換えて鋳型5に流通可能となっている。このようにして分岐路4に流し込まれた溶鋼は、分岐路4を通って鋳型5に送られ、鋳型5の底部に設けられた注入口から鋳型5内に注入される。 A branch path 4 extending in the vertical direction is formed between the runner 3 and the mold 5 described above, and the molten steel of the runner 3 can be distributed to the mold 5 through each branch path 4. ing. The lower ends of the branch paths 4 intersect with the runner 3 in a T-shape when viewed from the front, and each branch path 4 has a flow direction of molten steel flowing along the runner 3. Can be distributed to the mold 5 by switching 90 °. The molten steel poured into the branch path 4 in this way is sent to the mold 5 through the branch path 4 and is injected into the mold 5 from an injection port provided at the bottom of the mold 5.

ところで、上述した分岐路4が湯道3と交差する部分、つまり湯道3の分岐部10においては、湯道3を流れる溶鋼の向きが大きく切り替わるため、どうしても分岐路4の入り口側で溶鋼の流れに偏りが発生する。このような溶鋼の偏った流れは、分岐路4の終端、言い換えれば鋳型5の注入口においても残ってしまうため、鋳型5内での溶鋼の流速も平滑とはならず、鋳型5内の湯面が乱れる(暴れる)などして型内材の巻き込まれなどが起きやすくなる。このようにして巻き込まれた型内材(溶鋼被覆剤)は鋼塊の凝固界面に補足され、鋼塊中に残存してしまう。そのため、鍛造、機械加工後の超音波探傷(UT)検査や磁粉探傷検査によって欠陥として検出されることがあり、欠陥とされた部分は切り捨てられることから型内材の巻き込まれは鋼塊の歩留まりを悪化させる主たる要因となっている。 By the way, at the portion where the above-mentioned branch path 4 intersects the runner 3, that is, at the branch portion 10 of the runner 3, the direction of the molten steel flowing through the runner 3 changes greatly, so that the molten steel inevitably changes at the entrance side of the branch path 4. There is a bias in the flow. Since such a biased flow of molten steel remains at the end of the branch path 4, in other words, at the injection port of the mold 5, the flow velocity of the molten steel in the mold 5 is not smooth, and the hot water in the mold 5 is not smooth. The surface is disturbed (ramp) and the inner material of the mold is likely to get caught. The mold inner material (molten steel coating agent) caught in this way is captured by the solidification interface of the ingot and remains in the ingot. Therefore, it may be detected as a defect by ultrasonic flaw detection (UT) inspection or magnetic particle flaw detection inspection after forging and machining, and the defective part is cut off, so the entrainment of the inner material of the mold is the yield of the steel ingot. It is the main factor that makes it worse.

特に、図2に示すように1本のランナー3から複数の鋳型5に溶鋼を注入する場合には、注入管2(取鍋6)に近い側の鋳型5において、型内材の巻き込みが非常に多いことがわかっていた。発明者らは、鋭意研究の結果、鋳型5モールドに型内材の巻き込みが発生する理由は、ランナー3(湯道3)から分岐路4が分岐する分岐部10で分岐路4に分流される際に発生する溶鋼の流れの偏りが鋳型5内での湯面の暴れに繋がり、ひいては型内材の巻き込みの原因となることを知見した。また、ランナー3に設けられる複数の鋳型5のうち、特に注入管2(取鍋6)に近い側の鋳型5(モールド)の分岐部10において、溶鋼の流れの偏りが大きくなり、型内材の巻き込みが起きやすくなることを知得した。 In particular, when molten steel is injected from one runner 3 into a plurality of molds 5 as shown in FIG. 2, the mold inner material is very entangled in the mold 5 on the side close to the injection pipe 2 (ladle 6). I knew there were many. As a result of diligent research, the inventors have conducted diligent research, and the reason why the mold inner material is involved in the mold 5 mold is that the branch path 4 is branched into the branch path 4 at the branch portion 10 where the branch path 4 branches from the runner 3 (runner 3). It was found that the uneven flow of molten steel that occurs at that time leads to the runaway of the molten metal surface in the mold 5, which in turn causes the inner material of the mold to be caught. Further, among the plurality of molds 5 provided on the runner 3, the unevenness of the flow of molten steel becomes large especially at the branch portion 10 of the mold 5 (mold) on the side closer to the injection pipe 2 (ladle 6), and the inner material of the mold. I learned that it is easy for people to get involved.

すなわち、型内材の巻き込みは、鋳型5内の溶鋼界面の流速がある臨界値を越えると生じるようになる。ここで、溶鋼界面の流速は鋳型5底部の注入口から吐出される溶鋼の吐出流速と相関があり、鋳込み速度、つまり吐出流速が大きいほど、溶鋼界面の流速も大きくなり、型内材の巻き込みも起きやすくなる。
また、従来の下注ぎ造塊法では鋳型底部の注入口から吐出される溶鋼の平均吐出流速(注入管2からの鋳込流量を湯道の断面積で除した流速)を用いて型内材の巻き込みが発生の可否を判断していた。しかし、1本のランナーから複数の鋳型に鋳込みを行う際には、上述した分岐部において溶鋼流に偏りが発生する場合があり、溶鋼流の偏りによって注入口において局部的に強い溶鋼の流れが発生した場合にも、型内材の巻き込みが発生していることがわかった。つまり、型内材の巻き込みに対しては、溶鋼の最大吐出流速を考慮する必要がある。
That is, the entrainment of the inner material of the mold occurs when the flow velocity at the molten steel interface in the mold 5 exceeds a certain critical value. Here, the flow velocity at the molten steel interface correlates with the discharge flow velocity of the molten steel discharged from the injection port at the bottom of the mold 5, and the casting speed, that is, the larger the discharge flow velocity, the larger the flow velocity at the molten steel interface, and the entrainment of the inner material in the mold. Is also easy to get up.
Further, in the conventional bottom pouring ingot method, the average discharge flow rate of molten steel discharged from the injection port at the bottom of the mold (the flow rate obtained by dividing the casting flow rate from the injection pipe 2 by the cross-sectional area of the runner) is used as the inner material of the mold. It was judged whether or not the involvement of However, when casting from one runner into a plurality of molds, the molten steel flow may be biased at the above-mentioned branch portion, and the bias of the molten steel flow causes a locally strong flow of molten steel at the injection port. Even when it occurred, it was found that the in-mold material was involved. That is, it is necessary to consider the maximum discharge flow velocity of the molten steel for the entrainment of the inner material of the mold.

なお、鋳込み時の溶鋼の吐出速度を低減すれば、溶鋼の最大吐出流速を小さくすることは可能である。しかし、溶鋼の吐出速度を絞りすぎると取鍋6の鋳込みノズル閉塞や、湯道3内での溶鋼凝固による閉塞、鋳造時間が長くなり過ぎることによる生産性の低下、さらには鋳込み終了時の温度が下がりすぎて沈降性介在物が発生しやすくなるといったリスクを招く可能性もある。 It is possible to reduce the maximum discharge flow velocity of the molten steel by reducing the discharge rate of the molten steel during casting. However, if the discharge rate of molten steel is reduced too much, the casting nozzle of the ladle 6 will be blocked, the molten steel will be solidified in the runner 3, the productivity will decrease due to the casting time becoming too long, and the temperature at the end of casting. It can also pose a risk that the temperature will drop too much and sedimentation inclusions will be more likely to occur.

そこで、本発明の下注ぎ造塊設備1は、湯道3から分岐路4が上方に向かってT字状に分岐している分岐部10に、上方に向かって曲面状に凹んだ凹部11を形成している。この凹部11の曲面は、曲率半径をXとし、湯道3の内径をdとした際に、曲率半径Xと内径dとの間に、以下の式(1)の関係が成り立つものとなっている。第1実施形態の場合、この曲率半径Xは、湯道の内周面のうち、最も上部に位置する部分を結んだ線と、分岐路の内周面のうち、凹部11が設けられた側の分岐路の内周面を上下に結んだ線と、が交わる交点(図5において点「S」で示される点)を、曲率の起点としたものとなっている。なお、第1実施形態の下注ぎ造塊設備1に設けられる凹部11は、必ずしも上述した交点Sを曲率の起点としなくても良い。例えば、交点Sから多少離れた位置にある点を起点として曲率半径を設定していても良い。つまり、第1実施形態の下注ぎ造塊設備1は、分岐部10で発生した溶鋼の流れの偏りを解消するために、分岐路4の入り口側に上述した凹部11を形成したものとなっている。
[数3]
d×0.1≦X≦d×0.7 ・・・(1)
上述した分岐部10に上方に向かって曲面状に凹むと共に、式(1)の関係を満足する凹部11を設けた場合には、分岐部10から鋳型5底部の注入口にかけての分岐路4において偏りが生じていた溶鋼の流れを分散させることが可能となる。つまり、注入口において偏流が発生しにくくなるので、局部的に吐出流速が大きくなることがなくなり、最大吐出流速を低減することも可能となる。それゆえ、第1実施形態の下注ぎ造塊設備1を用いた場合には、型内材の巻き込みを効果的に抑制することができる。
Therefore, the bottom pouring ingot-forming facility 1 of the present invention provides a concave portion 11 recessed upward in a curved shape in the branch portion 10 in which the branch path 4 branches upward in a T-shape from the runner 3. Is forming. The curved surface of the recess 11 has the following equation (1) between the radius of curvature X and the inner diameter d when the radius of curvature is X and the inner diameter of the runner 3 is d. There is. In the case of the first embodiment, the radius of curvature X is the side of the inner peripheral surface of the branch path where the recess 11 is provided, and the line connecting the uppermost portion of the inner peripheral surface of the runner. The starting point of the curvature is the intersection (the point indicated by the point "S" in FIG. 5) where the line connecting the inner peripheral surfaces of the branch roads above and below intersects. The recess 11 provided in the bottom pouring ingot mass equipment 1 of the first embodiment does not necessarily have to have the above-mentioned intersection S as the starting point of curvature. For example, the radius of curvature may be set starting from a point slightly distant from the intersection S. That is, the bottom pouring ingot equipment 1 of the first embodiment has the above-mentioned recess 11 formed on the entrance side of the branch path 4 in order to eliminate the bias of the flow of molten steel generated at the branch portion 10. There is.
[Number 3]
d × 0.1 ≦ X ≦ d × 0.7 ・ ・ ・ (1)
When the above-mentioned branch portion 10 is recessed upward in a curved shape and a recess 11 satisfying the relationship of the formula (1) is provided, the branch path 4 from the branch portion 10 to the injection port at the bottom of the mold 5 It is possible to disperse the flow of molten steel that has been biased. That is, since the drift is less likely to occur at the injection port, the discharge flow rate does not increase locally, and the maximum discharge flow rate can be reduced. Therefore, when the lower pouring ingot mass equipment 1 of the first embodiment is used, the entrainment of the inner material in the mold can be effectively suppressed.

次に、第1実施形態の造塊設備に設けられる分岐部10、及びこの分岐部10に形成される凹部11について説明する。
図3に示すように、上述した分岐部10は、水平方向に沿って配備された湯道3と、鋳型5に溶鋼を送る分岐路4とが、正面から見てT字状に交差する部分である。図例のように、取鍋6が設けられた側(内側)から外側に向かって5つの鋳型5が設けられている場合は、最も取鍋6から遠い側(反取鍋6側または外側)に位置する鋳型5を除く、内側の4基の鋳型5に溶鋼をそれぞれ分配している分岐路4との交差部分はいずれもT字状であり、本発明の分岐部10と考えることができる。このような分岐部10では、湯道3と分岐路4とが側方視でT字状に交差しており、上述した溶鋼の流れの偏りが発生する可能性がある。
Next, the branch portion 10 provided in the ingot-forming facility of the first embodiment and the recess 11 formed in the branch portion 10 will be described.
As shown in FIG. 3, the above-mentioned branch portion 10 is a portion where the runner 3 arranged along the horizontal direction and the branch path 4 for feeding molten steel to the mold 5 intersect in a T shape when viewed from the front. Is. As shown in the figure, when five molds 5 are provided from the side (inside) where the ladle 6 is provided to the outside, the side farthest from the ladle 6 (counter ladle 6 side or outside). Except for the mold 5 located in, the intersections with the branch paths 4 in which the molten steel is distributed to the four inner molds 5 are all T-shaped and can be considered as the branch portion 10 of the present invention. .. In such a branch portion 10, the runway 3 and the branch path 4 intersect in a T-shape in a lateral view, and the above-mentioned bias in the flow of molten steel may occur.

なお、湯道3と分岐路4とが正面視でT字状に交差している部分をすべて分岐部10とし、全ての分岐部10に上述した凹部11を設ける必要はない。最も型内材の巻き込みが顕著な取鍋6に近い側の分岐部10のみに凹部11を形成しても良い。
また、図3の例では、取鍋6から最も遠い側に位置する鋳型5と湯道3との交差部分は「分岐部10」として扱っていない。これらは、取鍋6から最も遠い側の交差部分がL字状に湯道3と分岐路4が交差しているから(T字状に交差していないから)である。しかし、取鍋6から最も遠い側の交差部分であっても、湯道3と分岐路4とが正面視でT字状に交差している場合には、本発明の分岐部10として扱い、この分岐部10に凹部11を形成しても良い。
It should be noted that it is not necessary to provide the above-mentioned recesses 11 in all the branch portions 10 by setting all the portions where the runway 3 and the branch path 4 intersect in a T shape in the front view as the branch portion 10. The recess 11 may be formed only in the branch portion 10 on the side closest to the ladle 6 where the inner material of the mold is most noticeably involved.
Further, in the example of FIG. 3, the intersection of the mold 5 and the runner 3 located on the farthest side from the ladle 6 is not treated as the “branch portion 10”. This is because the runway 3 and the branch road 4 intersect in an L-shape at the intersection on the farthest side from the ladle 6 (because they do not intersect in a T-shape). However, even at the intersection on the farthest side from the ladle 6, if the runway 3 and the branch road 4 intersect in a T shape in front view, it is treated as the branch portion 10 of the present invention. A recess 11 may be formed in the branch portion 10.

さらに、上述した湯道3及び分岐路4は、直径が40mm〜80mmとされている。なお、第1実施形態では、湯道3と分岐路4とは同じ内径とされていても良いが、上述した内径の範囲で異なる内径に形成されていてもよい。
以降の説明では、取鍋6から最も近い鋳型5に湯道3から溶鋼を送る分岐部10のみに凹部11を設けた例を挙げて、第1実施形態の造塊設備を説明する。
Further, the runway 3 and the branch passage 4 described above have a diameter of 40 mm to 80 mm. In the first embodiment, the runway 3 and the branch path 4 may have the same inner diameter, but may be formed to have different inner diameters within the above-mentioned inner diameter range.
In the following description, the ingot-forming equipment of the first embodiment will be described with reference to an example in which the recess 11 is provided only in the branch portion 10 for feeding molten steel from the runner 3 to the mold 5 closest to the ladle 6.

図4及び図5は、上述した分岐部10で発生する溶鋼の流れ方向や流速の分布を、第1実施形態の下注ぎ造塊設備1での場合と、従来の下注ぎ造塊設備の場合とで比較した結果である。図4及び図5の左側は従来の下注ぎ造塊設備1の結果であり、右側は第1実施形態の下注ぎ造塊設備1の結果である。
図4及び図5に示すように、第1実施形態の造塊設備に設けられる凹部11は、耐火物の表面を上方に向かって曲面状に凹ませた部分(お椀を伏せた形状部)であり、上方に向かって凹んだ状態に欠肉状に形成された部分であって、この凹んだ部分で溶鋼を反転し、分岐路4の内周面に沿った偏った流れを剥離・分散させることで溶鋼の流れに偏りが発生することを抑制可能となっている。
4 and 5 show the distribution of the flow direction and flow velocity of the molten steel generated at the branch portion 10 described above in the case of the lower pouring ingot building equipment 1 of the first embodiment and the case of the conventional lower pouring ingot making equipment. It is the result of comparison with. The left side of FIGS. 4 and 5 is the result of the conventional bottom-pouring ingot-forming equipment 1, and the right side is the result of the in-pouring ingot-forming equipment 1 of the first embodiment.
As shown in FIGS. 4 and 5, the recess 11 provided in the ingot-forming facility of the first embodiment is a portion (shaped portion in which the bowl is turned down) in which the surface of the refractory is recessed upward in a curved shape. There is a portion formed in a deficient state in a state of being recessed upward, and the molten steel is inverted at this recessed portion to separate and disperse the uneven flow along the inner peripheral surface of the branch path 4. This makes it possible to suppress the occurrence of bias in the flow of molten steel.

つまり、図4及び図5の左側に示された従来の下注ぎ造塊設備1の分岐部10では、湯道3から分岐路4に流れ込んだ溶鋼は、まず分岐路4の内周面のうち、溶鋼の流れ方向の下流側に位置する部分に衝突し、それから分岐路4の内周面に沿って上方に移動して鋳型5に注湯される。このとき、分岐路4の下流側の内周面に衝突した溶鋼は、分岐路4の内周面に貼り付いたまま上方に移動し、注入口に運ばれる。 That is, in the branch portion 10 of the conventional bottom pouring ingot building facility 1 shown on the left side of FIGS. 4 and 5, the molten steel flowing from the runner 3 into the branch path 4 is first of the inner peripheral surface of the branch path 4. , Collides with a portion of the molten steel located on the downstream side in the flow direction, then moves upward along the inner peripheral surface of the branch path 4 and is poured into the mold 5. At this time, the molten steel that has collided with the inner peripheral surface on the downstream side of the branch road 4 moves upward while being attached to the inner peripheral surface of the branch road 4 and is carried to the injection port.

ところが、第1実施形態の下注ぎ造塊設備1の分岐部10では、凹部11が設けられているため、湯道3から分岐路4に流れ込んだ溶鋼は凹部11の内周面に衝突する。そして、凹部11で反転し、分岐路4内周面に交差した角度で分岐路4に入り込む。その結果、分岐路4の内部で溶鋼が内周面から剥離した流れとなり、内周面から離れた分岐路4の中央側に流れが形成される。さらに、この分岐路4の中央側に形成された流れは鋳型5に達するまでに分散され、吐出口から鋳型5内に注湯されるときには溶鋼の流れに偏りが殆ど見られなくなる。そのため、第1実施形態の造塊設備では偏流が抑制され、鋳型5内で溶鋼の均等な流れを実現可能となるのである。 However, since the branch portion 10 of the bottom pouring ingot building facility 1 of the first embodiment is provided with the recess 11, the molten steel flowing from the runner 3 into the branch path 4 collides with the inner peripheral surface of the recess 11. Then, it is inverted at the recess 11 and enters the branch road 4 at an angle intersecting the inner peripheral surface of the branch road 4. As a result, the molten steel is separated from the inner peripheral surface inside the branch path 4, and a flow is formed on the central side of the branch path 4 away from the inner peripheral surface. Further, the flow formed on the central side of the branch path 4 is dispersed by the time it reaches the mold 5, and when the hot water is poured into the mold 5 from the discharge port, the flow of the molten steel is hardly biased. Therefore, in the ingot forming facility of the first embodiment, the drift is suppressed, and the uniform flow of the molten steel in the mold 5 can be realized.

なお、上述した凹部11は、湯道3における溶鋼の流れ方向に対して、分岐部10における流れ方向の下流側に少なくとも形成されている必要がある。つまり、図4や図5に示すように流れ方向の上流側と下流側の双方に凹部11を形成しても良いが、少なくとも流れ方向の下流側に凹部11(半椀状部)を形成しておけば十分な偏流抑制の作用効果を得ることができる。 The recess 11 described above needs to be formed at least on the downstream side of the branch portion 10 in the flow direction of the molten steel in the runner 3. That is, as shown in FIGS. 4 and 5, recesses 11 may be formed on both the upstream side and the downstream side in the flow direction, but at least the recess 11 (semi-bowl-shaped portion) is formed on the downstream side in the flow direction. If it is set, a sufficient effect of suppressing drift flow can be obtained.

また、上述した凹部11については、上述した式(1)に示すように、凹部11の曲面の曲率半径をXとし、湯道3または分岐路4の内径をdとした際に、曲率半径Xと内径dとの間に、以下の式(1)の関係が成り立つような形状とするのが良い。式(1)の関係が成り立つような形状の凹部11を設ければ、分岐路4の内周面から引き離された中央側に溶鋼の流れを形成することができ、鋳型5内に溶鋼を均等に注湯することが可能となる。 Further, regarding the recess 11 described above, as shown in the above equation (1), when the radius of curvature of the curved surface of the recess 11 is X and the inner diameter of the runner 3 or the branch path 4 is d, the radius of curvature X The shape should be such that the relationship of the following equation (1) holds between the inner diameter d and the inner diameter d. If the recess 11 having a shape that holds the relationship of the formula (1) is provided, a flow of molten steel can be formed on the central side separated from the inner peripheral surface of the branch path 4, and the molten steel can be evenly distributed in the mold 5. It becomes possible to pour hot water into.

なお、上述した式(1)の関係は、内径がφ40〜80mmの湯道3または分岐路4に対して成立するものとなっている。また、ランナー3の1本当りの鋳込流量が0.3t/min〜2t/minであって、鋼塊の重量範囲が0.5ton〜50tonとされた場合に成立するものとなっている。
[第2実施形態]
次に、本発明の下注ぎ造塊設備1の第2実施形態を説明する。
The relationship of the above formula (1) is established for the runner 3 or the branch path 4 having an inner diameter of φ40 to 80 mm. Further, it is established when the casting flow rate per runner 3 is 0.3 t / min to 2 t / min and the weight range of the ingot is 0.5 ton to 50 ton.
[Second Embodiment]
Next, a second embodiment of the bottom pouring ingot making facility 1 of the present invention will be described.

図8及び図9に示すように、第2実施形態の下注ぎ造塊設備1は、第1実施形態の下注ぎ造塊設備1が分岐部10に凹部11を形成していたのに対し、分岐部10の上隅が上方に向かって角箱形状に凹んだ角箱部12と、角箱部12と分岐路4との角が丸面取りされた丸面取部13と、を分岐部10に形成したものであり、第1実施形態の凹部11の替わりに角箱部12及び丸面取部13を用いて偏流抑制を行うものとなっている。つまり、第2実施形態の下注ぎ造塊設備1では、角箱部12と丸面取部13とを組み合わして用いており、双方を用いて初めて偏流抑制の効果が得られるものとなっている。 As shown in FIGS. 8 and 9, in the bottom pouring mass lumping equipment 1 of the second embodiment, the bottom pouring mass lumping equipment 1 of the first embodiment formed the recess 11 in the branch portion 10. The branch portion 10 includes a square box portion 12 in which the upper corner of the branch portion 10 is recessed upward in a square box shape, and a round chamfered portion 13 in which the corners of the square box portion 12 and the branch path 4 are rounded. Instead of the concave portion 11 of the first embodiment, the square box portion 12 and the round chamfered portion 13 are used to suppress the drift. That is, in the bottom pouring ingot mass equipment 1 of the second embodiment, the square box portion 12 and the round chamfer portion 13 are used in combination, and the effect of suppressing the drift flow can be obtained only by using both of them. There is.

具体的には、角箱部12は、分岐路4と湯道3とが逆T字状に交差した分岐部10に対して、上方に向かって角枡状に抉るように形成された部分である。そして、この角箱部12は、前後左右及び上側の5つ方向に配備された壁面で形成されている。これら5つの壁面のうち、前後左右に形成される側面(側壁面)は、いずれも上下方向に沿うような平坦面として形成されている。前後の側面及び左右の側面はそれぞれ水平方向に距離をあけてほぼ平行に配備されていて、これら4つの側面で四方を囲まれた内部に溶鋼を貯溜可能な空間を形成可能としている。また、これら5つの壁面のうち、上側に形成される上面(上壁面)は、前後左右の4つの側面で囲まれた内部空間の上方を覆うように配備されている。そして、この上面の中央に、角箱部と連通するように分岐路4が上下方向に配備されている。 Specifically, the square box portion 12 is a portion formed so as to scoop upward in a square box shape with respect to the branch portion 10 in which the branch path 4 and the runway 3 intersect in an inverted T shape. is there. The square box portion 12 is formed of wall surfaces arranged in five directions, front, back, left, right, and upper side. Of these five wall surfaces, the side surfaces (side wall surfaces) formed on the front, back, left and right are all formed as flat surfaces along the vertical direction. The front and rear side surfaces and the left and right side surfaces are arranged substantially in parallel with a horizontal distance, and it is possible to form a space in which molten steel can be stored inside surrounded by these four side surfaces. Further, of these five wall surfaces, the upper surface (upper wall surface) formed on the upper side is arranged so as to cover the upper part of the internal space surrounded by the four front, rear, left and right side surfaces. A branch path 4 is vertically arranged in the center of the upper surface so as to communicate with the square box portion.

つまり、上述した5つの壁面で形成される角箱部12は、湯道3が存在する下側のみが下方に向かって開放されており、湯道3を流れてきた溶鋼を下方から内部に引き入れることができる。
上述した丸面取部13は、角箱部12の上面と分岐路4の下端部とが交差しあう部分に形成された曲面状の部分であり、角箱部12に流れ込んだ溶鋼をスムーズに分岐路4に導入(案内)できるようになっている。具体的には、丸面取部13は、角箱部12の上面と分岐路4とが直交する部分に対して、交差部分の角をなくした丸面状の曲面に形成したものとなっている。
That is, in the square box portion 12 formed of the above-mentioned five wall surfaces, only the lower side where the runner 3 is present is open downward, and the molten steel flowing through the runner 3 is drawn in from below. be able to.
The round chamfered portion 13 described above is a curved surface portion formed at a portion where the upper surface of the square box portion 12 and the lower end portion of the branch path 4 intersect with each other, and the molten steel flowing into the square box portion 12 can be smoothly flowed. It can be introduced (guided) to the branch road 4. Specifically, the round chamfered portion 13 is formed into a rounded curved surface having no corners at the intersection with respect to the portion where the upper surface of the square box portion 12 and the branch path 4 are orthogonal to each other. There is.

ところで、上述した角箱部12及び丸面取部13をどの程度の寸法に形成するかは、偏流を効果的に抑制する上で重要となる。例えば、分岐路4や湯道3の内径に比して角箱部12の寸法Xや丸面取部13の曲率半径Rが相対的に小さすぎると偏流抑制の効果が小さくなってしまう。つまり、角箱部12の寸法Xや丸面取部13の曲率半径Rには、偏流を効果的且つ効率的に抑制する為の最適値が存在する。 By the way, the size of the square box portion 12 and the round chamfer portion 13 described above is important for effectively suppressing the drift. For example, if the dimension X of the square box portion 12 and the radius of curvature R of the round chamfered portion 13 are relatively small compared to the inner diameters of the branch path 4 and the runner 3, the effect of suppressing drift flow will be small. That is, the dimension X of the square box portion 12 and the radius of curvature R of the round chamfered portion 13 have optimum values for effectively and efficiently suppressing the drift.

具体的には、第2実施形態の下注ぎ造塊設備1では、角箱部12の寸法X、丸面取部13の曲率半径Rを、湯道3及び分岐路4の吐出口側の内径をdとした際に、以下の式(2)のように設定している。
[数4]
d×0.2≦X≦d×0.7
d×0.1≦R≦d×0.5・・・(2)
なお、「角箱部12の寸法X」とは、図9に示すように、分岐路4の内壁面から左右方向(湯道3の形成方向)に沿って離れた角箱部12の側面までの距離である。また、「丸面取部13の曲率半径R」とは、丸面取部13を構成する曲面の曲率半径の中心であり、図例の丸面取部13の場合であれば右側の丸面取部13のさらに右上方に位置している。
Specifically, in the bottom pouring inflatable equipment 1 of the second embodiment, the dimension X of the square box portion 12 and the radius of curvature R of the round chamfered portion 13 are set to the inner diameter of the runner 3 and the branch path 4 on the discharge port side. When d is set, the setting is as shown in the following equation (2).
[Number 4]
d × 0.2 ≦ X ≦ d × 0.7
d × 0.1 ≦ R ≦ d × 0.5 ... (2)
As shown in FIG. 9, the “dimension X of the square box portion 12” refers to the side surface of the square box portion 12 separated from the inner wall surface of the branch path 4 along the left-right direction (formation direction of the runner 3). Is the distance. Further, the "radius of curvature R of the round chamfered portion 13" is the center of the radius of curvature of the curved surface constituting the round chamfered portion 13, and in the case of the round chamfered portion 13 in the figure, the round surface on the right side. It is located further to the upper right of the chamfer 13.

上述した式(2)の関係が成り立つような形状の角箱部12及び丸面取部13を設ければ、分岐路4の内側における内周面から引き離された中央側に溶鋼の流れを形成することができ、鋳型5内に溶鋼を均等に注湯することが可能となる。また、角箱部の幅方向の厚み(湯道の伸長方向と直交する方向に沿った幅)については、基本的に湯道径を同じであり、湯道径がφ40〜80mmであるのに対して、角箱部の幅方向の厚みが40〜80mmとそれぞれの湯道径と基本的に対応する。したがって、角箱部の幅方向の厚みが、湯道径よりも幅が大きくなることはないが、逆に小さくなったとしても本発明が奏する作用効果の発現に変化はない。 If the square box portion 12 and the round chamfered portion 13 having a shape such that the relationship of the above equation (2) is established are provided, a flow of molten steel is formed on the central side separated from the inner peripheral surface inside the branch path 4. This makes it possible to evenly pour molten steel into the mold 5. Regarding the thickness of the square box in the width direction (width along the direction orthogonal to the extension direction of the runner), the diameter of the runner is basically the same, and the diameter of the runner is φ40 to 80 mm. On the other hand, the thickness of the square box in the width direction is 40 to 80 mm, which basically corresponds to each runner diameter. Therefore, the thickness of the square box portion in the width direction does not become larger than the diameter of the runner, but even if it becomes smaller, there is no change in the manifestation of the action and effect of the present invention.

なお、上述した式(2)の関係も、式(1)と同様に、内径がφ40〜80mmの湯道3または分岐路4に対して成立するものとなっている。また、ランナー3の1本当りの鋳込流量が0.3t/min〜2t/minであって、鋼塊の重量範囲が0.5ton〜50tonとされた場合に成立するものとなっている。
また、丸面取部13の曲率半径Rは、原則として角箱部12の寸法Xを超えることはない。つまり、角箱部12の寸法Xと丸面取部13の曲率半径Rとの間には、X≧Rなる関係が成立する。
The relationship of the above-mentioned equation (2) is also established for the runner 3 or the branch passage 4 having an inner diameter of φ40 to 80 mm, similarly to the equation (1). Further, it is established when the casting flow rate per runner 3 is 0.3 t / min to 2 t / min and the weight range of the ingot is 0.5 ton to 50 ton.
Further, in principle, the radius of curvature R of the round chamfered portion 13 does not exceed the dimension X of the square box portion 12. That is, a relationship of X ≧ R is established between the dimension X of the square box portion 12 and the radius of curvature R of the round chamfered portion 13.

さらに、本実施形態の角箱部12は、左右方向の寸法Xと、上下方向の寸法とが等しい例を示すものであるが、左右方向の寸法Xに対して、上下方向の寸法がZ(≠X)となるような形状に形成することもできる。 Further, the square box portion 12 of the present embodiment shows an example in which the dimension X in the left-right direction and the dimension in the up-down direction are equal to each other, but the dimension in the up-down direction is Z (with respect to the dimension X in the left-right direction). It can also be formed into a shape such that ≠ X).

次に、実施例及び比較例は、容量が40tonの交流アーク式の電気炉でスクラップを溶解し、溶解した溶鋼をEBT方式(偏芯炉底出鋼方式)で出鋼し、出鋼した溶鋼をLF法で成分調整すると共に介在物除去した。さらに、成分調整及び介在物除去が終了した溶鋼については、取鍋6内に装入し脱ガス処理を行った。この取鍋6は蓋で覆われており、内部が70Pa程度の真空状態とされている。また、この取鍋6内部の溶鋼に対しては、Arガスプラグ(底吹き用プラグ)からArガスを吹き込んで、20分間に亘って真空脱水素処理を行っている。このようにして真空脱水素処理が行われた取鍋6の溶鋼は、湯道3及び分岐路4を通って複数の鋳型5に下注ぎ造塊の方式で鋳込まれる。 Next, in Examples and Comparative Examples, scrap was melted in an AC arc type electric furnace having a capacity of 40 tons, and the melted molten steel was ejected by the EBT method (eccentric furnace bottom ejection method), and the molten steel was ejected. Was adjusted by the LF method and inclusions were removed. Further, the molten steel for which the component adjustment and the removal of inclusions were completed was charged into the ladle 6 and degassed. The ladle 6 is covered with a lid, and the inside is in a vacuum state of about 70 Pa. Further, Ar gas is blown into the molten steel inside the ladle 6 from an Ar gas plug (bottom blowing plug), and vacuum dehydrogenation treatment is performed for 20 minutes. The molten steel of the ladle 6 that has been subjected to the vacuum dehydrogenation treatment in this way is cast into a plurality of molds 5 by a bottom pouring ingot method through the runner 3 and the branch path 4.

また、上述した下注ぎ造塊設備1は、注入管2から放射状に4本のランナー3を有しており、それぞれのランナー3には5基の鋳型5が設けられていて、合計で20基の鋳型5で鋳造を行う構成とされている。それぞれの鋳型5内には、型内材(溶鋼被覆剤)が入った袋が吊下状態で設けられている。つまり、溶鋼が鋳型5内に注入され溶鋼の深さが深くなっていくと、湯面が上昇して袋との距離が近くなっていく。 Further, the above-mentioned bottom pouring incubator 1 has four runners 3 radially from the injection pipe 2, and each runner 3 is provided with five molds 5, for a total of 20 runners. It is configured to perform casting with the mold 5 of. In each mold 5, a bag containing a mold inner material (molten steel coating agent) is provided in a suspended state. That is, when the molten steel is injected into the mold 5 and the depth of the molten steel becomes deeper, the molten metal level rises and the distance from the bag becomes closer.

やがて、両者の距離が所定の距離に達した際に、鋳型5内に吊るしてある型内材が入った袋が輻射熱で燃えることで、型内材が溶鋼表面に落下し、溶鋼の湯面に型内材が散布される。この型内材の添加方法は、従来の下注ぎ造塊設備1でも本発明の下注ぎ造塊設備1でも同じである。このようにして添加・散布された型内材は、鋳込中に鋳型5と鋼塊との間に侵入してスラグスキンとなり消費されていくため、溶鋼表面に裸湯が見えた場合には、型内材を追加で装入する場合がある。 Eventually, when the distance between the two reaches a predetermined distance, the bag containing the mold inner material suspended in the mold 5 burns due to radiant heat, causing the mold inner material to fall to the surface of the molten steel and the surface of the molten steel. The material inside the mold is sprayed on. The method of adding the inner material of the mold is the same for both the conventional bottom pouring and ingot making equipment 1 and the under pouring ingot making equipment 1 of the present invention. The inner material added and sprayed in this way invades between the mold 5 and the ingot during casting and is consumed as slag skin. Therefore, if bare water is visible on the surface of the molten steel, , The inner material of the mold may be additionally charged.

このようにして溶鋼が押湯部まで達した際、溶鋼表面(型内材の上部)にボード状の保温材を配備する。そして、所定の位置(湯面高さ)まで鋳込みが終了した後、鋳塊が完全凝固するまで静置し、完全凝固後に脱型して鍛造工程に移行する。
上述した鍛造工程においては、鋼塊を加熱し、所定の丸棒寸法となるまで鍛造、加熱を繰り返し実施する。そして、鍛造後、旋盤にて表層を深さ2mm旋削実施し、黒皮(酸化スケール)を除去した。最後に、超音波探傷試験により、製品形状の介在物検査(皮下介在物検査)を実施した。
When the molten steel reaches the hot water press portion in this way, a board-shaped heat insulating material is provided on the surface of the molten steel (upper part of the inner material of the mold). Then, after the casting is completed to a predetermined position (hot water surface height), the ingot is allowed to stand until it is completely solidified, and after the ingot is completely solidified, it is demolded and the forging process is started.
In the forging step described above, the ingot is heated, and forging and heating are repeated until the size of the round bar reaches a predetermined value. Then, after forging, the surface layer was turned to a depth of 2 mm with a lathe to remove black skin (oxidation scale). Finally, an ultrasonic flaw detection test was performed to inspect the product shape for inclusions (subcutaneous inclusion inspection).

上述したように1本のランナー3に5基の鋳型5を備える下注ぎ造塊設備1で鋳造された鋳塊に対して皮下介在物を超音波探傷試験にて調査したところ、取鍋6からの距離が近い側(注入管2側)の鋳塊で皮下介在物が存在することを示すピークが多数検出された。このように超音波探傷試験でピーク検出があった鋳塊は、注入管2側から3本目までの鋳型5であり、それよりも遠い側(注入管2側より4本目以降)の鋳型5で鋳造された鋳塊からはピークの検出が見られなかった。このとき、注入管2側から3本目の鋳型5では、注入口から溶鋼が最大吐出流速0.60m/sで吐出していた。このことから、注入口での溶鋼の最大吐出流速としては0.60m/s以下に制御されるのが好ましいと判断され、これにより鋼塊での介在物の発生、つまり型内材の巻き込みが抑制可能と判断される。 As described above, when the subcutaneous inclusions were investigated by an ultrasonic flaw detection test on the ingot cast by the bottom pouring ingot incubator 1 equipped with five molds 5 in one runner 3, the ladle 6 was used. Many peaks indicating the presence of subcutaneous inclusions were detected in the ingot on the side where the distance between the two was short (injection tube 2 side). In this way, the ingots for which peak detection was detected in the ultrasonic flaw detection test are the molds 5 from the injection pipe 2 side to the third mold 5, and the mold 5 on the farther side (fourth and subsequent molds from the injection pipe 2 side). No peaks were detected in the cast ingots. At this time, in the third mold 5 from the injection pipe 2 side, molten steel was discharged from the injection port at a maximum discharge flow velocity of 0.60 m / s. From this, it was judged that the maximum discharge flow velocity of molten steel at the injection port should be controlled to 0.60 m / s or less, which suppresses the generation of inclusions in the ingot, that is, the entrainment of the inner material in the mold. Judged as possible.

次に、湯道3と分岐路4とがT字状に交差した分岐部10に対して、シミュレーションで分岐部10に発生する溶鋼流動状態の解析を行った。なお、流体解析を行った分岐部10は、ランナー3に設けられる分岐部10のうち、最も取鍋6に近い位置に設けられた鋳型5に溶鋼を分配しているものとなっている。また、流体解析の条件は、以下の表1に従うものとなっている。 Next, for the branch portion 10 in which the runway 3 and the branch passage 4 intersect in a T shape, the molten steel flow state generated in the branch portion 10 was analyzed by simulation. The branch portion 10 for which the fluid analysis was performed distributes molten steel to a mold 5 provided at a position closest to the ladle 6 among the branch portions 10 provided in the runner 3. The conditions for fluid analysis are as shown in Table 1 below.

また、流体解析の計算条件及び物性値は表2及び表3に示すようなものとなっている。 The calculation conditions and physical property values for fluid analysis are as shown in Tables 2 and 3.

「第1実施形態の下注ぎ造塊設備に対応した実施例(実施例1〜実施例28)」
上述した流体の解析の条件に基づいて、凹部11を設けていない分岐部10の注入口で発生する溶鋼の最大吐出流速を比較例として求めると共に、曲率半径Xを分岐路4の内径dの0.1倍〜0.7倍に変化させた凹部11を有する分岐部10で発生する溶鋼の最大吐出流速を第1実施形態の実施例として求めた。また、溶鋼の最大吐出流速は、ランナー3を流れる鋳込流速(ランナー鋳込流速)によっても変化するため、通常の鋳込み流量(以降、ベース流量という)を基準として、上述したランナー鋳込流速がベース流量の0.5倍〜3.0倍となるように流速を変えて溶鋼の最大吐出流速を求めた。
"Examples corresponding to the bottom pouring ingot-forming equipment of the first embodiment (Examples 1 to 28)"
Based on the above-mentioned fluid analysis conditions, the maximum discharge flow velocity of molten steel generated at the injection port of the branch portion 10 not provided with the recess 11 is obtained as a comparative example, and the radius of curvature X is 0 of the inner diameter d of the branch path 4. The maximum discharge flow velocity of the molten steel generated in the branch portion 10 having the recess 11 changed from 1 time to 0.7 times was obtained as an example of the first embodiment. Further, since the maximum discharge flow velocity of molten steel also changes depending on the casting flow velocity (runner casting flow velocity) flowing through the runner 3, the above-mentioned runner casting flow velocity is based on the normal casting flow rate (hereinafter referred to as the base flow rate). The maximum discharge flow velocity of molten steel was determined by changing the flow velocity so as to be 0.5 to 3.0 times the base flow rate.

なお、溶鋼の最大吐出流速は、湯道3の上面から上方に向かって湯道径Dの2.54倍の位置、実寸であれば127mmの鋳型底部注入口位置で計測されたものを用いた。なお、この最大吐出流速の計測位置は、湯道3の上面から100mm〜200mmの範囲の鋳型底部注入口位置で選ぶのが好ましい。
結果を表4に示す。
The maximum discharge flow velocity of the molten steel was measured upward from the upper surface of the runner 3 at a position 2.54 times the runner diameter D, or 127 mm at the bottom injection port position of the actual size. .. The measurement position of the maximum discharge flow velocity is preferably selected at the position of the injection port at the bottom of the mold in the range of 100 mm to 200 mm from the upper surface of the runner 3.
The results are shown in Table 4.

表4では、凹部11を備えていない比較例1〜比較例4の分岐部10で発生する最大吐出流速に比して、凹部11を備えた実施例1〜実施例28の分岐部10で発生する最大吐出流速がどの程度の割合になるかを「丸孔最大吐出流速/R付与最大吐出流速」で示した。
表4の結果を見ると、凹部11の曲率半径Xが内径dの0.1倍〜0.7倍とされた実施例1〜実施例28では、「丸孔最大吐出流速/R付与最大吐出流速」は30〜75となっており、最大吐出流速が比較例に比して大きく下がっていることがわかる。
In Table 4, it occurs in the branch portion 10 of Examples 1 to 28 having the recess 11 as compared with the maximum discharge flow velocity generated in the branch portion 10 of Comparative Examples 1 to 4 not provided with the recess 11. The ratio of the maximum discharge flow velocity to be performed is shown by "round hole maximum discharge flow velocity / R-applied maximum discharge flow velocity".
Looking at the results in Table 4, in Examples 1 to 28 in which the radius of curvature X of the recess 11 was 0.1 to 0.7 times the inner diameter d, "maximum round hole discharge flow velocity / maximum R imparted discharge". The "flow velocity" is 30 to 75, and it can be seen that the maximum discharge flow velocity is significantly lower than that of the comparative example.

また、湯道を流れる溶鋼の流速に対して、鋳型5の注入口で吐出される最大吐出流速が増加する率も小さくなる。例えば、図6に示すように、湯道を流れる溶鋼の流速を「湯道平均流速」として横軸に採ると伴に、注入口で吐出される最大吐出流速を「吐出口最大流速」として縦軸に採用すると、凹部11が設けられていない比較例1〜比較例4では湯道平均流速に対する最大吐出流速の増加率が大きく、少しでも湯道を流れる流速が大きくなると注入口で吐出される溶鋼の流速も大きくなることがわかる。ところが、凹部11が設けられた実施例1〜実施例28では、最大吐出流速の増加率が小さく、湯道を流れる流速が大きくなっても注入口で吐出される溶鋼の流速はあまり大きくならないことがわかる。 Further, the rate at which the maximum discharge flow velocity discharged at the injection port of the mold 5 increases with respect to the flow velocity of the molten steel flowing through the runner also becomes small. For example, as shown in FIG. 6, the flow velocity of molten steel flowing through the runner is taken as the "average flow velocity of the runner" on the horizontal axis, and the maximum discharge flow velocity discharged at the injection port is taken as the "maximum flow velocity at the discharge port". When adopted for the shaft, in Comparative Examples 1 to 4 in which the recess 11 is not provided, the rate of increase of the maximum discharge flow velocity with respect to the average flow velocity of the runner is large, and if the flow velocity flowing through the runner becomes even a little, it is discharged at the injection port. It can be seen that the flow velocity of the molten steel also increases. However, in Examples 1 to 28 in which the recess 11 is provided, the rate of increase in the maximum discharge flow velocity is small, and the flow velocity of the molten steel discharged at the injection port does not increase so much even if the flow velocity flowing through the runner increases. I understand.

なお、図6に用いた「湯道平均流速」及び「吐出口最大流速」は、図7に示す位置での溶鋼の流速であり、表5に示すような定義に従うものとなっている。 The "average flow velocity of the runner" and the "maximum flow velocity of the discharge port" used in FIG. 6 are the flow velocities of the molten steel at the positions shown in FIG. 7, and follow the definitions shown in Table 5.

以上のことから、凹部11の曲率半径Xが内径dの0.1倍〜0.7倍となるような形状の凹部11を分岐部10に設けた場合には、鋳型5の注入口での偏流発生と型内材の巻き込みを効果的に抑制でき、健全且つ高清浄な鋼塊を簡便な設備構成を用いて低コストで製造することができると判断される。
なお、最大度出流速が0.60m/s以上の範囲であっても、最大吐出流速を従来よりも低減することにより、従来切り捨てられていた鋼塊底部の溶鋼被覆剤巻き込み範囲の切捨て重量を少なくできる効果がある。つまり、最大吐出流速の低減は下注ぎ造塊によって非常に重要であり、最大度出流速が0.6m/s以下でなくとも、極力低減することで鋼材の歩留まり向上効果がある。そこで、表に関しては0.60m/s以上の範囲も本願発明に含まれるものと扱っている。
「第2実施形態の下注ぎ造塊設備に対応した実施例(実施例29〜実施例52)」
上述した流体の解析の条件に基づいて、角箱部12及び丸面取部13を設けていない分岐部10の注入口で発生する溶鋼の最大吐出流速を比較例として求めると共に、角箱部12の寸法Xを分岐路4の内径dの0.2倍〜0.7倍、丸面取部13の曲率半径Rを内径dの0.1倍〜0.5倍に変化させた分岐部10で発生する溶鋼の最大吐出流速を第2実施形態の実施例として求めた。
From the above, when the recess 11 having a shape such that the radius of curvature X of the recess 11 is 0.1 to 0.7 times the inner diameter d is provided in the branch portion 10, the injection port of the mold 5 is used. It is judged that the occurrence of drift and the entrainment of the inner material of the mold can be effectively suppressed, and a healthy and highly clean steel ingot can be manufactured at low cost by using a simple equipment configuration.
Even if the maximum discharge flow velocity is in the range of 0.60 m / s or more, the cut-off weight of the molten steel coating agent entrainment range at the bottom of the ingot, which was conventionally cut off, is reduced by reducing the maximum discharge flow rate compared to the conventional method. There is an effect that can be done. That is, the reduction of the maximum discharge flow velocity is very important by the ingot pouring, and even if the maximum discharge flow velocity is not 0.6 m / s or less, the reduction as much as possible has the effect of improving the yield of the steel material. Therefore, regarding the table, the range of 0.60 m / s or more is also treated as included in the present invention.
"Examples corresponding to the bottom pouring ingot-forming equipment of the second embodiment (Examples 29 to 52)"
Based on the above-mentioned fluid analysis conditions, the maximum discharge flow velocity of molten steel generated at the injection port of the branch portion 10 not provided with the square box portion 12 and the round chamfer portion 13 is obtained as a comparative example, and the square box portion 12 is used. Dimension X is 0.2 to 0.7 times the inner diameter d of the branch path 4, and the radius of curvature R of the round chamfered portion 13 is changed to 0.1 to 0.5 times the inner diameter d. The maximum discharge flow velocity of the molten steel generated in the above was determined as an example of the second embodiment.

なお、溶鋼流動状態の解析条件、計算条件、及び物性値などは第1実施形態と同様に表1〜表3に従うものとなっている。溶鋼の最大吐出流速は、第1実施形態の実施例1〜実施例28と同様に、通常の鋳込み流量(以降、ベース流量という)を基準として、上述したランナー鋳込流速がベース流量の0.5倍〜3.0倍となるように流速を変えて溶鋼の最大吐出流速を求めた。 The analysis conditions, calculation conditions, physical property values, etc. of the molten steel flow state are according to Tables 1 to 3 as in the first embodiment. Similar to Examples 1 to 28 of the first embodiment, the maximum discharge flow velocity of the molten steel is 0. The runner casting flow velocity described above is the base flow rate based on the normal casting flow rate (hereinafter referred to as the base flow rate). The maximum discharge flow velocity of the molten steel was determined by changing the flow velocity so as to be 5 to 3.0 times.

また、溶鋼の最大吐出流速は、湯道3の上面から上方に向かって湯道径Dの2.54倍の位置、実寸であれば127mmの鋳型底部注入口位置で計測されたものを用いた。なお、この最大吐出流速の計測位置は、湯道3の上面から100mm〜200mmの範囲の鋳型底部注入口位置で選ぶのが好ましい。
結果を表6に示す。
Further, the maximum discharge flow velocity of the molten steel was measured from the upper surface of the runner 3 upward at a position 2.54 times the runner diameter D, or 127 mm at the actual size of the mold bottom injection port. .. The measurement position of the maximum discharge flow velocity is preferably selected at the position of the injection port at the bottom of the mold in the range of 100 mm to 200 mm from the upper surface of the runner 3.
The results are shown in Table 6.

表6では、角箱部12も丸面取部13も備えていない比較例5〜比較例8の分岐部10、及び角箱部12は備えていても丸面取部13は備えていない比較例9〜比較例20の分岐部10でそれぞれ発生する溶鋼の最大吐出流速に比して、角箱部12と丸面取部13との双方を備えた実施例29〜実施例52の分岐部10で発生する最大吐出流速がどの程度の割合になるかを「丸孔最大吐出流速/R付与最大吐出流速」で示している。 In Table 6, a comparison in which the branch portions 10 of Comparative Examples 5 to 8 and the square box portion 12 and the round chamfer portion 13 are provided but the round chamfer portion 13 is not provided. The branching portions of Examples 29 to 52 including both the square box portion 12 and the round chamfered portion 13 as compared with the maximum discharge flow velocity of the molten steel generated at the branching portions 10 of Examples 9 to 20 respectively. The ratio of the maximum discharge flow velocity generated in No. 10 is indicated by "round hole maximum discharge flow velocity / R-applied maximum discharge flow velocity".

表6の結果を見ると、角箱部12の寸法Xが内径dの0.2倍〜0.7倍とされると共に、丸面取部13の曲率半径Xが内径dの0.1倍〜0.5倍とされた実施例29〜実施例52では、「丸孔最大吐出流速/R付与最大吐出流速」は30〜75となっており、最大吐出流速が比較例に比して大きく下がっていることがわかる。
また、湯道3を流れる溶鋼の流速に対して、鋳型5の注入口で吐出される最大吐出流速が増加する率も小さくなる。
Looking at the results in Table 6, the dimension X of the square box portion 12 is 0.2 to 0.7 times the inner diameter d, and the radius of curvature X of the round chamfer portion 13 is 0.1 times the inner diameter d. In Examples 29 to 52, which are ~ 0.5 times, the "round hole maximum discharge flow velocity / R-applied maximum discharge flow velocity" is 30 to 75, and the maximum discharge flow velocity is larger than that of the comparative example. You can see that it is down.
Further, the rate at which the maximum discharge flow velocity discharged from the injection port of the mold 5 increases with respect to the flow velocity of the molten steel flowing through the runner 3 also becomes small.

例えば、図12に示すように、湯道3を流れる溶鋼の流速を「湯道平均流速」として横軸に採ると伴に、注入口で吐出される最大吐出流速を「吐出口最大流速」として縦軸に採用すると、角箱部12も丸面取部13も備えていない比較例5〜比較例8(図の凡例の「丸孔」)、及び角箱部12は備えていても丸面取部13は備えていない比較例9〜比較例20(図の凡例の「15角」、「25角」、「35角」)では湯道平均流速に対する最大吐出流速の増加率が大きく、少しでも湯道3を流れる流速が大きくなると注入口で吐出される溶鋼の流速も大きくなることがわかる。ところが、角箱部12と丸面取部13との双方を備える実施例29〜実施例52(図の凡例の「15角R10」、「25角R10」、「35角R10」)では、湯道平均流速に対する最大吐出流速の増加率が小さく、湯道3を流れる流速が大きくなっても注入口で吐出される溶鋼の流速はあまり大きくならないことがわかる。 For example, as shown in FIG. 12, the flow velocity of the molten steel flowing through the runner 3 is taken as the "runner average flow velocity" on the horizontal axis, and the maximum discharge flow velocity discharged at the injection port is taken as the "discharge port maximum flow velocity". When adopted on the vertical axis, Comparative Examples 5 to 8 (“round hole” in the legend in the figure) having neither the square box portion 12 nor the round chamfer portion 13 and the square box portion 12 having a round surface. In Comparative Examples 9 to 20 (“15 squares”, “25 squares”, and “35 squares” in the legend of the figure), which are not provided with the taking portion 13, the rate of increase of the maximum discharge flow velocity with respect to the average flow velocity of the runner is large, and it is a little. However, it can be seen that as the flow velocity flowing through the runner 3 increases, the flow velocity of the molten steel discharged at the injection port also increases. However, in Examples 29 to 52 (“15 square R10”, “25 square R10”, “35 square R10” in the legend of the figure) including both the square box portion 12 and the round chamfer portion 13, hot water is used. It can be seen that the rate of increase of the maximum discharge flow velocity with respect to the road average flow velocity is small, and the flow velocity of the molten steel discharged at the injection port does not increase so much even if the flow velocity flowing through the runner 3 increases.

また、図13に示すように、寸法Xが25と一定にされた角箱部12において、丸面取部13の曲率半径Rを「R5(図中の「25角R5」に相当)」〜「R20(図中の「25角R20」に相当)」とした場合を考える。この場合には、丸面取部13が設けられていない、言い換えれば曲率半径が「R0(図中の「25角」に相当)」の比較例5〜比較例20に対して、最大吐出流速の増加率が小さく、湯道3を流れる流速が大きくなっても注入口で吐出される溶鋼の流速はあまり大きくならないことがわかる。 Further, as shown in FIG. 13, in the square box portion 12 having a constant dimension X of 25, the radius of curvature R of the round chamfered portion 13 is set to “R5 (corresponding to“ 25 square R5 ”in the figure)” to Consider the case of "R20 (corresponding to" 25-sided R20 "in the figure)". In this case, the maximum discharge flow velocity is compared with Comparative Examples 5 to 20 in which the round chamfer portion 13 is not provided, in other words, the radius of curvature is "R0 (corresponding to" 25 angles "in the figure)". It can be seen that the flow velocity of the molten steel discharged at the injection port does not increase so much even if the rate of increase is small and the flow velocity flowing through the runner 3 increases.

なお、表6に用いた「湯道平均流速」及び「吐出口最大流速」も、表5に示す第1実施形態と同様な定義に従うものとなっている。
以上のことから、上述した実施例29〜実施例52に示すように、寸法Xが内径dの0.2倍〜0.7倍となるような角箱部12と、曲率半径Xが内径dの0.1倍〜0.5倍となるような丸面取部13を分岐部10に設けた場合には、鋳型5の注入口での偏流発生と型内材の巻き込みを効果的に抑制でき、健全且つ高清浄な鋼塊を簡便な設備構成を用いて低コストで製造することができると判断される。
The "average flow velocity of the runner" and the "maximum flow velocity of the discharge port" used in Table 6 also follow the same definitions as those of the first embodiment shown in Table 5.
From the above, as shown in Examples 29 to 52 described above, the square box portion 12 having a dimension X of 0.2 to 0.7 times the inner diameter d and the radius of curvature X having an inner diameter d. When the round chamfer portion 13 is provided in the branch portion 10 so as to be 0.1 to 0.5 times that of the mold 5, the occurrence of drift at the injection port of the mold 5 and the entrainment of the inner material in the mold are effectively suppressed. It is judged that a healthy and highly clean steel ingot can be manufactured at low cost by using a simple equipment configuration.

なお、最大度出流速が0.60m/s以上の範囲であっても、最大吐出流速を従来よりも低減することにより、従来切り捨てられていた鋼塊底部の溶鋼被覆剤巻き込み範囲の切捨て重量を少なくできる効果は、第1実施形態同様に発揮される。つまり、最大吐出流速の低減は下注ぎ造塊によって非常に重要であり、最大度出流速が0.6m/s以下でなくとも、極力低減することで鋼材の歩留まり向上効果がある。そこで、表6に関しても表5と同様に0.60m/s以上の範囲も本願発明に含まれるものと扱っている。 Even if the maximum discharge flow velocity is in the range of 0.60 m / s or more, the cut-off weight of the molten steel coating agent entrainment range at the bottom of the ingot, which was conventionally cut off, is reduced by reducing the maximum discharge flow rate compared to the conventional method. The effect that can be achieved is exhibited in the same manner as in the first embodiment. That is, the reduction of the maximum discharge flow velocity is very important by the ingot pouring, and even if the maximum discharge flow velocity is not 0.6 m / s or less, the reduction as much as possible has the effect of improving the yield of the steel material. Therefore, as in Table 5, the range of 0.60 m / s or more is also included in the present invention in Table 6.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。 It should be noted that the embodiments disclosed this time are exemplary in all respects and are not restrictive. In particular, in the embodiments disclosed this time, matters not explicitly disclosed, such as operating conditions, operating conditions, various parameters, dimensions, weights, volumes of components, etc., deviate from the scope normally implemented by those skilled in the art. A value that can be easily assumed by a person skilled in the art is adopted.

1 下注ぎ造塊設備
2 注入管
3 湯道
4 分岐路
5 鋳型
6 取鍋
7 台盤
8 貫通孔
9 注入ノズル
10 分岐部
11 凹部
12 角箱部
13 丸面取部
1 Bottom pouring ingot mass equipment 2 Injection pipe 3 Runway 4 Branch path 5 Mold 6 Ladle 7 Base 8 Through hole 9 Injection nozzle 10 Branch 11 Recess 12 Square box 13 Round chamfer

Claims (3)

湯道からT字状に分岐した分岐路に溶鋼を導き入れて、当該分岐路の先にある鋳型に溶鋼を注入して造塊を行う造塊設備であって、
前記湯道から分岐路が上方に向かってT字状に分岐している分岐部には、当該分岐部の上隅が上方に向かって角箱形状に凹んだ角箱部と、角箱部と分岐路との角が丸面取りされた丸面取部と、が形成されており、
前記角箱部の湯道に沿った寸法をX、前記丸面取部の曲率半径をR、前記湯道及び分岐路の吐出口側の内径をdとした際に、前記角箱部の寸法X、前記丸面取部の曲率半径R、前記内径dとの間に、以下の式(2)の関係が成り立つことを特徴とする下注ぎ造塊設備。
[数2]
d×0.2≦X≦d×0.7
d×0.1≦R≦d×0.5・・・(2)
It is an ingot making facility that introduces molten steel into a T-shaped branch from a runner and injects molten steel into a mold at the end of the branch to ingot.
In the branch portion where the branch path branches upward from the runner in a T shape, a square box portion in which the upper corner of the branch portion is recessed upward in a square box shape and a square box portion A round chamfered portion with rounded corners from the branch road is formed.
When the dimension of the square box along the runner is X, the radius of curvature of the round chamfer is R, and the inner diameter of the runner and the branch path on the discharge port side is d, the dimension of the square box is A bottom pouring ingot making facility characterized in that the relationship of the following equation (2) is established between X, the radius of curvature R of the round chamfered portion, and the inner diameter d.
[Number 2]
d × 0.2 ≦ X ≦ d × 0.7
d × 0.1 ≦ R ≦ d × 0.5 ... (2)
前記湯道には、当該湯道における溶鋼の流れ方向に沿って少なくとも2基以上の鋳型が並んで配設されており、
前記角箱部及び丸面取部が、前記溶鋼の流れ方向における上流側に配設された鋳型に溶鋼を分岐する分岐部に形成されていることを特徴とする請求項に記載の下注ぎ造塊設備。
At least two or more molds are arranged side by side in the runner along the flow direction of the molten steel in the runner.
The lower pouring according to claim 1 , wherein the square box portion and the round chamfered portion are formed at a branch portion for branching the molten steel into a mold arranged on the upstream side in the flow direction of the molten steel. Ingot making equipment.
前記角箱部及び丸面取部は、前記湯道における溶鋼の流れ方向に対して、前記分岐部における流れ方向の下流側に形成されていることを特徴とする請求項またはに記載の下注ぎ造塊設備。 The first or second aspect of the present invention, wherein the square box portion and the round chamfered portion are formed on the downstream side of the flow direction of the branch portion with respect to the flow direction of the molten steel in the runner. Chamfering ingot equipment.
JP2017154260A 2016-09-29 2017-08-09 Bottom pouring ingot equipment Active JP6818980B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191109 2016-09-29
JP2016191109 2016-09-29

Publications (2)

Publication Number Publication Date
JP2018058109A JP2018058109A (en) 2018-04-12
JP6818980B2 true JP6818980B2 (en) 2021-01-27

Family

ID=61909313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017154260A Active JP6818980B2 (en) 2016-09-29 2017-08-09 Bottom pouring ingot equipment

Country Status (1)

Country Link
JP (1) JP6818980B2 (en)

Also Published As

Publication number Publication date
JP2018058109A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP5807719B2 (en) High cleanliness steel slab manufacturing method and tundish
CN102825229A (en) Flow control structure for preventing vortexes from being generated in tundish
CN101733373A (en) Submerged nozzle for sheet billet continuous casting crystallizer
CN101296766A (en) Method for manufacture of ultra-low carbon steel slab
CN106041042B (en) Special-shaped stainless steel continuous casting tundish
JP6818980B2 (en) Bottom pouring ingot equipment
JP6701517B2 (en) Tundish for continuous casting, and continuous casting method using the tundish
JP5867531B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
CN203030884U (en) Multihole type immersive type water port for continuous casting
JP2018051598A (en) Bottom pouring ingot-making equipment
TWI690377B (en) Continuous casting method of steel
JP6188632B2 (en) Bottom pouring method
JP5751078B2 (en) Manufacturing method of high cleanliness steel slab by continuous casting
KR101277692B1 (en) Method for decreasing pin-hole defect in continuous casting process
KR101277707B1 (en) Method for decreasing pin-hole defect in continuous casting process
JP6491039B2 (en) Bottom pouring method
JP6249940B2 (en) Lower casting ingot method in lower casting ingot apparatus in which three molds and two molds are arranged asymmetrically
JP2012020315A (en) Method for production of high-cleanliness steel cast slab by continuous casting
JP3365362B2 (en) Continuous casting method
JP5206591B2 (en) Tundish for continuous casting
JP6668568B2 (en) Tundish for continuous casting and continuous casting method using the tundish
JP3470537B2 (en) Inclusion removal method in tundish for continuous casting
JP6188642B2 (en) Bottom pouring method
KR102033642B1 (en) Processing apparatus for molten material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201202

R150 Certificate of patent or registration of utility model

Ref document number: 6818980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150