JPH01166413A - Complex oxide superconductive thin film and its manufacture - Google Patents

Complex oxide superconductive thin film and its manufacture

Info

Publication number
JPH01166413A
JPH01166413A JP62324706A JP32470687A JPH01166413A JP H01166413 A JPH01166413 A JP H01166413A JP 62324706 A JP62324706 A JP 62324706A JP 32470687 A JP32470687 A JP 32470687A JP H01166413 A JPH01166413 A JP H01166413A
Authority
JP
Japan
Prior art keywords
thin film
composite oxide
single crystal
substrate
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62324706A
Other languages
Japanese (ja)
Other versions
JP2545423B2 (en
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Kenjiro Higaki
檜垣 賢次郎
Shuji Yatsu
矢津 修示
Tetsuji Jodai
哲司 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62324706A priority Critical patent/JP2545423B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to AU27099/88A priority patent/AU615014B2/en
Priority to DE19883854493 priority patent/DE3854493T2/en
Priority to EP19880403254 priority patent/EP0322306B1/en
Priority to US07/286,860 priority patent/US5028583A/en
Priority to KR1019880017018A priority patent/KR970005158B1/en
Priority to CA 586516 priority patent/CA1339020C/en
Publication of JPH01166413A publication Critical patent/JPH01166413A/en
Priority to US07/648,964 priority patent/US5252543A/en
Application granted granted Critical
Publication of JP2545423B2 publication Critical patent/JP2545423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a thin film of a complex oxide superconductive material with a high critical current density by making the substantial part of the surface of a complex oxide superconductor thin film smooth. CONSTITUTION:The substantial part of the surface of a complex oxide superconductor thin film including mainly a complex oxide shown as the formula I is formed to be smooth. In the formula I, element alpha is Ba or Sr, and x is a number to satisfy 0.01<=x<=0. In this case, the substantial part means the major part of the surface except a partial void, a detect, and the like inevitable when the oxide is evaporated physically in a large area generally. In such a composition, a membrane of a complex oxide superconductive material with a high critical current density Jc can be obtained.

Description

【発明の詳細な説明】 Slよpμ里分! 本発明は超電導薄膜と、その成膜方法に関するものであ
り、より詳細には、臨界電流密度を大幅に向上させた複
合酸化物超電導薄膜と、その作製方法に関するものであ
る。本発明により得られる超電導薄膜は高い臨界電流を
持つと同時に、高い超電導臨界温度を有し、平滑性等の
他の特性においても優れた特性を有しており、集積回路
を始めとする各種電子部品の配線材料として特に有用で
ある。
[Detailed description of the invention] Slyo pμ rimin! The present invention relates to a superconducting thin film and a method for forming the same, and more particularly to a composite oxide superconducting thin film with significantly improved critical current density and a method for producing the same. The superconducting thin film obtained by the present invention has a high critical current, a high superconducting critical temperature, and other excellent properties such as smoothness, and is used in various electronic devices such as integrated circuits. It is particularly useful as a wiring material for components.

従来の技術 電子の相転移であるといわれる超電導現象は、特定の条
件下で導体の電気抵抗が零の状態となり完全な反磁性を
示す現象である。
BACKGROUND OF THE INVENTION Superconductivity, which is said to be a phase transition of electrons, is a phenomenon in which the electrical resistance of a conductor becomes zero under certain conditions and exhibits complete diamagnetic properties.

超電導現象の代表的な応用分野であるエレクトロニクス
の分野では、各種の超電導素子が提案され、また開発さ
れている。代表的なものとしては、超電導材料どうしを
弱く接合した場合に、印加電流によって量子効果が巨視
的に現れるジョセフソン効果を利用した素子が挙げられ
る。また、トンネル接合型ジョセフソン素子は、超電導
材料のエネルギーギャップが小さいことから、極めて高
速な低電力消費のスイッチング素子として期待されてい
る。さらに、電磁波や磁場に対するジョセフソン効果が
正確な量子現象として現れることから、ジョセフソン素
子を磁場、マイクロ波、放射線等の超高感度センサとし
て利用することも期待されている。
In the field of electronics, which is a typical application field of superconductivity, various superconducting elements have been proposed and developed. A typical example is an element that utilizes the Josephson effect, in which a quantum effect appears macroscopically due to an applied current when superconducting materials are weakly bonded together. Further, tunnel junction type Josephson devices are expected to be extremely high-speed switching devices with low power consumption because the energy gap of the superconducting material is small. Furthermore, since the Josephson effect on electromagnetic waves and magnetic fields appears as a precise quantum phenomenon, it is expected that Josephson elements will be used as ultrasensitive sensors for magnetic fields, microwaves, radiation, etc.

超高速電子計算機では、単位面積当たりの消費電力が冷
却能力の限界に達してきているため、超電導素子の開発
が要望されており、さらに、電子回路の集積度が高(な
るにつれて電流ロスの無い超電導材料を配線材料として
用いることも要望されている。
In ultra-high-speed electronic computers, the power consumption per unit area has reached the limit of cooling capacity, so there is a demand for the development of superconducting elements. There is also a desire to use superconducting materials as wiring materials.

しかし、様々な努力にもかかわらず、超電導材料の超電
導臨界温度Tcは長期間に亘ってNb、Geの23Kを
越えることができなかったが、昨年来、[La、 Ba
〕5cuoaまたは(La、 Sr) 2CuO1等の
酸化物の焼結材が高いTcをもつ超電導材料として発見
され、非低温超電導を実現する可能性が大きく高まって
いる。これらの物質では、30乃至50にという従来に
比べて飛躍的に高いTcが観測され、70に以上のTc
も観測されている。
However, despite various efforts, the superconducting critical temperature Tc of superconducting materials has not been able to exceed 23K for Nb and Ge for a long period of time, but since last year, [La, Ba
] Sintered materials of oxides such as 5cuoa or (La, Sr)2CuO1 have been discovered as superconducting materials with high Tc, and the possibility of realizing non-low temperature superconductivity has greatly increased. In these materials, dramatically higher Tc than 30 to 50 was observed, and Tc of 70 or more was observed.
has also been observed.

発明が解決しようとする問題点 従来、上記複合酸化物超電導体薄膜を作製する際には、
焼結等で生成した酸化物を蒸着源としてスパッタリング
法等の物理蒸着によって行っていた。
Problems to be Solved by the Invention Conventionally, when producing the above composite oxide superconductor thin film,
Physical vapor deposition, such as sputtering, was performed using an oxide produced by sintering or the like as a vapor deposition source.

しかしながら、こうして製作された従来の超電導体薄膜
は、臨界電流密度Jcが小さいため、臨界温度Tcが高
くても実際の電子回路として実用化することができなか
った。
However, the conventional superconductor thin film manufactured in this way has a small critical current density Jc, and therefore cannot be put to practical use as an actual electronic circuit even if the critical temperature Tc is high.

そこで、本発明の目的は、上記従来技術の問題点を解決
し、高い臨界電流密度Jcを有する複合酸化物超電導材
料の薄膜と、それを作製する方法を提供することにある
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a thin film of a composite oxide superconducting material having a high critical current density Jc, and a method for producing the same.

問題点を解決するための手段 本発明に従うと、下記の式: %式% (但し、元素αは、BaまたはSrであり、Xは0、旧
≦x≦062を満たす数である)で表される複合酸化物
を主として含有する複合酸化物超電導体薄膜において、 上記複合酸化物超電導体薄膜の表面の実質的な部分が平
滑であることを特徴とする複合酸化物超電導体薄膜が提
供される。
Means for Solving the Problems According to the present invention, the following formula is expressed: There is provided a composite oxide superconductor thin film mainly containing a composite oxide, characterized in that a substantial portion of the surface of the composite oxide superconductor thin film is smooth. .

上記本薄膜の複合酸化物超電導薄膜は、上記−般式; %式% で示される複合酸化物を主として含んでおり、これらの
複合酸化物はペロブスカイト型または擬似ペロブスカイ
ト型酸化物を主体としたものと考えられる。上記元素α
は13aまたはSrから選択される。
The composite oxide superconducting thin film of the present thin film mainly contains a composite oxide represented by the above general formula; it is conceivable that. Above element α
is selected from 13a or Sr.

上記La5BaまたはSr、 Cuの原子比は、上記の
式を満たす範囲であることが好ましいが、必ずしも厳密
にこの比に限定されるものではなく、これらの比から±
50%の範囲、さらに好ましくは±20%の範囲でずれ
た原子比の組成のものも有効な超電導特性を示す場合が
ある。すなわち、特許請求の範囲において「主として含
有する」という表現は、上記のように上記の式で定義さ
れる原子比以外のものも含むということを意味する。
The atomic ratio of La5Ba, Sr, and Cu is preferably within a range that satisfies the above formula, but is not necessarily strictly limited to this ratio, and ±
Even compositions with atomic ratios that deviate within a range of 50%, more preferably within a range of ±20%, may exhibit effective superconducting properties. That is, in the claims, the expression "mainly contains" means that the atomic ratios other than those defined by the above formula are also included.

さらに、上記の定義は上記の元素以外の元素、すなわち
、pμmオーダーで混入する不可避的不純物と、製品の
他の特性を向上させる目的で添加される第3成分を含有
していてもよいということを意味している。
Furthermore, the above definition also means that the product may contain elements other than the above elements, that is, unavoidable impurities that mix in on the order of pμm, and third components that are added for the purpose of improving other properties of the product. It means.

第3成分として添加可能な元素としては、周期律表II
a族元素のSr、 Ca、 Mg、 Be、上記以外の
周期律表IJa族元素、周期律表Ib、nb、mb。
Elements that can be added as the third component include elements in the periodic table II.
Sr, Ca, Mg, Be of group a elements, elements of group IJa of the periodic table other than the above, Ib, nb, mb of the periodic table.

■aおよび■a族から選択される元素、例えば、Ti、
 Vを挙げることが出来る。
■ Elements selected from group a and group a, for example, Ti,
I can list V.

本発明の特徴は、上記超電導薄膜の表面の実質的な部分
が平滑であることにある。この場合、「実質的な部分」
とは、一般に大面積に物理蒸着する場合に避けられない
表面の部分的なボイド、欠陥等を除く表面の大部分、例
えば、表面の80%以上が平滑であるということを意味
している。
A feature of the present invention is that a substantial portion of the surface of the superconducting thin film is smooth. In this case, "substantial part"
This means that the majority of the surface, for example, 80% or more of the surface, is smooth, excluding partial voids, defects, etc., which are generally unavoidable when performing physical vapor deposition over a large area.

上記の超電導薄膜の表面の平滑性は表面を光学的に観察
した場合に、薄膜の表面のあらさRmax(基準長さ=
1,000μm)が0.2μm以下であることで評価さ
れる。この値は、得られた薄膜を顕微鏡、特に、SEM
で観察して確認することができる。本発明者等の実験結
果によると、薄膜表面のあらさがRmaxが0.2μm
を超えると、臨界電流密度Jcが大幅に低下する。
The surface smoothness of the superconducting thin film mentioned above is determined by the surface roughness Rmax (reference length =
1,000 μm) is 0.2 μm or less. This value allows the obtained thin film to be examined under a microscope, especially in an SEM.
It can be observed and confirmed. According to the experimental results of the present inventors, the roughness of the thin film surface Rmax is 0.2 μm.
If it exceeds , the critical current density Jc decreases significantly.

本発明の複合酸化物超電導薄膜は一般に基板上に形成さ
れる。この基板は、上記複合酸化物結晶の格子間隔に近
い格子間隔を有する酸化物単結晶の基板であるのが好ま
しく、例えばMgO単結晶、5rTiO*単結晶または
ZrO7単結晶の基板を用いることができる。成膜面と
しては上記MgO単結晶またはSrTiO3単結晶基板
の(001)面または(110)面を用いることができ
る。さらには、上記の単結晶相を有する金属基板あるい
は半導体基板を用いることもできる。
The composite oxide superconducting thin film of the present invention is generally formed on a substrate. This substrate is preferably an oxide single crystal substrate having a lattice spacing close to the lattice spacing of the composite oxide crystal, and for example, a MgO single crystal, 5rTiO* single crystal, or ZrO7 single crystal substrate can be used. . The (001) plane or (110) plane of the above-mentioned MgO single crystal or SrTiO3 single crystal substrate can be used as the film formation surface. Furthermore, a metal substrate or a semiconductor substrate having the above-mentioned single crystal phase can also be used.

本発明の他の目的は上記のような平滑な表面を有する複
合酸化物超電導薄膜の製作方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing a composite oxide superconducting thin film having a smooth surface as described above.

本発明による複合酸化物超電導薄膜の製作方法は、下記
の式’  (La+−x αj 2 Cu 04(但し
、元素αは、BaまたはSrであり、Xは0.01≦x
≦0.2を満たす数である)で表される複合酸化物を主
として含有する複合酸化物超電導体薄膜を物理蒸着によ
って作製する方法において、上記物理蒸着を得られた薄
膜の表面の実質的な部分が平滑となるような条件で実施
することを特徴としている。
The method for manufacturing a composite oxide superconducting thin film according to the present invention is performed using the following formula' (La+-x αj 2 Cu 04 (where the element α is Ba or Sr, and X is 0.01≦x
≦0.2), a method for producing a composite oxide superconductor thin film by physical vapor deposition, which mainly contains a composite oxide represented by It is characterized by being carried out under conditions such that the parts are smooth.

上記物理蒸着としては、スパッタリング、イオンブレー
ティング、真空蒸着等を用いることができるが、一般に
はスパッタリング、特にRFマグネトロンスパッタリン
グが好ましい。
As the physical vapor deposition, sputtering, ion blating, vacuum evaporation, etc. can be used, but sputtering is generally preferred, particularly RF magnetron sputtering.

上記物理蒸着時には基板を加熱するのが好ましく、基板
温度は、200から950℃、さらに好ましくは500
から920℃とする。基板温度が200℃未満の場合に
は、複合酸化物の結晶性が悪くアモルファス状になり、
超電導薄膜は得られない。また、基板温度が950℃を
超えると、結晶構造が変わってしまい、上記の複合酸化
物は超電導体とはならない。
It is preferable to heat the substrate during the physical vapor deposition, and the substrate temperature is 200 to 950°C, more preferably 500°C.
to 920°C. When the substrate temperature is less than 200°C, the crystallinity of the composite oxide is poor and it becomes amorphous.
A superconducting thin film cannot be obtained. Furthermore, if the substrate temperature exceeds 950° C., the crystal structure changes and the above-mentioned composite oxide does not become a superconductor.

上記基板としては上記複合酸化物結晶の格子間隔に近い
格子間隔を有する酸化物単結晶の基板を用いるのが好ま
しく、例えばMgO単結晶、SrTiO3単結晶または
ZrO2単結晶を用いることができる。
As the substrate, it is preferable to use an oxide single crystal substrate having a lattice spacing close to that of the composite oxide crystal, and for example, MgO single crystal, SrTiO3 single crystal, or ZrO2 single crystal can be used.

成膜面としてはMgO単結晶またはSrTiO3単結晶
基板の(0013面または(110)面を用いるのが好
ましい。
As the film formation surface, it is preferable to use the (0013 plane or (110) plane) of an MgO single crystal or SrTiO3 single crystal substrate.

本発明の好ましい一実施態様では、上記の物理蒸着時の
成膜速度が0.05〜1Å/秒、さらに好ましくは0.
1〜0.8Å/秒の範囲に設定される。
In a preferred embodiment of the present invention, the film formation rate during the physical vapor deposition described above is 0.05 to 1 Å/sec, more preferably 0.05 to 1 Å/sec.
It is set in the range of 1 to 0.8 Å/sec.

本発明者達の実験結果によると、理蒸着時の成膜速度が
1Å/秒を超えると、得られた超電導薄膜の臨界電流密
度が大幅に低下して実用的な薄膜が得られない。また、
成膜速度を0.05Å/秒未満にすると、成膜速度が極
端に遅くなるので、工業的でない。
According to the experimental results of the present inventors, when the deposition rate during physical vapor deposition exceeds 1 Å/sec, the critical current density of the obtained superconducting thin film decreases significantly, making it impossible to obtain a practical thin film. Also,
If the film formation rate is less than 0.05 Å/sec, the film formation rate becomes extremely slow and is not industrially practical.

また、本発明の他の好ましい一実施態様では、上記物理
蒸着時の雰囲気を不活性ガスと酸素の混合ガスとし、こ
の混合ガス中の酸素の比率が5〜95%、さらに好まし
くは10〜80%にされる。
In another preferred embodiment of the present invention, the atmosphere during the physical vapor deposition is a mixed gas of an inert gas and oxygen, and the ratio of oxygen in this mixed gas is 5 to 95%, more preferably 10 to 80%. %.

上記物理蒸着としてはスパッタリング法を用いることが
でき、その場合にはスパッタリング時のガス圧を0.0
01〜0.5 Torrの範囲、さらに好ましくは0.
01 〜Q、3Torrの範囲とするのが好ましく、ス
パッタリングの際のスパッタリングガス中に0□を10
から80分子%含む雰囲気で行うのが好ましい。
A sputtering method can be used for the above-mentioned physical vapor deposition, and in that case, the gas pressure during sputtering is set to 0.0.
0.01 to 0.5 Torr, more preferably 0.01 to 0.5 Torr.
It is preferable to set it in the range of 01 to Q, 3 Torr, and add 0□ to 10 in the sputtering gas during sputtering.
It is preferable to conduct the reaction in an atmosphere containing 80 molecule % of .

この02以外と一緒に用いることが可能な他のスパック
リングガスとしては不活性ガス、特に、アルゴンが好ま
しい。
Other sputtering gases that can be used together with 02 are preferably inert gases, particularly argon.

本発明の好ましい一実施態様では、スパッタリング法と
してはRFスパッタリング、特に、マグネトロンスパッ
タリングが用いられる。本発明で好ましく用いられるR
Fマグネトロンスパッタリングの場合には、例えばlQ
cmφのターゲットに対して、スパッタリング時に高周
波電力を従来の1.9W/cd程度から5〜100 W
、すなわち、単位断面積当たり0.’064=1,27
W/cut、さらに好ましくは、10〜60W1すなわ
ち、単位断面積当たり0.127〜0.76W/cm!
印加するするのが好ましい。
In a preferred embodiment of the invention, the sputtering method is RF sputtering, in particular magnetron sputtering. R preferably used in the present invention
In the case of F magnetron sputtering, for example, lQ
For a cmφ target, the high frequency power during sputtering was increased from the conventional 1.9 W/cd to 5 to 100 W.
, that is, 0.0. '064=1,27
W/cut, more preferably 10 to 60 W1, that is, 0.127 to 0.76 W/cm per unit cross-sectional area!
It is preferable to apply it.

成膜の後には得られた薄膜を酸素含有雰囲気で加熱−徐
冷するアニール熱処理を行うのが好ましい。この熱処理
時は800〜960℃の範囲の加熱温度で行うのが好ま
しく、熱処理時の冷却速度は、10℃/分以下であるの
が好ましい。この熱処理時には酸素分圧を0.1〜10
気圧とするのが好ましい。
After film formation, it is preferable to perform an annealing heat treatment in which the obtained thin film is heated and slowly cooled in an oxygen-containing atmosphere. This heat treatment is preferably carried out at a heating temperature in the range of 800 to 960°C, and the cooling rate during the heat treatment is preferably 10°C/min or less. During this heat treatment, the oxygen partial pressure is set at 0.1 to 10
It is preferable to use atmospheric pressure.

作用 従来の、複合酸化物超電導体の薄膜を作製する場合には
、複合酸化物焼結体をターゲットとして物理蒸着、一般
にはスパッタリングを行っていたが、従来の方法で得ら
れた超電導薄膜は臨界電流密度Jcが低く、実用にはな
らなかった。
Function Conventionally, when producing thin films of composite oxide superconductors, physical vapor deposition, generally sputtering, was performed using a composite oxide sintered body as a target, but superconducting thin films obtained by conventional methods The current density Jc was low and it was not practical.

上記種類の複合酸化物超電導体は、その臨界電流密度に
結晶異方性を有している。すなわち、結晶のa軸および
b軸で決定される面に平行な方向に電流が流れ易い。そ
こで、これまでも、結晶方向を揃える目的で、基板とし
て、複合酸化物超電導体結晶の格子間隔に近い格子間隔
を有するMgO1SrTiO3およびYSZ等の単結晶
の特定な面を成膜面として用いていた。しかし、これま
でに作られた複合酸化物超電導薄膜では、結晶方向を十
分に揃えることができなかったため等の理由で、臨界電
流密度Jcが最大でも精々10万A/cm2程度にしか
上がらなかった。
The above type of composite oxide superconductor has crystal anisotropy in its critical current density. That is, current tends to flow in a direction parallel to the plane determined by the a-axis and b-axis of the crystal. Therefore, for the purpose of aligning the crystal directions, a specific surface of a single crystal such as MgO1SrTiO3 or YSZ, which has a lattice spacing close to that of a composite oxide superconductor crystal, has been used as a substrate for film formation. . However, in the composite oxide superconducting thin films produced so far, the critical current density Jc could only rise to about 100,000 A/cm2 at most, due to reasons such as the inability to align the crystal directions sufficiently. .

本発明は、複合酸化物超電導薄膜の表面平滑性を良くす
ることによって、臨界電流密度Jcを一挙に2桁高い1
00万A/cm”オーダーに向上させたものである。
The present invention improves the surface smoothness of the composite oxide superconducting thin film, thereby increasing the critical current density Jc by two orders of magnitude.
This has been improved to the order of 1,000,000 A/cm.

複合酸化物超電導薄膜の表面平滑性を良くしたことによ
ってこのように大幅に臨界電流密度Jcが向上する理由
は現在のところ説明できないが、本発明の複合酸化物超
電導体は、その電気抵抗に結晶異方性を有し、基板の成
膜面上に形成された複合酸化物超電導薄膜は、その結晶
のC軸が基板成膜面に対し垂直または垂直に近い角度と
なり、特に臨界電流密度Jcが大きくなるものと考えら
れる。従って、MgO単結晶基板または5rTiOa単
結晶基板の(001)面を成膜面として用いることが好
ましい。また、(110)面を用いてC軸を基板と平行
にし、C軸と垂直な方向を特定して用いることもできる
。さらに、Mg0SSrTiO,は、熱膨張率が上記の
複合酸化物超電導体と近いため、加熱、冷却の過程で薄
膜に不必要な応力を加えることがなく、薄膜を破損する
恐れもない。
The reason why the critical current density Jc is greatly improved by improving the surface smoothness of the composite oxide superconducting thin film cannot be explained at present, but the composite oxide superconductor of the present invention has crystallization in its electrical resistance. A composite oxide superconducting thin film that has anisotropy and is formed on the film-forming surface of a substrate has a C-axis of its crystal that is perpendicular or at an angle close to perpendicular to the film-forming surface of the substrate, and in particular, the critical current density Jc is It is thought that it will become larger. Therefore, it is preferable to use the (001) plane of the MgO single crystal substrate or the 5rTiOa single crystal substrate as the film forming surface. Alternatively, the C-axis can be made parallel to the substrate using the (110) plane, and a direction perpendicular to the C-axis can be specified and used. Furthermore, since Mg0SSrTiO has a coefficient of thermal expansion close to that of the above composite oxide superconductor, unnecessary stress is not applied to the thin film during heating and cooling processes, and there is no risk of damaging the thin film.

本発明の態様に従うと、成膜後の薄膜を酸素分圧0.1
〜10気圧の酸素含有雰囲気中で800〜960℃、さ
らに好ましくは850〜950℃に加熱、10℃/分以
下の冷却速度で冷却する熱処理を施すアニール処理を行
うことが好ましい。この処理は、上記の複合酸化物中の
酸素欠陥を調整するもので、この処理を経ない薄膜の超
電導特性は悪く、超電導性を示さない場合もある。従っ
て、上記の熱処理を行うことが好ましい。
According to an aspect of the present invention, the thin film after being formed has an oxygen partial pressure of 0.1.
It is preferable to perform an annealing treatment in which heat treatment is performed by heating to 800 to 960°C, more preferably 850 to 950°C, and cooling at a cooling rate of 10°C/min or less in an oxygen-containing atmosphere of ~10 atm. This treatment is to adjust oxygen defects in the above-mentioned composite oxide, and a thin film that does not undergo this treatment will have poor superconducting properties, and may not exhibit superconductivity. Therefore, it is preferable to perform the above heat treatment.

実施例 以下に本発明による表面が平滑な複合酸化物超電導薄膜
の製作方法を実施例により説明するが、本発明の技術的
範囲は、以下の開示に何等制限されるものではないこと
は勿論である。
EXAMPLES The method for producing a composite oxide superconducting thin film with a smooth surface according to the present invention will be explained below using examples, but it goes without saying that the technical scope of the present invention is not limited to the following disclosure. be.

以下の本発明実施例は上記で説明した本発明の超電導薄
膜の作製方法をRFマグネトロンスパッタリングによっ
て実施したものである。
In the following examples of the present invention, the method for producing a superconducting thin film of the present invention described above was carried out by RF magnetron sputtering.

使用したターゲットは、LaまたはSrである元素αと
、Laと、Cuの原子比La:α:Cuの比を1.8=
0.2:1とした原料粉末を常法に従って焼結して作っ
た複合酸化物焼結体である。ターゲットは直径が100
 mmφの円板を用いた。各々の場合の成膜条件は同一
とし、その成膜条件は以下の通りであった。
The target used was the element α, which is La or Sr, and the atomic ratio of La:α:Cu of 1.8=
This is a composite oxide sintered body made by sintering raw material powder with a ratio of 0.2:1 according to a conventional method. The target has a diameter of 100
A disk of mmφ was used. The film forming conditions in each case were the same, and the film forming conditions were as follows.

基板    Mgo (001)面 層板温度   700℃ 圧力     0.ITorr スパッタガス 02(20%)/Ar (80%)高周
波電力  40W (0,51W/cI!り時間   
  6時間 膜厚     0.88μm 成膜速度   0.35  A/秒 アニール   900℃/3時間 (5℃/分で冷却) なお、他の成膜条件は同じで成膜速度を1.5Å/秒と
して比較例を各々のターゲットについて作製した。
Substrate Mgo (001) surface laminate temperature 700°C Pressure 0. ITorr Sputtering gas 02 (20%)/Ar (80%) High frequency power 40W (0.51W/cI! Time)
6 hours Film thickness: 0.88 μm Film formation rate: 0.35 A/sec Annealing: 900°C/3 hours (cooling at 5°C/min) Other film forming conditions are the same, and the film forming rate is 1.5 Å/sec. Comparative examples were created for each target.

第1表中の臨界温度Tcは、常法に従って直流四端子法
によって測定した。また、臨界電流密度Jcは、77、
 OKの液体窒素中で、試料の表面に平行な方向の電気
抵抗を測定しつつ電流量を増加して電気抵抗が検出され
たときの電流量を、電流路の単位面積に換算したものを
示した。また、薄膜の表面あらさR□8はSEM(走査
電顕)写真から計算した。
The critical temperature Tc in Table 1 was measured by the direct current four-terminal method according to a conventional method. In addition, the critical current density Jc is 77,
Indicates the amount of current when the electrical resistance is detected by increasing the amount of current while measuring the electrical resistance in the direction parallel to the surface of the sample in OK liquid nitrogen, converted to the unit area of the current path. Ta. Further, the surface roughness R□8 of the thin film was calculated from a SEM (scanning electron microscope) photograph.

第1表 上記のように本発明による超電導薄膜は、比較例より大
幅に臨界電流が向上している。
Table 1 As shown above, the superconducting thin film according to the present invention has a significantly improved critical current compared to the comparative example.

なお、本発明の方法によって形成した薄膜の表面にもほ
んの僅か(表面積全体の約1%)ではあるが、数ミクロ
ンオーダーのボイドが観察されたが、表面をSEMで1
万倍に拡大して観察した場合には、その表面の大部分の
面積の所で凹凸は見られなかった。これに対して、本発
明の方法の範囲外の方法により作製した比較例の複合酸
化物超電導薄膜の表面には、数ミクロンのダレインが多
数存在していた。
It should be noted that voids on the order of several microns were observed on the surface of the thin film formed by the method of the present invention, although only a few (approximately 1% of the total surface area) were observed.
When observed under 10,000 times magnification, no irregularities were observed over most of the surface area. On the other hand, on the surface of the composite oxide superconducting thin film of the comparative example produced by a method outside the scope of the method of the present invention, a large number of daleins of several microns were present.

発明の効果 以上詳述のように、本発明による超電導薄膜は従来の方
法で作製されたものに較べて遥かに高いJcを示す。
Effects of the Invention As detailed above, the superconducting thin film according to the present invention exhibits a much higher Jc than that produced by the conventional method.

特許出願人  住友電気工業株式会社Patent applicant: Sumitomo Electric Industries, Ltd.

Claims (28)

【特許請求の範囲】[Claims] (1)式:(La_1_−_xα_x)_2CuO_4
(但し、元素αは、BaまたはSrであり、xは0.0
1≦x≦0.2を満たす数である) で表される複合酸化物を主として含有する複合酸化物超
電導体薄膜において、 上記複合酸化物超電導体薄膜の表面の実質的な部分が平
滑であることを特徴とする複合酸化物超電導薄膜。
(1) Formula: (La_1_−_xα_x)_2CuO_4
(However, element α is Ba or Sr, and x is 0.0
1≦x≦0.2) In a composite oxide superconductor thin film mainly containing a composite oxide represented by A composite oxide superconducting thin film characterized by:
(2)上記複合酸化物超電導体薄膜の表面のあらさR_
m_a_x(基準長さ=1,000μm)が0.2μm
以下であることを特徴とする特許請求の範囲第1項に記
載の複合酸化物超電導薄膜。
(2) Surface roughness R_ of the above composite oxide superconductor thin film
m_a_x (reference length = 1,000 μm) is 0.2 μm
The composite oxide superconducting thin film according to claim 1, which is as follows.
(3)上記複合酸化物超電導体が、(La_1_−_x
Ba_x)_2CuO_4(ただしxは0.01≦x≦
0.2を満たす数である)で表される複合酸化物を含む
ことを特徴とする特許請求の範囲第第1項または第2項
に記載の超電導薄膜。
(3) The composite oxide superconductor is (La_1_-_x
Ba_x)_2CuO_4 (where x is 0.01≦x≦
The superconducting thin film according to claim 1 or 2, characterized in that the superconducting thin film contains a composite oxide represented by a number satisfying 0.2.
(4)上記複合酸化物超電導体が、(La_1_−_x
Sr_x)_2CuO_4(ただしxは0.01≦x≦
0.2を満たす数である)で表される複合酸化物を含む
ことを特徴とする特許請求の範囲第第1項または第2項
に記載の超電導薄膜。
(4) The composite oxide superconductor is (La_1_-_x
Sr_x)_2CuO_4 (where x is 0.01≦x≦
The superconducting thin film according to claim 1 or 2, characterized in that the superconducting thin film contains a composite oxide represented by a number satisfying 0.2.
(5)上記複合酸化物薄膜が基板上に形成されており、
この基板が、上記複合酸化物結晶の格子間隔に近い格子
間隔を有する酸化物単結晶の基板であることを特徴とす
る特許請求の範囲第1項から第4項のいずれか一項に記
載の超電導薄膜。
(5) the composite oxide thin film is formed on a substrate,
Claims 1 to 4, wherein the substrate is an oxide single crystal substrate having a lattice spacing close to that of the composite oxide crystal. Superconducting thin film.
(6)上記基板がMgO単結晶、SrTiO_3単結晶
またはZrO_2単結晶であることを特徴とする特許請
求の範囲第5項に記載の超電導薄膜。
(6) The superconducting thin film according to claim 5, wherein the substrate is MgO single crystal, SrTiO_3 single crystal, or ZrO_2 single crystal.
(7)上記MgO単結晶またはSrTiO_3単結晶基
板の{001}面または{110}面が成膜面であるこ
とを特徴とする特許請求の範囲第5項または第6項に記
載の超電導薄膜。
(7) The superconducting thin film according to claim 5 or 6, wherein the {001} plane or {110} plane of the MgO single crystal or SrTiO_3 single crystal substrate is the film-forming surface.
(8)式:(La_1_−_xα_x)_2CuO_4
(但し、元素αは、BaまたはSrであり、xは0.0
1≦x≦0.2を満たす数である) で表される複合酸化物を主として含有する複合酸化物超
電導体薄膜を物理蒸着によって作製する方法において、 上記物理蒸着を得られた薄膜の表面の実質的な部分が平
滑となるような条件で実施することを特徴とする複合酸
化物超電導薄膜の作製方法。
(8) Formula: (La_1_−_xα_x)_2CuO_4
(However, element α is Ba or Sr, and x is 0.0
1≦x≦0.2) In a method for producing a composite oxide superconductor thin film mainly containing a composite oxide expressed by the following by physical vapor deposition, the surface of the thin film obtained by physical vapor deposition 1. A method for producing a composite oxide superconducting thin film, which is carried out under conditions such that a substantial portion thereof is smooth.
(9)上記複合酸化物超電導体薄膜の表面のあらさR_
m_a_x(基準長さ=1,000μam)が0.2μ
m以下であることを特徴とする特許請求の範囲第8項に
記載の方法。
(9) Surface roughness R_ of the above composite oxide superconductor thin film
m_a_x (reference length = 1,000μam) is 0.2μ
9. The method according to claim 8, characterized in that it is less than or equal to m.
(10)上記の物理蒸着時の成膜速度を0.05〜1Å
/秒の範囲としたことを特徴とする特許請求の範囲第8
項または第9項に記載の方法。
(10) The film formation rate during the above physical vapor deposition is 0.05 to 1 Å.
Claim 8, characterized in that the range is /second.
or the method described in paragraph 9.
(11)上記物理蒸着時の雰囲気を不活性ガスと酸素の
混合ガスとし、この混合ガス中の酸素の比率を5〜95
%としたことを特徴とする特許請求の範囲第8項から第
10項のいずれか一項に記載の方法。
(11) The atmosphere during the above physical vapor deposition is a mixed gas of inert gas and oxygen, and the ratio of oxygen in this mixed gas is 5 to 95.
%. The method according to any one of claims 8 to 10.
(12)上記物理蒸着時の雰囲気を不活性ガスと酸素の
混合ガスとし、この混合ガス中の酸素の比率を10〜8
0%としたことを特徴とする特許請求の範囲第11項に
記載の方法。
(12) The atmosphere during the physical vapor deposition is a mixed gas of inert gas and oxygen, and the ratio of oxygen in this mixed gas is 10 to 8.
12. The method according to claim 11, characterized in that the percentage is 0%.
(13)上記物理蒸着時に、基板を加熱することを特徴
とする特許請求の範囲第8項から第12項のいずれか一
項に記載の方法。
(13) The method according to any one of claims 8 to 12, characterized in that the substrate is heated during the physical vapor deposition.
(14)上記物理蒸着時の基板温度が、200から95
0℃であることを特徴とする特許請求の範囲第13項に
記載の方法。
(14) The substrate temperature during the physical vapor deposition is from 200 to 95
14. The method according to claim 13, characterized in that the temperature is 0°C.
(15)上記物理蒸着時の基板温度が、500から92
0℃であることを特徴とする特許請求の範囲第14項に
記載の方法。
(15) The substrate temperature during the physical vapor deposition is from 500 to 92
15. The method according to claim 14, characterized in that the temperature is 0°C.
(16)上記基板として、上記複合酸化物結晶の格子間
隔に近い格子間隔を有する酸化物単結晶の基板を用いる
ことを特徴とする特許請求の範囲第8項から第15項の
いずれか一項に記載の方法。
(16) Any one of claims 8 to 15, characterized in that the substrate is an oxide single crystal substrate having a lattice spacing close to the lattice spacing of the composite oxide crystal. The method described in.
(17)上記基板として、MgO単結晶、SrTiO_
3単結晶またはZrO_2単結晶を用いることを特徴と
する特許請求の範囲第16項に記載の方法。
(17) As the substrate, MgO single crystal, SrTiO_
17. The method according to claim 16, characterized in that a ZrO_2 single crystal or a ZrO_2 single crystal is used.
(18)上記MgO単結晶またはSrTiO_3単結晶
基板の{001}面または{110}面を成膜面とする
ことを特徴とする特許請求の範囲第17項に記載の超電
導薄膜の作製方法。
(18) The method for producing a superconducting thin film according to claim 17, wherein the {001} plane or {110} plane of the MgO single crystal or SrTiO_3 single crystal substrate is used as the film formation surface.
(19)上記物理蒸着がスパッタリングであり、スパッ
タリング時のガス圧を0.001〜0.5Torrの範
囲としたことを特徴とする特許請求の範囲第8項から第
18項のいずれか一項に記載の方法。
(19) According to any one of claims 8 to 18, wherein the physical vapor deposition is sputtering, and the gas pressure during sputtering is in the range of 0.001 to 0.5 Torr. Method described.
(20)上記スパッタリング時のガス圧力が、0.01
〜0.3Torrの範囲内であることを特徴とする特許
請求の範囲第19項に記載の方法。
(20) The gas pressure during the sputtering is 0.01
20. A method according to claim 19, characterized in that it is within the range of ~0.3 Torr.
(21)上記スパッタリングの際のスパッタリングガス
中のO_2の比率が10から80分子%であることを特
徴とする特許請求の範囲第8項から第20項のいずれか
一項に記載の方法。
(21) The method according to any one of claims 8 to 20, wherein the ratio of O_2 in the sputtering gas during the sputtering is 10 to 80 mol%.
(22)上記物理蒸着をRFスパッタリングによって行
い、このRFスパッタリング時の高周波電力を0.06
4〜1.27W/cm^2の範囲としたことを特徴とす
る特許請求の範囲第8項から第21項のいずれか一項に
記載の方法。
(22) The above physical vapor deposition is performed by RF sputtering, and the high frequency power during this RF sputtering is 0.06
The method according to any one of claims 8 to 21, characterized in that the power is in the range of 4 to 1.27 W/cm^2.
(23)上記高周波電力を0.064〜1.27W/c
m^2の範囲内としたことを特徴とする特許請求の範囲
22項に記載の方法。
(23) The above high frequency power is 0.064 to 1.27 W/c
23. The method according to claim 22, characterized in that it is within the range of m^2.
(24)上記スパッタリングがマグネトロンスパッタリ
ングであることを特徴とする特許請求の範囲第19項か
ら第23項のいずれか一項に記載の方法。
(24) The method according to any one of claims 19 to 23, wherein the sputtering is magnetron sputtering.
(25)上記の成膜の後に薄膜を酸素含有雰囲気で加熱
−徐冷する熱処理を行うことを特徴とする特許請求の範
囲第8項から第24項のいずれか一項に記載の方法。
(25) The method according to any one of claims 8 to 24, wherein the thin film is subjected to heat treatment in which the thin film is heated and slowly cooled in an oxygen-containing atmosphere after the film formation.
(26)上記熱処理時の加熱温度が、800〜960℃
の範囲であることを特徴とする特許請求の範囲第25項
に記載の方法。
(26) The heating temperature during the above heat treatment is 800 to 960°C
26. The method according to claim 25, characterized in that the method is within the range of .
(27)上記熱処理時の冷却温度が、10℃/分以下で
あることを特徴とする特許請求の範囲第25項または2
6項に記載の超電導薄膜の作製方法。
(27) Claim 25 or 2, characterized in that the cooling temperature during the heat treatment is 10°C/min or less.
The method for producing a superconducting thin film according to item 6.
(28)上記熱処理時の酸素分圧が0.1〜10気圧で
あることを特徴とする特許請求の範囲第25項から第2
7項のいずれか一項に記載の方法。
(28) Claims 25 to 2, characterized in that the oxygen partial pressure during the heat treatment is 0.1 to 10 atm.
The method described in any one of Section 7.
JP62324706A 1987-02-17 1987-12-22 Composite oxide superconducting thin film and method for producing the same Expired - Fee Related JP2545423B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62324706A JP2545423B2 (en) 1987-12-22 1987-12-22 Composite oxide superconducting thin film and method for producing the same
DE19883854493 DE3854493T2 (en) 1987-12-20 1988-12-20 Method of manufacturing a thin film superconductor.
EP19880403254 EP0322306B1 (en) 1987-12-20 1988-12-20 Process for producing a superconducting thin film
US07/286,860 US5028583A (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and a process for producing the same
AU27099/88A AU615014B2 (en) 1987-02-17 1988-12-20 Superconducting thin film and wire and a process for producing the same
KR1019880017018A KR970005158B1 (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and the process therefor
CA 586516 CA1339020C (en) 1987-12-20 1988-12-20 Superconducting thin film and wire and a process for producing the same
US07/648,964 US5252543A (en) 1987-12-20 1991-01-31 Superconducting thin film and wire on a smooth substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62324706A JP2545423B2 (en) 1987-12-22 1987-12-22 Composite oxide superconducting thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01166413A true JPH01166413A (en) 1989-06-30
JP2545423B2 JP2545423B2 (en) 1996-10-16

Family

ID=18168801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62324706A Expired - Fee Related JP2545423B2 (en) 1987-02-17 1987-12-22 Composite oxide superconducting thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2545423B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099487B2 (en) 2001-02-02 2006-08-29 Temco Japan Co., Ltd. Microphone with arm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414814A (en) * 1987-03-19 1989-01-19 Nippon Telegraph & Telephone Manufacture of oxide superconductive thin film
JPS6435819A (en) * 1987-07-31 1989-02-06 Matsushita Electric Ind Co Ltd Manufacture of superconducting membrane
JPH01145397A (en) * 1987-12-01 1989-06-07 Nippon Telegr & Teleph Corp <Ntt> Production of oxide superconducting thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414814A (en) * 1987-03-19 1989-01-19 Nippon Telegraph & Telephone Manufacture of oxide superconductive thin film
JPS6435819A (en) * 1987-07-31 1989-02-06 Matsushita Electric Ind Co Ltd Manufacture of superconducting membrane
JPH01145397A (en) * 1987-12-01 1989-06-07 Nippon Telegr & Teleph Corp <Ntt> Production of oxide superconducting thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7099487B2 (en) 2001-02-02 2006-08-29 Temco Japan Co., Ltd. Microphone with arm

Also Published As

Publication number Publication date
JP2545423B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP2567460B2 (en) Superconducting thin film and its manufacturing method
US20040026118A1 (en) Oxide superconducting wire
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JPH01167221A (en) Production of superconducting thin film
JPH0286014A (en) Composite oxide superconducting thin film and film forming method
JPH01166419A (en) Manufacture of superconductive membrane
JPH01166413A (en) Complex oxide superconductive thin film and its manufacture
JP2545422B2 (en) Composite oxide superconducting thin film and method for producing the same
JP2544759B2 (en) How to make a superconducting thin film
JPH0264021A (en) Preparation of multiple oxide superconducting thin film
JP2501035B2 (en) Superconducting thin film
JPH01188661A (en) Superconducting thin film of compound oxide and production thereof
JP2544760B2 (en) Preparation method of superconducting thin film
JP2544761B2 (en) Preparation method of superconducting thin film
JPH01167218A (en) Production of superconducting thin film
JPH01167223A (en) Production of superconducting thin film
JP2525842B2 (en) Superconducting wire and its manufacturing method
JPH01167222A (en) Production of superconducting thin film
JP2567416B2 (en) Preparation method of superconducting thin film
JP2501609B2 (en) Method for producing complex oxide superconducting thin film
JPH01188664A (en) Production of superconducting thin film
JPH01188662A (en) Production of superconducting thin film
JPH01188663A (en) Production of superconducting thin film
JPH01188665A (en) Production of superconducting thin film
JPH01167220A (en) Production of superconducting thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees