JPH01145329A - Oxide superconductor - Google Patents

Oxide superconductor

Info

Publication number
JPH01145329A
JPH01145329A JP62304134A JP30413487A JPH01145329A JP H01145329 A JPH01145329 A JP H01145329A JP 62304134 A JP62304134 A JP 62304134A JP 30413487 A JP30413487 A JP 30413487A JP H01145329 A JPH01145329 A JP H01145329A
Authority
JP
Japan
Prior art keywords
substrate
temperature
sputtering
oxide superconductor
lasrcuo4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62304134A
Other languages
Japanese (ja)
Inventor
Tetsuya Ogushi
大串 哲弥
Gentaro Kaji
源太郎 梶
Saburo Nagano
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62304134A priority Critical patent/JPH01145329A/en
Publication of JPH01145329A publication Critical patent/JPH01145329A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an oxide superconductor consisting of film form or sheet form having La-Sr-Nb-O based composition and having high critical temperature and magnetic permeability of diamagnetic substance. CONSTITUTION:The aimed oxide superconductor consisting of film form or sheet form having La-Sr-Nb-O based composition containing gradient of each content of La, Sr and Nb in the thickness direction and having >=90 K critical temperature (Tc) and >=10% magnetic permeability of diamagnetic substance based on the value of Nb at 9.2 K. It is required that a gradient is given to each content of La, Sr and Nb in the thickness direction in the process nearly completely replacing Cu of LaSrCuO4 with Nb by sputtering LaSrCuO4 on Nb metal or Nb on LaSrCuO4. A method inclining angle of a substrate sputtered to about 5-45 deg. based on sputter beam incidenting on the substrate is adopted as the production method for obtaining such superconductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁気浮上列車及び粒子加速機器等の磁
気コイル部分や電子デバイス及びジョセフソンコンピュ
ータの回路基板等に使用されるバルク状又は薄膜状から
なる酸化物超電導体に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to bulk or thin films used, for example, in magnetic coil parts of magnetic levitation trains and particle accelerators, electronic devices, and circuit boards of Josephson computers. The present invention relates to an oxide superconductor consisting of

〔先行技術及び発明が解決しようとする問題点〕現在、
超電導体はNb、GeやNb、Snに代表される金属系
超電導体が実用化されているが、その臨界温度(Tc)
はたかだか23.2K程度までである。
[Prior art and problems to be solved by the invention] Currently,
Metallic superconductors such as Nb, Ge, Nb, and Sn are in practical use, but their critical temperature (Tc)
It is up to about 23.2K at most.

しかし乍ら、近時希土類元素、アルカリ土類元素及び酸
化銅の混合物からなる酸化物系超電導体はその臨界温度
が金属系超電導体と比べ著しく高いものであることが発
表(例えば東京大学工学部グループは米国物理学会で9
0Kを達成したと発表)され、冷媒として高価で極低温
(4,2K= −268,8℃)の液体ヘリウムに換え
、安価な液体窒素で充分使用可能となった。それ故、こ
の酸化物系超電導体の各種分野における実用化の目途に
大きな前進が見られた。これらの発表に伴い、上記利用
分野におけるバルク状又は薄膜状の酸化物超電導体にお
いて、その臨界温度(Tc)をさらに常温にまで高め、
また反磁性帯磁率の向上を計ろうとする研究が盛んに行
われているが、いまだ充分に高い臨界温度(Tc)及び
反磁性帯磁率を有する酸化物超電導体が得られていない
However, it has recently been announced that oxide superconductors made of a mixture of rare earth elements, alkaline earth elements, and copper oxide have a significantly higher critical temperature than metal superconductors (for example, a group from the University of Tokyo Faculty of Engineering 9 in the American Physical Society
It was announced that 0K was achieved), and it became possible to use inexpensive liquid nitrogen as a refrigerant instead of expensive and extremely low temperature (4.2K = -268.8℃) liquid helium. Therefore, great progress has been made in the prospect of practical application of this oxide-based superconductor in various fields. Along with these announcements, the critical temperature (Tc) of bulk or thin film oxide superconductors in the above application fields is further increased to room temperature,
Further, although many studies are being conducted to improve the diamagnetic susceptibility, an oxide superconductor having a sufficiently high critical temperature (Tc) and diamagnetic susceptibility has not yet been obtained.

〔発明の目的〕[Purpose of the invention]

本発明は酸化物超電導体において特に反磁性帯磁率が高
いと共に、臨界温度(Tc)を得ることを目的とする。
An object of the present invention is to obtain particularly high diamagnetic susceptibility and critical temperature (Tc) in an oxide superconductor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、La−Sr−Nb−0系組成からなる
膜体または板体であり、その厚み方向においてLa、S
rおよびNbのそれぞれの含有量に勾配を有する臨界温
度(Tc)が90に以上で、反磁性帯磁率が9.2Kの
NbO値の10χを越える酸化物超電温体が提供される
According to the present invention, it is a film body or a plate body consisting of a La-Sr-Nb-0 system composition, and in the thickness direction, La, S
There is provided an oxide superelectric body having a critical temperature (Tc) of 90 or higher and a diamagnetic susceptibility exceeding 10χ of the NbO value of 9.2K, which has a gradient in the content of each of r and Nb.

即ち、Nb金属上にLaSrCu04を、またはLaS
rCuO。
That is, LaSrCu04 on Nb metal or LaS
rCuO.

上にNbをスパッタして、LaSrCuOaのCuが略
完全にNbに置換される過程で、超電導体の厚み方向に
おいてLa、SrおよびNbのそれぞれの含有量に勾配
を有することが必要である。これにより臨界温度(TC
)が高く、特に反磁性帯磁率も9.2KのNbO値の1
0χを越え、約20%以上、好ましくは約30%以上が
安定して得られる酸化物超電導体が得られる。このよう
な超電導体を得るための製造方法としてはスパッタされ
る基板の角度を基板に入射するスパッタビームに対して
5°〜45°に傾けることによりNb基板上又はLaS
rCuOn (又はこれに代りYBazCu、0.)に
デポジットが良好な結晶性をもって形成され、又基板の
Nbの拡散、LaSrCuO4上にスパッタされたNb
デポジットの拡散により上記の如き各金属元素がそれぞ
れ勾配を有する超電導体相を安定して得られる。
In the process in which Nb is sputtered onto the superconductor and Cu in LaSrCuOa is almost completely replaced with Nb, it is necessary to have a gradient in the content of each of La, Sr, and Nb in the thickness direction of the superconductor. This allows the critical temperature (TC
) is high, especially the diamagnetic susceptibility is 1 of the NbO value of 9.2K.
An oxide superconductor can be obtained in which the oxidation ratio exceeds 0χ and is stably obtained by about 20% or more, preferably about 30% or more. A manufacturing method for obtaining such a superconductor is to tilt the sputtered substrate at an angle of 5° to 45° with respect to the sputtering beam incident on the substrate.
Deposits are formed on rCuOn (or alternatively YBazCu, 0.0) with good crystallinity, and diffusion of Nb on the substrate, Nb sputtered on LaSrCuO4.
By diffusion of the deposit, a superconductor phase having a gradient of each metal element as described above can be stably obtained.

〔実施例1〕 0.03μm厚のNb金属板上にLaSrCuO4化合
物をスパッタして薄膜を形成した。成膜は液体窒素槽内
で直流高速マグネトロンスパッタリングによりAr電圧
、1〜0.4Torr 、電圧200〜300V、電流
300〜400mAで行い、この際スパッタされる基板
の角度を基板に入射するスパッタービームに対して45
″に傾けた。スパッタリングターゲット(LaSrCu
O4)は900℃で8時間アニールした後使用した。ス
パッタ中は700℃X20分加熱し、その後400℃/
hrで室温まで急冷することにより特性を安定化させた
。膜厚は20μmであった。抵抗の測定は四端子法を用
いた。電極はIn(インジウム)を超音波ハンダで付け
た。
[Example 1] A thin film was formed by sputtering a LaSrCuO4 compound onto a 0.03 μm thick Nb metal plate. Film formation was performed in a liquid nitrogen tank by direct current high speed magnetron sputtering at an Ar voltage of 1 to 0.4 Torr, a voltage of 200 to 300 V, and a current of 300 to 400 mA. against 45
sputtering target (LaSrCu
O4) was used after annealing at 900° C. for 8 hours. During sputtering, heat to 700℃ for 20 minutes, then heat to 400℃/
The properties were stabilized by rapid cooling to room temperature for 30 minutes. The film thickness was 20 μm. The resistance was measured using the four-terminal method. The electrodes were attached with In (indium) using ultrasonic solder.

測定電流は30mA/c+++”であり時折り変化させ
た。
The measurement current was 30 mA/c+++'' and was changed from time to time.

サンプルの測温はAu−0,07χ、Fe−クロメル熱
電対で行い、冷媒として液体ヘリウムおよび液体窒素を
用いた。室温以上の加熱には温風を吹付けた。
The temperature of the sample was measured using an Au-0.07χ, Fe-chromel thermocouple, and liquid helium and liquid nitrogen were used as coolants. Hot air was blown for heating above room temperature.

室温から液体ヘリウムまでの冷却速度は〜300に/h
rで行った。反磁性帯磁率測定には誘導ブリッジ法を用
いた。サンプルを温風により335Kまで加速した後冷
却した。冷却と同時に抵抗が急激に減少し、第1図に示
す温度に対する抵抗変化曲線及び第2図に示す帯磁率の
温度特性曲線が得られた。
The cooling rate from room temperature to liquid helium is ~300/h
I went with r. The inductive bridge method was used to measure diamagnetic susceptibility. The sample was accelerated to 335 K with hot air and then cooled. The resistance rapidly decreased upon cooling, and the resistance change curve versus temperature shown in FIG. 1 and the temperature characteristic curve of magnetic susceptibility shown in FIG. 2 were obtained.

これから理解されるように、このサンプルのオンセント
温度は少なくとも280に以上でオフセット温度は約1
00にである。すなわち、約100K(−173℃)で
抵抗が零(0)となる超電導薄膜が得られた。
As will be seen, the on-cent temperature for this sample is at least 280 degrees and the offset temperature is approximately 1.
It's at 00. That is, a superconducting thin film whose resistance became zero (0) at about 100 K (-173° C.) was obtained.

さらに反磁性帯磁率は9.2KのNbの約30χ強であ
った。
Furthermore, the diamagnetic susceptibility was approximately 30χ or more than that of Nb at 9.2K.

〔実施例2〕 La−Sr−Nb−0からなるバルク体を高真空装置内
で作成する。厚み2+nm X幅5IIII11×長さ
10mmのLaSrCu04(又はYBazCu3(l
r)が基板として用いられた。ペルジャーを10− ’
Torrまで減圧し、Nb (純度99.9%)をLa
SrCuOn、(又はYBazCusOy)基板上にA
r電圧0.5Torrでスパッタした。この際スパッタ
される基板の角度を基板に入射するスパッタービームに
対して45@に傾けた。基板の温度は900℃としスパ
ッタ速度は〜lOO人/minであった。スパッタ後ペ
ルジャー内で基板を700℃で30分保持した。Nbの
組成はスパッタ時間で調整した。スパッタ後、チャンバ
ー内の内壁はCu膜で覆われていた。このことはNbが
Cuと置換して、LaSrCu04基板中からCuが飛
散したものと考えられる。測定は実施例1と同様に行っ
た結果、第3図に示すように抵抗は少なくともオンセッ
ト温度(Tco)が280に以上の室温領域で鋭く減少
し始め、反磁性帯磁率も第4図に示子如< 9.2Kの
Nbの値の30χ強を示していた。
[Example 2] A bulk body made of La-Sr-Nb-0 is produced in a high vacuum apparatus. LaSrCu04 (or YBazCu3 (l
r) was used as a substrate. Pelger 10-'
The pressure was reduced to Torr, and Nb (purity 99.9%) was
A on SrCuOn, (or YBazCusOy) substrate
Sputtering was performed at an r voltage of 0.5 Torr. At this time, the angle of the substrate to be sputtered was set to 45@ with respect to the sputter beam incident on the substrate. The temperature of the substrate was 900° C., and the sputtering rate was ~100 people/min. After sputtering, the substrate was held at 700° C. for 30 minutes in a Pelger. The composition of Nb was adjusted by sputtering time. After sputtering, the inner wall of the chamber was covered with a Cu film. This is considered to be because Nb replaced Cu and Cu was scattered from the LaSrCu04 substrate. Measurements were carried out in the same manner as in Example 1, and as a result, as shown in Figure 3, the resistance began to decrease sharply at least in the room temperature region where the onset temperature (Tco) was 280 or higher, and the diamagnetic susceptibility also decreased as shown in Figure 4. It showed a value of Nb of just over 30χ with a value of <9.2K.

〔実施例3〕 厚さ200μlのNb箔上にLaSrCuO,化合物を
スパッタした。スパッタされる基板は前記実施例と同様
基板に入射するスパッタビームに対して45°に傾けた
。成膜は直流高速マグネトロンスパッタリングにより直
径100mmのLaSrCuO,ターゲットを用いて成
膜速度を5000人/1m1nで液体窒素で冷却された
チャンバー内で行う。膜厚は〜15μmで膜形状は4m
m角である。スパッタリングは高Ar圧で0.5〜0.
7Torr 、基板温度は1200℃である。スパッタ
後、1200℃から400℃まで50℃/minで急冷
し、2Torrの酸素中で5分保持した。測定は実施例
1と同様に行った。測定時の電流は30mA/cm”で
あった。
[Example 3] LaSrCuO compound was sputtered onto a 200 μl thick Nb foil. The substrate to be sputtered was tilted at 45° with respect to the sputtering beam incident on the substrate, as in the previous example. Film formation is performed by direct current high speed magnetron sputtering using a LaSrCuO target with a diameter of 100 mm at a film formation rate of 5000 people/1 m1 in a chamber cooled with liquid nitrogen. The film thickness is ~15 μm and the film shape is 4 m.
It is m square. Sputtering is performed at a high Ar pressure of 0.5 to 0.
The temperature was 7 Torr, and the substrate temperature was 1200°C. After sputtering, it was rapidly cooled from 1200° C. to 400° C. at a rate of 50° C./min and held in oxygen at 2 Torr for 5 minutes. Measurements were performed in the same manner as in Example 1. The current during measurement was 30 mA/cm''.

組成分析をEPMA及びIMA(Ion−Micro−
Analyzer)で行った。La及びSrの量は大き
く変化していないが、Cuの存在は検出されなかった。
Composition analysis was performed using EPMA and IMA (Ion-Micro-
Analyzer). Although the amounts of La and Sr did not change significantly, the presence of Cu was not detected.

IMAの分析からNb箔よりNb酸化物までの厚み方向
においてLa、Sr及びNb含有量の勾配が存在してい
ることが分かった。Nb箔上のLaSrCuO,の組成
はLaSrCuO薄膜となった。Nb箔からこの薄膜内
へNbが拡散することはLa−Sr−Nb−0薄膜とな
った。Nb箔からこの薄膜内へNbが拡散することによ
り膜内のCuがNbに置換され、酸素八面体の中央のC
uは置き換わっている。
IMA analysis revealed that a gradient of La, Sr, and Nb contents existed in the thickness direction from the Nb foil to the Nb oxide. The composition of LaSrCuO on the Nb foil was a LaSrCuO thin film. The diffusion of Nb from the Nb foil into this thin film resulted in a La-Sr-Nb-0 thin film. As Nb diffuses from the Nb foil into this thin film, Cu in the film is replaced with Nb, and the C in the center of the oxygen octahedron is
u has been replaced.

また、同時にLa及びSrに於いても含有量が厚み方向
に勾配を示している。表面にはLazSr、Nb501
゜の組成からなる層が形成されていた。
At the same time, the contents of La and Sr also show a gradient in the thickness direction. LazSr, Nb501 on the surface
A layer having a composition of ° was formed.

上記サンプルについて温度に対する抵抗変化及び帯磁率
を測定し、第5図及び第6図に示した。
The resistance change and magnetic susceptibility with respect to temperature were measured for the above sample, and the results are shown in FIGS. 5 and 6.

温風により加熱を停止した直後、抵抗は急激に落ち始め
、250にで抵抗が零(0)になった。このサンプルの
負の帯磁率は9.2KでのNbの帯磁率の33zであり
マイスナー効果が320にでもまだ零に達していない事
が確認された。
Immediately after stopping the heating with warm air, the resistance began to drop rapidly, and at 250, the resistance became zero (0). The negative magnetic susceptibility of this sample was 33z of the magnetic susceptibility of Nb at 9.2K, and it was confirmed that the Meissner effect had not yet reached zero even at 320K.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1における薄nりの抵抗温度特
性図、第2図はこの実施例1の帯磁率の温度特性図、第
3図は実施例2Kおけるバルク体の抵抗温度特性図、第
4図はこの実施例2の帯磁率の温度特性図、第5図は実
施例3における薄膜の抵抗温度特性図及び第6図はこの
実施例3における薄膜の帯磁率の温度特性図である。
Fig. 1 is a resistance-temperature characteristic diagram of thin n-shaped material in Example 1 of the present invention, Fig. 2 is a temperature characteristic diagram of magnetic susceptibility of this Example 1, and Fig. 3 is a resistance-temperature characteristic diagram of a bulk body in Example 2K. 4 is a temperature characteristic diagram of the magnetic susceptibility of Example 2, FIG. 5 is a resistance temperature characteristic diagram of the thin film in Example 3, and FIG. 6 is a temperature characteristic diagram of the magnetic susceptibility of the thin film in Example 3. It is.

Claims (1)

【特許請求の範囲】[Claims] La−Sr−Nb−O系組成からなる膜体または板体で
あり、その厚み方向においてLa,SrおよびNbのそ
れぞれの含有量に勾配を有する臨界温度(Tc)が90
K以上で、反磁性帯磁率が9.2KのNbの10%を越
える酸化物超電導体。
It is a film or plate consisting of a La-Sr-Nb-O system composition, and has a critical temperature (Tc) of 90% with a gradient in the content of La, Sr, and Nb in the thickness direction.
An oxide superconductor whose diamagnetic susceptibility exceeds 10% of Nb at temperatures above K and 9.2K.
JP62304134A 1987-11-30 1987-11-30 Oxide superconductor Pending JPH01145329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304134A JPH01145329A (en) 1987-11-30 1987-11-30 Oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304134A JPH01145329A (en) 1987-11-30 1987-11-30 Oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01145329A true JPH01145329A (en) 1989-06-07

Family

ID=17929450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304134A Pending JPH01145329A (en) 1987-11-30 1987-11-30 Oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01145329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722314A (en) * 1994-11-14 1998-03-03 Matsushita Electric Industrial Co., Ltd. Automatic bread producing machine
US10568331B2 (en) 2016-05-13 2020-02-25 Zojirushi Corporation Auxiliary material accommodating container and automatic bread making machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428232A (en) * 1987-04-13 1989-01-30 Tetsuya Ogushi Oxide superconducting material and production thereof
JPS6476902A (en) * 1987-05-18 1989-03-23 Tetsuya Ogushi Perovskite-type superconductor and superconducting member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428232A (en) * 1987-04-13 1989-01-30 Tetsuya Ogushi Oxide superconducting material and production thereof
JPS6476902A (en) * 1987-05-18 1989-03-23 Tetsuya Ogushi Perovskite-type superconductor and superconducting member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722314A (en) * 1994-11-14 1998-03-03 Matsushita Electric Industrial Co., Ltd. Automatic bread producing machine
US6058831A (en) * 1994-11-14 2000-05-09 Matsushita Electric Industrial Co., Ltd. Automatic bread producing machine
US10568331B2 (en) 2016-05-13 2020-02-25 Zojirushi Corporation Auxiliary material accommodating container and automatic bread making machine

Similar Documents

Publication Publication Date Title
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
JPH0474714A (en) Tl superconductor material
JPS63206462A (en) Production of thin conductive or superconductive film
JPH01145329A (en) Oxide superconductor
JP2650910B2 (en) Method of forming oxide superconductor thin film
JPH05116940A (en) Process for forming thin film of metal oxide on substrate
JPS63283085A (en) Superconducting device
JPH0264021A (en) Preparation of multiple oxide superconducting thin film
US5106820A (en) Oxide superconductor and process for preparation thereof
JPH02141568A (en) Production of thin superconducting film of multiple oxide
JP2776362B2 (en) Method of forming oxide superconductor thin film
JPH01234323A (en) High temperature superconducting thin film
JPH0412017A (en) Tl superconductor material
JPH01157420A (en) Oxide superconductor and production thereof
JPH0467691A (en) Tl-based superconductive material
JP2567446B2 (en) Preparation method of superconducting thin film
JPH0412018A (en) Tl superconductive material
JP2501616B2 (en) Preparation method of superconducting thin film
JP2632386B2 (en) Method of forming high-temperature superconducting ceramics thin film
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JP2501614B2 (en) Preparation method of superconducting thin film
JPS63314722A (en) Processing method for ceramic-based superconductive material
JP2639510B2 (en) Preparation method of superconducting thin film
Baker et al. Improving critical current anisotropy in Bi-2212 coatings through controlled flow of the melt formed in partial melt processing
JPH0412024A (en) Bi-based superconductive material