JPH01157420A - Oxide superconductor and production thereof - Google Patents

Oxide superconductor and production thereof

Info

Publication number
JPH01157420A
JPH01157420A JP24362488A JP24362488A JPH01157420A JP H01157420 A JPH01157420 A JP H01157420A JP 24362488 A JP24362488 A JP 24362488A JP 24362488 A JP24362488 A JP 24362488A JP H01157420 A JPH01157420 A JP H01157420A
Authority
JP
Japan
Prior art keywords
sputtering
superconductor
temperature
oxide
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24362488A
Other languages
Japanese (ja)
Inventor
Tetsuya Ogushi
大串 哲弥
Gentaro Kaji
源太郎 梶
Saburo Nagano
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24362488A priority Critical patent/JPH01157420A/en
Publication of JPH01157420A publication Critical patent/JPH01157420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having a high critical temp. and exhibiting superconductivity by cooling with low-cost liq. nitrogen by forming a thin film of La-Sr-Nb-O type oxide by sputtering. CONSTITUTION:This oxide superconductor has a chemical compsn. represented by a formula LaxSryNbOz (where 0<x<1, 0<y<1 and 1<z<4) in at least the surface layer and has >=100K critical temp. The superconductor is obtd. as follows: one of Nb and La-Sr-Cu-O type oxide is used as a substrate, the other as a target, sputtering is carried out in an Ar atmosphere at a temp. at which the substitution of Nb for Cu is caused, and a formed thin film is rapidly cooled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁気浮上列車及び粒子加速器等の磁気
コイル部分や電子デバイス及びジョセフソンコンピュー
タの回路基板等に使用されるバルク状又は薄膜状から成
る酸化物超電導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is applicable to bulk or thin film materials used, for example, in magnetic coil parts of magnetic levitation trains and particle accelerators, electronic devices, and circuit boards of Josephson computers. The present invention relates to an oxide superconductor consisting of.

〔従来技術〕[Prior art]

現在、超電導体はNb3GeやNb:ISnに代表され
る金属系超電導体が実用化されているが、その臨界温度
(Tc)はたかだか23.2に程度までである。
Currently, metal-based superconductors such as Nb3Ge and Nb:ISn are in practical use, but their critical temperature (Tc) is at most 23.2.

しかし乍ら、近時希土類元素、アルカリ土類元素及び酸
化銅の混合物から成る酸化物系超電導体はその臨界温度
が金属系超電導体と比べ著しく高いものであることが発
表(例えば東京大学工学部グループの米国物理学会では
90Kを達成したと発表)され、冷媒として高価な極低
温(4,2に= −268,8℃)の液体ヘリウムに換
え、安価な液体窒素で充分使用可能となった。それ故、
この酸化物系超電導体の各種利用分野における実用化の
百度に大きな前進が見られた。これらの発表に伴い、上
記利用分野におけるバルク状又は薄膜状の酸化物系超電
導体において、その臨界温度(Tc)をさらに常温にま
で高めようとする研究が盛んに行われているが、未だ充
分に高い臨界温度(Tc)を有する酸化物超電導体が得
られていない。
However, it has recently been announced that oxide-based superconductors made of a mixture of rare earth elements, alkaline earth elements, and copper oxide have significantly higher critical temperatures than metal-based superconductors (for example, a group from the University of Tokyo Faculty of Engineering It was announced at the American Physical Society that it had achieved a temperature of 90 K), and it became possible to use inexpensive liquid nitrogen as a refrigerant instead of the expensive cryogenic liquid helium (4,2 = -268,8 degrees Celsius). Therefore,
Significant progress has been made in the practical application of this oxide-based superconductor in various fields of application. Along with these announcements, research has been actively conducted to further raise the critical temperature (Tc) of bulk or thin film oxide superconductors in the above application fields to room temperature, but there is still insufficient research. An oxide superconductor with a high critical temperature (Tc) has not yet been obtained.

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的は、高い臨界温度(Tc)を有し
、安価な液体窒素冷却により超電導を示す新規酸化物超
電導体及びその製法を提供することにある。
Therefore, an object of the present invention is to provide a novel oxide superconductor that has a high critical temperature (Tc) and exhibits superconductivity when cooled with inexpensive liquid nitrogen, and a method for producing the same.

本発明の他の目的は前記酸化物超電導体をスパッタリン
グによる薄膜形成技術により製造し得る方法を提供する
にある。
Another object of the present invention is to provide a method for manufacturing the oxide superconductor using a thin film forming technique using sputtering.

〔発明の概要〕[Summary of the invention]

本発明によれば、Nb及びLa−3r−Cu−0系酸化
物の何れか一方を基板とし、他方をターゲットとして、
アルゴン雰囲気中且つCuのNbへの置換が生じる温度
条件下にスパッタリングを行いNbをLa−3r−Cu
−0系酸化物中に拡散させ、次いで形成される薄膜を急
冷することによって少なくとも表層が式%式% 式中 0<x<1.Q<y<l、l<z<4で表わされ
る化学組成を有し、且つ100に以上の臨界温度を有す
る酸化物超電導体を得ようとするものである。
According to the present invention, one of Nb and La-3r-Cu-0-based oxides is used as a substrate, the other is used as a target,
Sputtering was performed in an argon atmosphere and under temperature conditions that caused the substitution of Cu with Nb.
-0-based oxide and then rapidly cooled the formed thin film, so that at least the surface layer has the formula % formula % where 0<x<1. The present invention aims to obtain an oxide superconductor having a chemical composition expressed by Q<y<l, l<z<4 and a critical temperature of 100 or higher.

本発明は、Nb金属上にLa−5r−Cu−0系酸化物
をスパッタし、或いはLa−3r−Cu−0系酸化物上
にNb金属をスパッタするとNbがLa−5r−Cu−
0系酸化物に拡散してCuがNbに置換され、La−5
r−Nb−0系酸化物から成りしかも、高い臨界温度(
Tc)、即ち高い0FF−3ET温度を有する超電導体
が得られるという知見に基づくものである。
In the present invention, when a La-5r-Cu-0 based oxide is sputtered on a Nb metal or a Nb metal is sputtered onto a La-3r-Cu-0 based oxide, Nb becomes a La-5r-Cu-0 based oxide.
Cu is diffused into the 0-based oxide and replaced with Nb, and La-5
It is made of r-Nb-0 based oxide and has a high critical temperature (
This is based on the knowledge that a superconductor having a high 0FF-3ET temperature can be obtained.

本発明の方法に用いるマグネトロンスパッタリング装置
を示す第1図において、耐圧室10の内部には、ヒータ
(図示せず)を内蔵する支持体11があり、この支持体
ll上に基板12が載せられている。
In FIG. 1 showing a magnetron sputtering apparatus used in the method of the present invention, there is a support 11 containing a heater (not shown) inside a pressure chamber 10, and a substrate 12 is placed on this support 11. ing.

この支持体11と対向するようにプラナ−マグネトロン
型カソード13が設けられ、その上にスパッタリングタ
ーゲット14が載せられている。室10は、バルブ15
を備えた給排気口16と接続されている。
A planar-magnetron type cathode 13 is provided to face the support 11, and a sputtering target 14 is placed thereon. The chamber 10 has a valve 15
It is connected to an air supply/exhaust port 16 having an air supply/exhaust port.

本発明の好適な態様では、室10は液体窒素等で冷却さ
れている。
In a preferred embodiment of the invention, chamber 10 is cooled with liquid nitrogen or the like.

本発明によれば、基板12としてNb金属及びターゲッ
ト14としてLa−5r−Cu−0系酸化物を用いるか
、或いは基板12としてLa−5r−Cu−0系酸化物
及びターゲット14としてNb金属を用いる。
According to the present invention, Nb metal is used as the substrate 12 and La-5r-Cu-0 based oxide is used as the target 14, or alternatively, a La-5r-Cu-0 based oxide is used as the substrate 12 and Nb metal is used as the target 14. use

La−5r−Cu−0系酸化物としては、これらの元素
を有する焼結体が使用される。しかし、La−5r−C
u−0系酸化物の組成はスパッタ時、変動するが、各元
素は超電導体を形成するに十分な元素量を供給し得るこ
とが必要であり、具体的には、 Lak Sr+、lCu OFI  ’ ” ’ (1
)式中、kは0.1〜10.  mは0.1〜10. 
nは1.25〜26.5 で表わされるものが使用され、最も好適には式La5r
CuO<の組成のものが使用される。第3図は、このも
ののEPM八での組成分析パターンを示す。上記La−
3r−Cu−0系酸化物焼結体は一般に電気絶縁性であ
ってよい。
As the La-5r-Cu-0-based oxide, a sintered body containing these elements is used. However, La-5r-C
Although the composition of the u-0 series oxide varies during sputtering, it is necessary to supply each element in sufficient amount to form a superconductor. Specifically, Lak Sr+, lCu OFI' ” ' (1
), where k is 0.1 to 10. m is 0.1 to 10.
n is 1.25 to 26.5, most preferably the formula La5r
A material having a composition of CuO< is used. FIG. 3 shows the compositional analysis pattern of this product using EPM8. The above La-
The 3r-Cu-0 based oxide sintered body may generally be electrically insulating.

基板12の厚みは、最終超電導体に十分なNbJ?3L
a、Sr及び0成分が供給されるものであり、Nb金属
の場合の20乃至50μm 、 La−5r−Cu−0
系酸化物の場合の100乃至3000μm迄変化させ得
る。
Is the thickness of the substrate 12 enough NbJ for the final superconductor? 3L
a, Sr and 0 components are supplied, 20 to 50 μm in the case of Nb metal, La-5r-Cu-0
The thickness can be varied from 100 to 3000 μm in the case of based oxides.

スパッタリングは、アルゴン雰囲気中且つCuのNbへ
の置換が生じる温度条件下に行う。このために、スパッ
タリングに先立って、室10内を10−8乃至10− 
’Torr程度に減圧し、Ar圧を0.05乃至Q、3
Torr、特に0.1乃至0.7Torrに維持し且つ
基板12を600乃至1250℃、特に700乃至12
00℃に加熱してスパッタリングを行う。スパッタリン
グは電圧200乃至300v及び電流値300乃至40
0mAとしたマグネトロンスパッタリングで行うのがよ
く、また、スパッタリング時の酸素分圧は10−’To
rr以下の範囲に維持するのがよい。
Sputtering is performed in an argon atmosphere and under temperature conditions that cause the substitution of Cu with Nb. For this purpose, prior to sputtering, the inside of the chamber 10 is heated from 10-8 to 10-
'Reducing the pressure to about Torr, and increasing the Ar pressure to 0.05 to Q, 3
Torr, especially 0.1 to 0.7 Torr, and the substrate 12 is maintained at 600 to 1250°C, especially 700 to 12
Sputtering is performed by heating to 00°C. Sputtering uses a voltage of 200 to 300V and a current value of 300 to 40V.
It is best to perform magnetron sputtering at 0 mA, and the oxygen partial pressure during sputtering is 10-'To
It is better to maintain it within the range of rr or less.

Nbを基板とする場合、成膜温度は、一般に50乃至5
00人/min、特に100乃至200人ノ1IIin
の範囲とするのがよく、またLa−5r−Cu−0系酸
化物の場合、La−5r−Nb−0系酸化物膜の生成速
度(以下スパッタリング速度と呼ぶ)は100乃至50
00人/l1linの範囲とするのがよい。
When using Nb as a substrate, the film forming temperature is generally 50 to 50
00 people/min, especially 1IIin for 100 to 200 people
In the case of La-5r-Cu-0 based oxide, the production rate of La-5r-Nb-0 based oxide film (hereinafter referred to as sputtering rate) is preferably within the range of 100 to 50.
It is preferable to set it in the range of 00 people/l1lin.

本発明ではスパッタリング終了後、形成される薄膜を急
冷することが、超電導体相を安定化させる上で好ましい
。スパッタリングチャンバー10を液体窒素で冷却した
状態で操作を行うと、スパッタリングが終了した後ヒー
タへの通電を遮断すると直ちに薄膜の急冷却が生じるの
で好ましい。急冷は400乃至3000℃/hrの冷却
速度で400℃以下の温度まで行うことが好ましい。
In the present invention, it is preferable to rapidly cool the formed thin film after sputtering is completed in order to stabilize the superconductor phase. It is preferable to perform the operation while the sputtering chamber 10 is cooled with liquid nitrogen because the thin film is rapidly cooled as soon as the power to the heater is cut off after sputtering is completed. The rapid cooling is preferably performed at a cooling rate of 400 to 3000°C/hr to a temperature of 400°C or less.

最終超電導体における酸素量を制御する目的で、冷却の
途中段階で、形成された薄膜を、400乃至700℃の
温度で1乃至5Torrの酸素雰囲気と接触させること
もできる。
In order to control the amount of oxygen in the final superconductor, the formed thin film may be brought into contact with an oxygen atmosphere of 1 to 5 Torr at a temperature of 400 to 700° C. during an intermediate stage of cooling.

本発明によれば、かくして少なくとも表層がLa−5r
−Nb−0系酸化物から成り、且つ臨界温度(Tc)が
100に以上、特に200乃至300にの範囲内にある
超厚電体が得られる。第3図と第4図との対比から、本
発明の超電導体では、Cuの特性ピークが消失しており
、その代わりにNbの特性ピークが表われていることか
ら、CuがNbに置換されていることがわかる。
According to the invention, at least the surface layer is thus made of La-5r.
An ultra-thick electric body made of a -Nb-0 series oxide and having a critical temperature (Tc) of 100 or higher, particularly within the range of 200 to 300, can be obtained. Comparison between FIG. 3 and FIG. 4 shows that in the superconductor of the present invention, the characteristic peak of Cu disappears and the characteristic peak of Nb appears instead, indicating that Cu is replaced by Nb. You can see that

この超電導体は少なくとも表層が式 %式%(2) 式中、O<x<1.0<y<1.1<z<4で表わされ
る組成を有するのがよく、最も好適には式 %式% で表わされる組成を有する。
It is preferable that at least the surface layer of this superconductor has a composition represented by the formula % (2) where O<x<1.0<y<1.1<z<4, most preferably the formula % It has a composition expressed by the formula %.

本発明の超電導体は、第7図に示す通り、全体がLa−
3r−Nb−0系酸化吻1から成っていてもよく、また
第8図に示す通り、表層がLa−5r−Nb−0系酸化
物l、下層がNb金属2及び中間層が表層から下層に向
けてNb含有量が増大する遷移層3から成っていてもよ
い。更に、本発明の別の態様の超1を導体では、第9図
に示す通り、La−5r−Nb−0系酸化物1の表層及
びLa−5r−Cu−0系酸化物4の下層から成ってい
る。
As shown in FIG. 7, the superconductor of the present invention is made entirely of La-
3r-Nb-0 based oxide 1, and as shown in FIG. It may also consist of a transition layer 3 in which the Nb content increases toward . Furthermore, in the super 1 conductor according to another embodiment of the present invention, as shown in FIG. It has become.

なお、第9図のタイプの超電導体において、表層1と下
層4との間に表層1から下層4に向けてNb含有量が減
少する中間層が生成される場合もある。これら、含有量
に勾配を有する中間層はいずれもその組成は、式(2)
に示された組成範囲内の勾配を有することがより望まし
い。
In the superconductor of the type shown in FIG. 9, an intermediate layer may be formed between the surface layer 1 and the lower layer 4 in which the Nb content decreases from the surface layer 1 toward the lower layer 4. The composition of these intermediate layers having a gradient in content is expressed by the formula (2)
It is more desirable to have a gradient within the composition range shown in .

このような構成元素の含有量に勾配を有する層が形成さ
れることによって非平衡相が形成され、それによって系
全体は安定化される。
By forming a layer having a gradient in the content of constituent elements, a non-equilibrium phase is formed, thereby stabilizing the entire system.

本発明の超電導体は、100に以上の液体窒素温度(7
7,3K)よりも高い温度に臨界温度を有する。この事
実は、第2図及び第5図を参照することにより直ちに明
白となる。また、本発明の超電導体は、9.2にのNb
の帯磁率を基準としたとき−5乃至−30χ程度のマイ
スナー効果を示す。
The superconductor of the present invention has a liquid nitrogen temperature of over 100 (7
It has a critical temperature at a temperature higher than 7.3 K). This fact becomes immediately apparent by referring to FIGS. 2 and 5. Further, the superconductor of the present invention has Nb of 9.2
It exhibits a Meissner effect of about -5 to -30χ when the magnetic susceptibility is taken as a standard.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

〔実施例〕〔Example〕

0.03pm厚のNb金属板上にLa5rCuO,化合
物をスパッタして薄膜を形成した。成膜は液体窒素槽内
で直流高速マグネトロンスパッタリングによりAr圧0
.1〜0.4Torr、電圧200〜300V、電vL
300〜400mAで行った。スパッタする前にペルジ
ャー内は〜10−’Torrまで減圧し、スパッタは0
□分圧〜10− ’Torrで行った。スパッタリング
ターゲット(LaSrCu04)は900℃で8時間に
アニールした後使用した。
A thin film was formed by sputtering a La5rCuO compound onto a 0.03 pm thick Nb metal plate. The film was formed by direct current high speed magnetron sputtering in a liquid nitrogen tank at Ar pressure of 0.
.. 1 to 0.4 Torr, voltage 200 to 300V, electric vL
It was carried out at 300-400 mA. Before sputtering, the pressure inside the Pelger is reduced to ~10-'Torr, and the sputtering temperature is 0.
□Performed at a partial pressure of ~10-'Torr. The sputtering target (LaSrCu04) was used after being annealed at 900° C. for 8 hours.

スパッタ中は700〜800℃に加熱し、その後400
℃/Hrで室温まで急冷した。膜の特性はこの冷却速度
に影響され本発明によれば、急冷することにより特性を
安定化できる。膜厚は20μmであった。
During sputtering, heat to 700-800°C, then 400°C.
It was rapidly cooled down to room temperature at °C/Hr. The properties of the film are affected by this cooling rate, and according to the present invention, the properties can be stabilized by rapid cooling. The film thickness was 20 μm.

抵抗の測定は四端子法を用いた。電極はIn(インジウ
ム)を超音波ハンダで付けた。測定電流は10A/cm
”であり時折変化させた。サンプルの測温はAu−0,
07XFe−クロメル熱電対で行い、冷媒として液体ヘ
リウム及び液体窒素を用いた。室温以上の加温には温風
を吹き付けた。室温から液体ヘリウムまでの冷却速度は
〜300に/hrで行った。AC帯磁率測定には誘導ブ
リッジ法を用いた。
The resistance was measured using the four-terminal method. The electrodes were attached with In (indium) using ultrasonic solder. Measurement current is 10A/cm
” and was changed from time to time.The temperature of the sample was measured at Au-0,
It was conducted with a 07XFe-chromel thermocouple, and liquid helium and liquid nitrogen were used as coolants. Warm air was blown to raise the temperature above room temperature. The cooling rate from room temperature to liquid helium was ~300/hr. The inductive bridge method was used for AC magnetic susceptibility measurement.

サンプルを温風により335Kまで加温した後冷却した
。冷却と同時に抵抗が急激に減少し、第2図に示す温度
に対する抵抗変化曲線が得られた。これから理解される
ように、このサンプルのオンセット温度は少なくとも2
28にで、オフセット温度は少なくとも100Kである
。即ち、100K(−173℃)で抵抗が零(0)とな
る超電導薄膜が得られた。
The sample was heated to 335K with hot air and then cooled. The resistance rapidly decreased upon cooling, and the resistance change curve versus temperature shown in FIG. 2 was obtained. As will be seen, the onset temperature of this sample is at least 2
At 28, the offset temperature is at least 100K. That is, a superconducting thin film whose resistance became zero (0) at 100 K (-173° C.) was obtained.

尚、前記スパッタリングターゲット(LaSrCuO,
、)と成膜後の結晶相とをEPMA (Electro
n−Probe−Micro−Analyzer)によ
り測定し、第3図及び第4図に示し比較した。これから
明らかな如く成膜後はCuのピークが消え、代わりに強
いNbのピークが表われている。即ち、La5rCu0
4中のCuはNbに略完全に置換されている。これはN
bとOとが強い親和性を有しかつKNbOzに代表され
るプロブスカイト型構造をつくり易いことから酸素八面
体の中心のCuがNbに置換したものと考えられる。な
お、LaとOの量は大きく変化しなかったがSrは僅か
に減少していることが分かった。
Note that the sputtering target (LaSrCuO,
) and the crystal phase after film formation by EPMA (Electro
n-Probe-Micro-Analyzer) and are shown and compared in FIGS. 3 and 4. As is clear from this, the Cu peak disappears after film formation, and a strong Nb peak appears instead. That is, La5rCu0
Cu in No. 4 is almost completely substituted with Nb. This is N
It is thought that Cu at the center of the oxygen octahedron was substituted with Nb because b and O have a strong affinity and a provskite structure represented by KNbOz is easily formed. It was found that although the amounts of La and O did not change significantly, the amount of Sr decreased slightly.

〔実施例2〕 La−5r−Nb−0から成るバルク体をも高真空装置
内で作成する。厚み2111111 X巾5mm X長
さ10mmのLa5rCub、が基板として用いられた
。ペルジャーを10− ”Torrまで減圧し、Nb(
純度99.9 % )をLa5rCu04基板上に^r
圧〜0.5Torrでスパッタした。基板の温度は90
0℃としスパッタ速度は〜100人/minであった。
[Example 2] A bulk body made of La-5r-Nb-0 is also produced in a high vacuum apparatus. A La5rCub with a thickness of 2111111 mm, a width of 5 mm, and a length of 10 mm was used as the substrate. The Pelger was depressurized to 10-” Torr and Nb (
(purity 99.9%) on La5rCu04 substrate^r
Sputtering was performed at a pressure of ~0.5 Torr. The temperature of the board is 90
The temperature was 0°C and the sputtering rate was ~100 people/min.

スパッタ後ペルジャー内で基板を700℃で30分保持
した。 Nbの組成はスパッタ時間で調整した。スパッ
タ後、チャンバー内の内壁はCu膜で覆、 われでいた
。このことはNbがCuと置換してLa5rCu04基
板中からCuが飛散したものと考えられる。
After sputtering, the substrate was held at 700° C. for 30 minutes in a Pelger. The composition of Nb was adjusted by sputtering time. After sputtering, the inner wall of the chamber was covered with a Cu film and was walled. This is considered to be because Nb replaced Cu and Cu was scattered from the La5rCu04 substrate.

測定は実施例1と同様に行った結果、抵抗は少なくとも
オンセント温度(Tco)が200に以上の室温領域で
鋭く減少し始めており、マイスナー効果も示していた。
Measurements were carried out in the same manner as in Example 1, and the results showed that the resistance began to sharply decrease at least in the room temperature region where the on-cent temperature (Tco) was 200 or higher, and the Meissner effect was also exhibited.

〔実施例3〕 厚さ200μmのNb箔上にLa5rCubn化合物を
スパッタした。成膜は直流高速マグネトロンスパッタリ
ングにより直径100mmのLa5rCuOnターゲツ
トを用いて成膜速度を5000人/minで液体窒素で
冷却されたチャンバ内で行う。膜厚は〜15μmで膜形
状は4mm角である。スパッタリングは高Ar圧で0.
5〜0.7Torr 、基板温度は1200”cである
[Example 3] A La5rCubn compound was sputtered onto a 200 μm thick Nb foil. Film formation is performed by direct current high speed magnetron sputtering using a La5rCuOn target with a diameter of 100 mm at a film formation rate of 5000 people/min in a chamber cooled with liquid nitrogen. The film thickness is ~15 μm and the film shape is 4 mm square. Sputtering is performed at high Ar pressure and 0.
5 to 0.7 Torr, and the substrate temperature is 1200''c.

スパッタ終了後、1200℃から400℃まで50℃/
minで急冷し、2 Torrの酸素(02)中で5分
間保持した。
After sputtering, heat at 50°C/1200°C to 400°C.
quenched at 2 Torr and held for 5 minutes in oxygen (02) at 2 Torr.

測定は実施例1と同様に行った。測定時の電流は3 A
/cm”であるが電流依存性を見るためIOA/cm2
も用いた。
Measurements were performed in the same manner as in Example 1. Current during measurement is 3 A
/cm”, but to see the current dependence, IOA/cm2
was also used.

組成分析をEPMA及びIMA (Ion−Micro
−Analyzer)で行った。La及びSrO量は大
きく変化していないが、Cuの存在はヰ食出されなかっ
た。IMAの分析からNb箔よりNb酸化物までの厚み
方向においてNb含有量の勾配が存在していることが分
かった。Nb箔上のLa−5r−Cu−04の組成はL
a−3r−Nb−0薄膜となった。Nb箔からこの薄膜
内へNbが拡散することにより、膜相のCuがNbに置
換され、酸素八面体の中央OCu!!’Nbに置き換わ
っている。表面にはLazSrlNb50、。の組成か
らなる層が形成されていた。
Composition analysis was performed using EPMA and IMA (Ion-Micro
-Analyzer). Although the amounts of La and SrO did not change significantly, the presence of Cu was not absorbed. IMA analysis revealed that there is a gradient in Nb content in the thickness direction from the Nb foil to the Nb oxide. The composition of La-5r-Cu-04 on Nb foil is L
The result was an a-3r-Nb-0 thin film. As Nb diffuses from the Nb foil into this thin film, Cu in the film phase is replaced with Nb, and the central OCu! ! 'Nb has been replaced. LazSrlNb50 on the surface. A layer with the composition was formed.

上記サンプルの温度に対する抵抗変化及び帯磁率を測定
し、第5図に示した。温風により加熱を停止した直後、
抵抗は急激に落ち始め、300にでノイズレベルであっ
ても抵抗がOになった。このノイズは255Kまで続い
た。負の帯磁率は9.2にでのNbの帯磁率の5χであ
りマイスナー効果の存在が確認された。
The resistance change and magnetic susceptibility with respect to temperature of the above sample were measured and are shown in FIG. Immediately after stopping heating with hot air,
The resistance started to drop rapidly, and at 300, the resistance became O even at the noise level. This noise continued up to 255K. The negative magnetic susceptibility was 5χ of the magnetic susceptibility of Nb at 9.2, and the existence of the Meissner effect was confirmed.

尚、第6図に示す如(、〜2BOKテNb(7)20!
 、!: イう大きな磁化を示したサンプルも得られた
In addition, as shown in FIG. 6 (,~2BOKTENb(7)20!
,! : Samples with very large magnetization were also obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明の酸化物超電導体は高い臨界
温度を有することから安価な液体窒素による冷却により
超電導を示すもので、実用性が高く磁気コイル用部品や
、回路基板等あらゆる分野に展開することができるもの
である。
As detailed above, since the oxide superconductor of the present invention has a high critical temperature, it exhibits superconductivity when cooled with inexpensive liquid nitrogen, and is highly practical and can be used in various fields such as magnetic coil parts and circuit boards. It is something that can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸化物超電導体の製造に用いるマグネトロンス
パッタリング装置の概略配置図であり、第2図は実施例
1で得られた超電導体の抵抗−温度特性図であり、第3
図は実施例1で用いたスパッタリングターゲットのel
ectron probe micro−analyj
er(EPMA)の組成分析パターンであり、第4図は
実施例1で得られた超電導体のEPMAの組成分析パタ
ーンであり、第5図は実施例3で得られた超電体の抵抗
−温度特性及びマイスナー効果−温度特性を示すグラフ
であり、第6図は実施例3で得られた他の超電導体につ
いてマイスナー効果−温度特性を示す線図であり、第7
図、第8図及び第9図は本発明の超電導体の数例を示す
断面図である。 11・・・支持体   12・・・基 板14・・・タ
ーゲット
FIG. 1 is a schematic layout diagram of a magnetron sputtering apparatus used for manufacturing an oxide superconductor, FIG. 2 is a resistance-temperature characteristic diagram of the superconductor obtained in Example 1, and FIG.
The figure shows the el of the sputtering target used in Example 1.
ectron probe micro-analyj
er (EPMA), FIG. 4 is a composition analysis pattern of EPMA of the superconductor obtained in Example 1, and FIG. 5 is a resistance - FIG. 6 is a graph showing temperature characteristics and Meissner effect-temperature characteristics; FIG. 6 is a graph showing Meissner effect-temperature characteristics for other superconductors obtained in Example 3;
8 and 9 are cross-sectional views showing several examples of the superconductor of the present invention. 11...Support 12...Substrate 14...Target

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも表層が式 La_xSr_yNbO_z 式中0<x<1、0<y<1、1<z<4 で表わされる化学組成を有し、且つ100K以上の臨界
温度を有する酸化物超電導体。
(1) An oxide superconductor in which at least the surface layer has a chemical composition represented by the formula La_xSr_yNbO_z, where 0<x<1, 0<y<1, 1<z<4, and has a critical temperature of 100K or higher.
(2)Nb及びLa−Sr−Cu−O系酸化物の何れか
一方を基板とし、他方をターゲットとして、アルゴン雰
囲気中且つCuのNbへの置換が生じる温度条件下にス
パッタリングを行い、次いで形成される薄膜を急冷する
ことから成るLa−Br−Nb系酸化物超電導体の製法
(2) Sputtering is performed using either Nb or La-Sr-Cu-O-based oxide as a substrate and the other as a target in an argon atmosphere and at a temperature that causes the substitution of Cu with Nb, and then forming A method for producing a La-Br-Nb-based oxide superconductor, which comprises rapidly cooling a thin film formed by
JP24362488A 1987-09-29 1988-09-27 Oxide superconductor and production thereof Pending JPH01157420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24362488A JPH01157420A (en) 1987-09-29 1988-09-27 Oxide superconductor and production thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24741587 1987-09-29
JP62-247415 1987-09-29
JP24362488A JPH01157420A (en) 1987-09-29 1988-09-27 Oxide superconductor and production thereof

Publications (1)

Publication Number Publication Date
JPH01157420A true JPH01157420A (en) 1989-06-20

Family

ID=26536346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24362488A Pending JPH01157420A (en) 1987-09-29 1988-09-27 Oxide superconductor and production thereof

Country Status (1)

Country Link
JP (1) JPH01157420A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428232A (en) * 1987-04-13 1989-01-30 Tetsuya Ogushi Oxide superconducting material and production thereof
JPS6476902A (en) * 1987-05-18 1989-03-23 Tetsuya Ogushi Perovskite-type superconductor and superconducting member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428232A (en) * 1987-04-13 1989-01-30 Tetsuya Ogushi Oxide superconducting material and production thereof
JPS6476902A (en) * 1987-05-18 1989-03-23 Tetsuya Ogushi Perovskite-type superconductor and superconducting member

Similar Documents

Publication Publication Date Title
JP2711253B2 (en) Superconducting film and method for forming the same
JPH0474714A (en) Tl superconductor material
JPH01157420A (en) Oxide superconductor and production thereof
CN1016387B (en) Method of manufacturing superconducting ceramics in magnetic field and apparatus for the same
JPH0472777A (en) Substrate for superconducting device
JPH0264021A (en) Preparation of multiple oxide superconducting thin film
US5106820A (en) Oxide superconductor and process for preparation thereof
JPS63283085A (en) Superconducting device
JPH01145329A (en) Oxide superconductor
JP2544759B2 (en) How to make a superconducting thin film
JPH01166419A (en) Manufacture of superconductive membrane
JPH0467691A (en) Tl-based superconductive material
JPH01106481A (en) Superconductive material structure
JPH0474716A (en) Bi-system superconductive material
JPH01106484A (en) Forming of superconductive material
JPH0446098A (en) Superconducting member
JP2544761B2 (en) Preparation method of superconducting thin film
JPH0412028A (en) Tl-based superconducting material
JPH0388716A (en) Production of oxide superconducting thin film
JPH03112810A (en) Production of oxide superconducting film
JPH01272172A (en) Method of forming composite oxide superconducting thin film at low temperature
JPH0412024A (en) Bi-based superconductive material
JPH0412017A (en) Tl superconductor material
JPH0580160B2 (en)
JPH01166413A (en) Complex oxide superconductive thin film and its manufacture