JPH01154115A - Rotating body supporting device - Google Patents

Rotating body supporting device

Info

Publication number
JPH01154115A
JPH01154115A JP31454687A JP31454687A JPH01154115A JP H01154115 A JPH01154115 A JP H01154115A JP 31454687 A JP31454687 A JP 31454687A JP 31454687 A JP31454687 A JP 31454687A JP H01154115 A JPH01154115 A JP H01154115A
Authority
JP
Japan
Prior art keywords
rotating
rotating body
fixed shaft
rotating member
gas bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31454687A
Other languages
Japanese (ja)
Inventor
Shoji Oba
荘司 大庭
Toru Arakawa
徹 荒川
Tatsuhiko Inagaki
辰彦 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31454687A priority Critical patent/JPH01154115A/en
Publication of JPH01154115A publication Critical patent/JPH01154115A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To guarantee the inclination accuracy and stability of a rotating body during high speed rotation and to thin the device by permitting a dynamic pressure gas bearing part provided on the flat plane of the rotating body and opposing a base table to support the rotating body in the axial direction and to maintain the inclination supporting accuracy and stability. CONSTITUTION:A spiral groove 63 is provided on the flat plane 61a of the base table 61, and a rotating member 51 is placed outside of the fixed shaft 60 in the center of the base table 61, and the dynamic pressure gas bearing is composed of one herringbone groove 62 on the peripheral plane of the fixed axis. When the rotating assembly body 56 is rotated at high speed, air flows into the space between a flat plane 51b of the rotating member 51 and a flat plane 61a of the base table 61 by the herringbone groove 63, and into the space between the rotating member 51 and the fixed shaft 60 by the herringbone groove 62, and air pressure is generated. Therefore, the rotating assembly body is supported without contacting with the base table 61 and the fixed shaft 60 and accurately revolves with extremely small frictional resistance. Thus, the stability and the inclination accuracy of the rotating body the maintained and the rotating body supporting device is greatly thinned and miniaturized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、たとえば回転多面体鏡光偏向器などに適用さ
れ、高精度、高速回転の回転体を安定に支持する回転体
支持装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotating body support device that is applied to, for example, a rotating polyhedral mirror light deflector and stably supports a rotating body that rotates with high accuracy and high speed.

従来の技術 近年、オフィス機器の発展に伴って、情報を記録、印刷
するプリンタ関係の機器もますます高速化、小型化およ
び低コスト化が要望されはじめ、これに伴ってレーザプ
リンタに代表されるように印字品質が良く高速性の特徴
を有するプリンタが出現している。
Conventional technology In recent years, with the development of office equipment, there has been a demand for printer-related equipment that records and prints information to be faster, smaller, and lower in cost. Printers with high print quality and high speed are now appearing.

一般にこのレーザビームプリンタは第4図に示すように
あらかじめ一様に帯電された感光体1に光走査部2より
レーザ光を走査して感光体l上に静電潜像を形成し周知
の電子写真方式のプロセスによりプリント出力するもの
で、上記光走査部2は半導体レーザ光tA4から発せら
れたレーザ光3をビーム整形光学系5を通して適当なビ
ーム形に整形しそのレーザ光3を回転多面体鏡光偏向器
6を介して偏向させさらに結像光学系7を通して感光体
1上に走査する構成になっている。
Generally, as shown in FIG. 4, this laser beam printer scans a photoreceptor 1, which has been uniformly charged in advance, with a laser beam from an optical scanning section 2 to form an electrostatic latent image on the photoreceptor l. The optical scanning unit 2 shapes the laser beam 3 emitted from the semiconductor laser beam tA4 into an appropriate beam shape through the beam shaping optical system 5, and then converts the laser beam 3 into a rotating polygon mirror. The light is deflected through a light deflector 6 and scanned onto the photoreceptor 1 through an imaging optical system 7.

また上記回転多面体暁光偏向器6はその偏向速度すなわ
ち光偏向器の高速性と高精度がレーザビームプリンタの
高速性と高品位化を主に決定しており、回転多面体鏡と
その回転駆動部より構成される。
In addition, the deflection speed of the rotating polyhedral optical deflector 6, that is, the high speed and high precision of the optical deflector, mainly determines the high speed and high quality of the laser beam printer. configured.

従来、回転多面体暁光偏向器はたとえば特開昭59−2
3319号公頼に示されるような回転体支持装置を適用
した構成がある。その構成を第5図に示す。
Conventionally, a rotating polyhedral light deflector is disclosed in Japanese Patent Application Laid-open No. 59-2, for example.
There is a configuration to which a rotating body support device as shown in Publication No. 3319 is applied. Its configuration is shown in FIG.

第5図において、回転多面体暁光偏向器10は回転多面
体鏡IIとこの回転多面体鏡1)を所定方向に高速回転
させる回転駆動部12とから構成される。
In FIG. 5, a rotating polygonal light deflector 10 is composed of a rotating polygonal mirror II and a rotation drive unit 12 that rotates the rotating polygonal mirror 1) in a predetermined direction at high speed.

13は固定軸でモータハウジングI4上に画定されてお
りその固定軸13の外周部とわずかな隙間を介して中空
円筒状の回転部材15が回転自在に外嵌されている。
A fixed shaft 13 is defined on the motor housing I4, and a hollow cylindrical rotary member 15 is rotatably fitted around the outer circumference of the fixed shaft 13 with a slight gap therebetween.

また、上記固定軸13の外周面上下端部28および29
には回転部材15の内周面との相対速度により半径方向
に動圧を発生するくの字状のへリングボーン溝26およ
び27が形成されている。
Further, the upper and lower ends 28 and 29 of the outer circumferential surface of the fixed shaft 13 are
Dog-shaped herringbone grooves 26 and 27 are formed in the inner peripheral surface of the rotating member 15 to generate dynamic pressure in the radial direction due to the relative speed with the inner circumferential surface of the rotating member 15.

一方、上記回転部材15の下端部にはスラスト支持用の
磁気軸受16の内側磁気リング17が取付けられ、さら
にロータ磁石1Bが回転部材15にその上下方向はぼ中
央付近に固定されている。
On the other hand, an inner magnetic ring 17 of a magnetic bearing 16 for thrust support is attached to the lower end of the rotating member 15, and a rotor magnet 1B is fixed to the rotating member 15 near the center in the vertical direction.

また、そのロータ磁石18の上方には回転多面体鏡1)
がその下端面を回転部材15に当接した状態で上端面を
鏡押さえ部材20により押し付は固定されている。一方
、前記モータハウジング14には上記ロータ磁石18の
外周部を囲む状態で駆動コイル21を備えたステータ2
2が固定されており回転多面体鏡1).ロータ磁石18
および内側磁気リング17からなる回転組立体23を周
知の直流ブラシレス駆動方式により回転駆動するように
なっている。
Also, above the rotor magnet 18 is a rotating polyhedral mirror 1).
While the lower end surface is in contact with the rotating member 15, the upper end surface is pressed and fixed by the mirror holding member 20. On the other hand, the motor housing 14 has a stator 2 provided with a drive coil 21 surrounding the outer periphery of the rotor magnet 18.
2 is fixed and rotating polyhedral mirror 1). Rotor magnet 18
The rotating assembly 23 consisting of the magnetic ring 17 and the inner magnetic ring 17 is rotatably driven by a well-known direct current brushless drive system.

また、上記内側磁気リング17の周部に対して一定の隙
間で囲むように外側磁気リング24が同様にモータハウ
ジング14の下方に固定され内側磁気リング17と外側
磁気リング24とは互いに吸引力が働くように着磁され
ており回転組立体23の上下方向(自重方向)を支承す
るスラスト支持磁気軸受16を構成している。さらに、
モータハウジング14の上部には密閉カバー25が取り
付けられ清浄な空気が封入されている。
Further, an outer magnetic ring 24 is similarly fixed below the motor housing 14 so as to surround the inner magnetic ring 17 with a certain gap, and the inner magnetic ring 17 and the outer magnetic ring 24 have an attractive force with each other. It constitutes a thrust support magnetic bearing 16 that is magnetized to work and supports the rotary assembly 23 in the vertical direction (direction of its own weight). moreover,
A sealing cover 25 is attached to the upper part of the motor housing 14, and clean air is sealed therein.

以上のような構成にて、駆動コイル21に通電すること
によりステータ22に回転磁界が生じロータ磁石18と
の磁気吸引力により回転組立体23が回転する。
With the above configuration, when the drive coil 21 is energized, a rotating magnetic field is generated in the stator 22, and the rotating assembly 23 is rotated by the magnetic attraction force with the rotor magnet 18.

これにより回転部材15と固定軸13とに相対速度が生
じ固定軸13上下端部のへリングボーン溝部26および
27の隙間に空気が流れ込んで半径方向に空気圧が発生
しいわゆる動圧気体軸受部となり非接触の状態で極めて
小さな摩擦抵抗と安定性をもって回転組立体23が高速
度に回転する。
As a result, a relative speed is generated between the rotating member 15 and the fixed shaft 13, and air flows into the gap between the herringbone grooves 26 and 27 at the upper and lower ends of the fixed shaft 13, generating air pressure in the radial direction, forming a so-called dynamic pressure gas bearing. The rotating assembly 23 rotates at high speed with extremely low frictional resistance and stability in a non-contact state.

したがって、回転多面体鏡1)も高速で回転されそれに
伴って光走査部内でレーザ光が高速に偏向される。この
時、偏向されたレーザ光の軌跡の精度は上記回転多面体
鏡1)の各鏡面の回転時の傾き、変形により決まるため
回転多面体鏡1)の各鏡面の傾き(動的面倒れ)すなわ
ち光偏向器自体の高速回転時の安定性および回転精度に
おいてかなり高い仕様が要望される。
Therefore, the rotating polygon mirror 1) is also rotated at high speed, and accordingly, the laser beam is deflected at high speed within the optical scanning section. At this time, the accuracy of the trajectory of the deflected laser beam is determined by the inclination and deformation of each mirror surface of the rotating polygon mirror 1) during rotation. Considerably high specifications are required for the stability and rotation accuracy of the deflector itself during high-speed rotation.

発明が解決しようとする問題点 しかしながら、上記のような構成においては回転部材1
5が固定軸13の上下端部に設けられた2箇所の動圧気
体軸受28および29によりその半径方向が支持され、
またスラスト磁気軸受16によりスラスト方向のみの負
荷が保持されるため回転部材15の高速回転時に生しる
ジャイロモーメント等による傾きの支持は上記固定軸1
3上の気体軸受によりなされる。
Problems to be Solved by the Invention However, in the above configuration, the rotating member 1
5 is supported in the radial direction by two dynamic pressure gas bearings 28 and 29 provided at the upper and lower ends of the fixed shaft 13,
In addition, since the thrust magnetic bearing 16 holds the load only in the thrust direction, the fixed shaft 1 can support the tilt due to the gyro moment etc. that occurs when the rotating member 15 rotates at high speed.
3 by means of a gas bearing.

このため高速回転時の負荷能力、安定性および回転部材
の精度たとえば振れ、傾き精度は固定軸13の上下端部
の気体軸受部28および29間の軸受間隔とその軸受仕
様、たとえばヘリングボーン溝26および27の深さ、
溝本数あるいは回転部材15と固定軸13間の隙間等に
より決められる軸受の気体バネ定数等でもって決まる。
Therefore, the load capacity, stability, and accuracy of rotating members during high-speed rotation, such as runout and tilt accuracy, are determined by the bearing spacing between the gas bearings 28 and 29 at the upper and lower ends of the fixed shaft 13 and the bearing specifications, such as the herringbone groove 26. and a depth of 27,
It is determined by the gas spring constant of the bearing, which is determined by the number of grooves or the gap between the rotating member 15 and the fixed shaft 13.

特に、固定軸上の気体軸受部の軸受間隔は上記安定性と
精度に大きな影響を与え十分長い軸受間隔が必要とされ
る。
In particular, the bearing spacing of the gas bearing section on the fixed shaft has a great influence on the stability and accuracy, and a sufficiently long bearing spacing is required.

しかしながら、この回転多面体暁光偏向器を高速回転の
状態で安定にしかも薄型化をはかるとした場合には、上
記構成においては必然的に軸受間隔を短くする必要があ
り、その結果回転多面体鏡の安定性および傾き精度が低
下し、しいてはレーザビームプリンタとしての印字品質
が悪化するという問題点を有していた。
However, in order to make this rotating polyhedral optical deflector stable under high-speed rotation and to make it thinner, it is necessary to shorten the bearing spacing in the above configuration, which results in the stability of the rotating polyhedral mirror. However, there have been problems in that the accuracy and inclination accuracy are reduced, and the printing quality as a laser beam printer is also deteriorated.

特に、上記小型、薄型化にたいしては前記光走査部ユニ
ット2に回転多面体暁光偏向器6を組込んだ場合にその
必要性が顕著に現れてくる。すなわち、光走査部2にお
いて光偏向器6を除いた光学ユニットたとえば主にレン
ズ群で構成されるビーム整形光学系5.結像光学系7が
レーザ光3の形成するスポット径に近い薄さまで薄型化
ができるのに対して光偏向器6は回転多面体鏡1)を含
め前記示したような構成が必要であり光走査部ユニット
2に組込んだ場合第4図に示されるようにそのユニット
2から光偏向器2のみ突出した形となる。
In particular, the need for the above-mentioned reduction in size and thickness becomes apparent when the rotating polyhedral optical deflector 6 is incorporated into the optical scanning section unit 2. That is, in the optical scanning section 2, an optical unit excluding the optical deflector 6, for example, a beam shaping optical system 5 mainly composed of a lens group. While the imaging optical system 7 can be made thin to a thickness close to the spot diameter formed by the laser beam 3, the optical deflector 6 requires the above-mentioned configuration including the rotating polygonal mirror 1), and is capable of optical scanning. When assembled into a unit 2, only the optical deflector 2 protrudes from the unit 2, as shown in FIG.

このため、この光走査部2をレーザビームプリンタ本体
に組込む場合、光走査部2が本体全体に占める空間部が
大きくなり本体自身が大型になる問題点を有していた。
For this reason, when this optical scanning section 2 is incorporated into the main body of a laser beam printer, there is a problem that the space occupied by the optical scanning section 2 in the entire main body becomes large and the main body itself becomes large.

これに対して、上記回転体支持装置の大幅な薄形化、小
形化をはかるため特願昭62−5301号の内容をすで
に出願しているが、この構成においては外部から加わる
外乱特に振動、衝撃あるいはジャイロモーメント等の程
度により、この構成の有する負荷能力では回転部材を保
持するうえで限界があり、最悪の場合対向するベース台
、規制部材(固定軸)に接触し焼付きを発生する可能性
を有していた。
On the other hand, in order to significantly reduce the thickness and size of the rotating body support device, the content of Japanese Patent Application No. 1983-5301 has already been filed, but in this configuration, external disturbances, especially vibrations, Depending on the degree of impact or gyro moment, etc., the load capacity of this configuration has a limit in holding the rotating member, and in the worst case, it may come into contact with the opposing base or regulating member (fixed shaft) and cause seizure. had sex.

問題点を解決するための手段 上記問題点を解決するため、本発明の回転体支持装置は
回転体と、前記回転体を有し、回転軸方面端面に平面部
が形成されかつ回転軸方向に中空円筒状をなす回転部材
と、前記回転部材の平面部と対向して配され上記回転体
との相対運動により動圧を発生する気体軸受部を設けた
ベース台と、上記回転部材の円筒内周面と半径方向に一
定の隙間を有し、上記回転体との相対運動により半径方
向に動圧を発生する気体軸受部を設けた固定軸とを具備
し、上記回転体を有する回転部材の重心位置を上記固定
軸上の気体軸受部のほぼ中央に配してなる構成である。
Means for Solving the Problems In order to solve the above-mentioned problems, the rotating body support device of the present invention includes a rotating body and the rotating body, and a flat portion is formed on the end face facing the rotating shaft, and a flat portion is formed in the rotating shaft direction. a rotating member having a hollow cylindrical shape; a base having a gas bearing disposed opposite to a flat surface of the rotating member and generating dynamic pressure through relative motion with the rotating member; A rotating member having a circumferential surface and a fixed shaft having a constant gap in the radial direction and provided with a gas bearing portion that generates dynamic pressure in the radial direction by relative movement with the rotating body, and having the rotating body. The center of gravity is located approximately at the center of the gas bearing portion on the fixed shaft.

作用 本発明は、上記した構成により回転体の高速回転時に生
じる傾き精度や安定性を従来の固定軸周面の2箇所の動
圧気体軸受部で主に負担しているかわりに回転体の平面
部と対向するベース台上に設けた動圧気体軸受部でもっ
て回転体の軸方向の支持とともにその傾きの保持精度お
よび安定性を負担するもので、一方面転体の半径方向に
は主にそのグイナミソクアンバランスによる不釣合い力
等を固定軸上に設けた動圧気体軸受でもって負担し、さ
らに回転体を有する回転部材の重心位置を上記動圧気体
軸受のほぼ中央に設定することにより重心に働(回転部
材の慣性力によるモーメントを小さくし、上記ベース台
上に設けた動圧気体軸受の負荷を軽減するものである。
Function: With the above-described configuration, the present invention provides tilt accuracy and stability that occur when the rotating body rotates at high speed, instead of having the two hydrodynamic pressure gas bearings on the circumferential surface of the fixed shaft bear the burden mainly on the flat surface of the rotating body. The hydrodynamic gas bearing installed on the base facing the rotating body supports the rotating body in the axial direction and maintains the accuracy and stability of its inclination. The unbalanced force caused by the unbalance is borne by the hydrodynamic gas bearing installed on the fixed shaft, and the center of gravity of the rotating member having the rotating body is set approximately at the center of the hydrodynamic gas bearing. It acts on the center of gravity (to reduce the moment due to the inertial force of the rotating member, and reduces the load on the hydrodynamic gas bearing provided on the base table).

実施例 以下、本発明の一実施例を第1図と第2図および第3図
を参照して説明する。第1図は本発明の回転駆動装置を
用いた回転多面体鏡光偏向装置の断面図を示すものであ
り、第2図は本発明の回転駆動装置を用いた回転多面体
鏡光偏向装置の分解斜視図を示すもので、第3図は回転
体の半径方向の動圧分布を示したものである。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1, 2, and 3. FIG. 1 shows a cross-sectional view of a rotating polyhedral mirror light deflection device using the rotational drive device of the present invention, and FIG. 2 is an exploded perspective view of the rotating polyhedral mirror light deflection device using the rotational drive device of the present invention. FIG. 3 shows the dynamic pressure distribution in the radial direction of the rotating body.

第1図において、51はフランジ状の形状を有し鉛直方
向に回転中心を持つ回転部材であり、回転体である回転
多面体鏡52がフランジ部上面51aに当接して接着等
の手段で固定されている。
In FIG. 1, reference numeral 51 is a rotating member having a flange-like shape and having a center of rotation in the vertical direction. ing.

53はリング状のロータ磁石であり、軟磁性体の材料で
構成されたバックヨーク54に接着された状態で回転軸
方向に多極着磁され、またバックヨーク54は、回転多
面体鏡52の上面に当接して接着等の手段で固定されて
いる。また、回転部材51のフランジ部およびバックヨ
ーク54の直径は回転多面体鏡52の外径より大に作ら
れている。
Reference numeral 53 denotes a ring-shaped rotor magnet, which is magnetized with multiple poles in the direction of the rotational axis while being bonded to a back yoke 54 made of a soft magnetic material. It is fixed by adhesive or other means. Further, the diameters of the flange portion of the rotating member 51 and the back yoke 54 are made larger than the outer diameter of the rotating polygon mirror 52.

つまり、回転多面体鏡52は直径がより大なる回転部材
51のフランジ部およびバックヨーク54にはさみ込ま
れている。55は軟磁性体の材料で構成されたサブロー
タであり、ロータ磁石53と軸方向に一定の空隙をもっ
て配置されたロータ磁石による磁束が流れるように構成
され、回転部材52に接着等の手段で固定されている。
That is, the rotating polygon mirror 52 is sandwiched between the flange portion of the rotating member 51 having a larger diameter and the back yoke 54. Reference numeral 55 denotes a sub-rotor made of a soft magnetic material, configured to allow magnetic flux to flow from the rotor magnets 53 and the rotor magnets arranged with a certain gap in the axial direction, and fixed to the rotating member 52 by adhesive or other means. has been done.

すなわち、回転部材519回転回転体鏡52.ローク磁
石53、バックヨーク54.サブロータ55は互いに固
定され、回転組立体56を構成している。
That is, the rotating member 519 rotates the rotating body mirror 52 . Roke magnet 53, back yoke 54. The sub-rotors 55 are fixed to each other and constitute a rotating assembly 56.

上記、回転部材51のフランジ部下部端面には、平滑平
面部51bが形成され、その平面部51bに対向して、
平滑平面61aを有するベース台61が配され、ベース
台61は筐体(図示せず)に固定されている。またベー
ス台61の平面61aには、スパイラル溝63がその求
心する方向が回転組立体56の回転方向と一致するよう
に形成されており、上記回転部材51の平面部 1bと
対向して動圧気体軸受を構成している。また平面部51
bの動圧気体軸受に関与しない部分はヌスミ51Cを施
している。また61bはこのヌスミ51Cから外部へ通
じる調圧孔である。
A smooth plane part 51b is formed on the lower end surface of the flange part of the rotating member 51, and facing the plane part 51b,
A base 61 having a smooth flat surface 61a is arranged, and the base 61 is fixed to a casing (not shown). Further, a spiral groove 63 is formed on the flat surface 61a of the base 61 so that its centripetal direction coincides with the rotational direction of the rotating assembly 56, and a spiral groove 63 is formed in the flat surface 61a of the rotating member 51 to face the flat surface 1b of the rotating member 51. It constitutes a gas bearing. Also, the flat part 51
Parts not involved in the dynamic pressure gas bearing shown in b are coated with Nusumi 51C. Moreover, 61b is a pressure regulating hole that communicates with the outside from this Nusumi 51C.

ベース台61の中央部には、回転組立体56の半径方向
の移動を規制する固定軸60が配されており、ベース台
61に圧入等により固定されている。また固定軸60に
はこの固定軸外周部と一定の隙間を介して上記回転組立
体56中の回転部材51が回転自在に外嵌されており、
固定軸の周面には一箇所のへリングボーン溝62が、矢
印状先端が回転組立体56の回転方向を向く形状に形成
され動圧気体軸受を構成している。また固定軸の動圧気
体軸受に関与しない部分はヌスミ60aを施している。
A fixed shaft 60 that restricts movement of the rotation assembly 56 in the radial direction is disposed at the center of the base 61, and is fixed to the base 61 by press fitting or the like. Further, the rotating member 51 of the rotating assembly 56 is rotatably fitted onto the fixed shaft 60 with a certain gap between it and the outer circumference of the fixed shaft.
A herringbone groove 62 is formed at one location on the circumferential surface of the fixed shaft so that an arrow-shaped tip thereof faces in the rotational direction of the rotating assembly 56, thereby forming a hydrodynamic gas bearing. In addition, the portions of the fixed shaft that are not involved in the dynamic pressure gas bearing are provided with a pad 60a.

また回転部材51の下部平面部51bの外周部と、サブ
ロータ55の上部の外周部にはダイナミックバランスの
調整用の重りを取り付けるための溝57.58が形成さ
れており、回転組立体56を組立てた状態で高精度にダ
イナミックバランスを調整することができる。さらに回
転組立体56の重心位置は固定軸60上にあって、しか
も前記一箇所のへリングボーン溝62のほぼ中央部70
付近に設定されである。すなわち第3図に示すような固
定軸60上の最大動圧全生部付近で本実施例においては
回転方向に交叉するよう形成された溝部のうち、溝部が
形成されていない中央部付近であればどこでも良い。
Furthermore, grooves 57 and 58 are formed on the outer circumference of the lower flat part 51b of the rotating member 51 and on the outer circumference of the upper part of the sub-rotor 55 for attaching weights for adjusting the dynamic balance. The dynamic balance can be adjusted with high precision under the same conditions. Further, the center of gravity of the rotating assembly 56 is located on the fixed shaft 60, and moreover, the center of gravity of the rotating assembly 56 is located at a substantially central portion 70 of the one herringbone groove 62.
It is set up nearby. In other words, in this embodiment, in the vicinity of the maximum dynamic pressure generating area on the fixed shaft 60 as shown in FIG. Anywhere is fine.

また、第2図において、65はモータフレーム64に取
付はネジ71で固定された2個に分割可能な固定コイル
基板65aおよび65bであり、複数個の偏平コイル6
6と、ロータ磁石の位置検出センサ67と、2枚のプリ
ント基板68a。
Further, in FIG. 2, reference numeral 65 denotes fixed coil substrates 65a and 65b which are fixed to the motor frame 64 with screws 71 and can be divided into two pieces, and a plurality of flat coils 65 are attached to the motor frame 64.
6, a rotor magnet position detection sensor 67, and two printed circuit boards 68a.

68bから構成されている。本実施例ではフレキシブル
プリント基板を上記プリント基板68a。
68b. In this embodiment, the flexible printed circuit board is the printed circuit board 68a.

68bに用いている。複数個の偏平コイル66と、ロー
タ磁石の位置検出センサ67ば、プリント基板68aお
よび68b上に配線され、さらに樹脂70でモールドさ
れている。したがって固定コイル基板65は2個に分割
して、前記回転組立体56のダイナミックバランスを調
整した後、ロータ磁石53とサブロータ55の間の空隙
中に配置させることができるようになっている。
Used for 68b. A plurality of flat coils 66 and a rotor magnet position detection sensor 67 are wired on printed circuit boards 68a and 68b, and are further molded with resin 70. Therefore, the fixed coil substrate 65 can be divided into two parts and placed in the gap between the rotor magnet 53 and the sub-rotor 55 after adjusting the dynamic balance of the rotating assembly 56.

以上のように構成された回転多面体鏡光偏向装置におい
て、固定コイル基板65に通電することにより、ロータ
磁石53とサブロータ55間の空隙の磁束に回転トルク
が発生し回転組立体56は高速で回転し、前記回転部材
51の平面部51bとベース台61の平面部61aの対
向部の隙間にはスパイラル溝63の働きにより、前記回
転部材51と固定軸60の隙間にはへリングボーン溝6
2の働きにより、空気が流入し空気圧が発生し、回転組
立体56は、ベース台6】および固定軸60と非接触の
状態で支持され、極めて小さな摩擦抵抗で高精度に回転
することができる。
In the rotating polyhedral mirror light deflecting device configured as described above, by energizing the fixed coil board 65, rotational torque is generated in the magnetic flux in the air gap between the rotor magnet 53 and the sub-rotor 55, and the rotating assembly 56 rotates at high speed. However, a spiral groove 63 is formed in the gap between the opposing plane part 51b of the rotating member 51 and the plane part 61a of the base 61, and a herringbone groove 6 is formed in the gap between the rotating member 51 and the fixed shaft 60.
2, air flows in and air pressure is generated, and the rotating assembly 56 is supported without contact with the base 6] and the fixed shaft 60, and can rotate with high precision with extremely small frictional resistance. .

以上のように本実施例によれば、回転組立体56の重心
位置がほぼ固定軸60上のへリングボーン溝62の中央
付近70に設定されであるため、本実施例の構造におけ
る気体軸受部、特にベース台61上の気体軸受部の負荷
能力を軽減できる効果がある。
As described above, according to this embodiment, since the center of gravity of the rotating assembly 56 is set approximately at the center 70 of the herringbone groove 62 on the fixed shaft 60, the gas bearing in the structure of this embodiment In particular, this has the effect of reducing the load capacity of the gas bearing section on the base 61.

すなわち、固定軸60上の気体軸受に加わる外力および
モーメントとして回転組立体56上のダイナミックバラ
ンス調整による不釣合い力とそれによる偶力あるいは外
部振動等により、回転組立体56の重心で半径方向に加
わる慣性力とそれによる回転組立体56の支持点からの
モーメントがあるが、モーメントに関しては本実施例の
ような構造においては大部分ベース61上に設けた気体
軸受部でそのモーメントによる回転組立体56の負荷を
保持するため、上記回転組立体56の重心位置を固定軸
60上のへリングボーン溝62のほぼ中央部付近で半径
方向に最大動圧が発生する部分に設定することにより、
ベース台61上の気体軸受部の負担を少なくすることが
でき、しかも比較的大きい慣性力のモーメントによって
引き起こされる軸受損傷を防止することができる。
That is, external forces and moments applied to the gas bearing on the fixed shaft 60 are applied in the radial direction at the center of gravity of the rotating assembly 56 due to unbalanced forces due to dynamic balance adjustment on the rotating assembly 56 and resulting couples or external vibrations. There is an inertial force and a moment from the support point of the rotating assembly 56 due to the inertia force, but in the structure of this embodiment, the moment is mostly generated by the gas bearing part provided on the base 61 and the rotating assembly 56 is generated by the moment. In order to maintain the load of
The burden on the gas bearing section on the base 61 can be reduced, and damage to the bearing caused by a relatively large moment of inertia can be prevented.

また、外部からの衝撃あるいは高速回転時に外部からの
振動により発生するジャイロモーメント等の異常に大き
な外乱に対してはベース台61上および固定軸60上に
設けた気体軸受の負荷能力を大きくするとともに気体軸
受を構成する回転組立体56中の回転部材51と固定軸
60.ベース台61を耐摩耗性材料であるセラミック材
料、本実施例においてはSiCあるいはアルミナ(A 
It zO+)を用いることにより高速回転時の焼付き
損傷と動圧気体軸受の特徴である起動、停止時の接触に
よる回転不良を防止することができる。
In addition, in response to abnormally large disturbances such as external shocks or gyroscopic moments generated by external vibrations during high-speed rotation, the load capacity of the gas bearings provided on the base 61 and the fixed shaft 60 is increased. A rotating member 51 and a fixed shaft 60 in a rotating assembly 56 constituting a gas bearing. The base 61 is made of a wear-resistant ceramic material, such as SiC or alumina (A) in this embodiment.
By using ItzO+), it is possible to prevent seizure damage during high-speed rotation and rotation failures due to contact during startup and shutdown, which are characteristics of hydrodynamic gas bearings.

この時、ベース台61.固定軸60とそれに対向する回
転部材51とは同材質のセラミック材料が良い。またセ
ラミック材料を用いる代わりに金属ベース台に耐摩耗性
材料を溶射、イオンブレーティング等により表面処理を
行なっても同様の効果がある。
At this time, the base stand 61. The fixed shaft 60 and the rotating member 51 facing it are preferably made of the same ceramic material. Further, instead of using a ceramic material, the same effect can be obtained by surface-treating the metal base with a wear-resistant material by thermal spraying, ion blasting, or the like.

さらに、本実施例の構造はベース台61平面上に動圧気
体軸受であるスパイラル溝63を形成しているため、従
来の溝加工であるエツチング加工等と比較して、プレス
加工や樹脂成形等の生産性に富む加工法が適用でき、ま
た上記のようにセラミック材料をベース台61.固定軸
60に用いることにより非常に取扱いが簡単で加工時間
が短かいプラスト加工を用いて溝形成を行なえ、より生
産性を向上することができる。
Furthermore, since the structure of this embodiment has a spiral groove 63, which is a hydrodynamic gas bearing, formed on the plane of the base 61, press processing, resin molding, etc. A highly productive processing method can be applied, and as described above, the ceramic material can be applied to the base 61. By using the fixed shaft 60, grooves can be formed using plastic processing, which is extremely easy to handle and requires a short processing time, thereby further improving productivity.

なお、上述の実施例については回転多面体鏡を有する回
転体を支持する回転体支持装置であるが、本発明はこれ
に限らず回転体であればどの回転体にも適用できる。
Although the above embodiment is a rotating body support device that supports a rotating body having a rotating polyhedral mirror, the present invention is not limited thereto and can be applied to any rotating body.

発明の効果 以上のように本発明は、回転体と、前記回転体を有し回
転軸方向端面に平面部が形成されかつ回転軸方向に中空
円筒状をなす回転部材と、前記回転部材の平面部と対向
して配された上記回転体との相対速度により回転軸方向
に動圧を発生する気体軸受を設けたベース台と、上記回
転部材の円筒内周面と半径方向に一定の隙間を有し上記
回転体との相対速度により半径方向に動圧を発生する気
体軸受を一箇所設けた固定軸とを具備し、上記回転体を
有する回転部材の重心位置を上記固定軸上の動圧気体軸
受部のほぼ中央に配したことを特徴とする構成により、
従来の固定軸周面に設けた2箇所の動圧気体軸受部を有
する構造に対して回転体の高速回転時の傾き精度や安定
性を保証しながら回転体支持装置の大幅な薄型化がはか
れるとともにこの装置を適用した回転多面体暁光偏向器
も薄型、小型化がはかれるというすぐれた効果がある。
Effects of the Invention As described above, the present invention provides a rotating body, a rotating member including the rotating body and having a flat portion formed on an end face in the rotation axis direction and having a hollow cylindrical shape in the rotation axis direction, and a flat surface of the rotating member. A base is provided with a gas bearing that generates dynamic pressure in the direction of the rotating shaft due to the relative speed of the rotating body disposed opposite the rotating body, and a constant gap is formed in the radial direction between the cylindrical inner circumferential surface of the rotating member and the rotating body. and a fixed shaft provided with a gas bearing at one location that generates dynamic pressure in the radial direction due to relative speed with the rotating body, the center of gravity of the rotating member having the rotating body is controlled by the dynamic pressure on the fixed shaft. Due to the configuration, which is characterized by being placed almost in the center of the gas bearing part,
Compared to the conventional structure with two dynamic pressure gas bearings provided on the circumferential surface of a fixed shaft, the rotating body support device can be made significantly thinner while guaranteeing tilt accuracy and stability during high-speed rotation of the rotating body. At the same time, a rotating polyhedral dawn light deflector to which this device is applied also has the excellent effect of being thinner and smaller.

さらに、外部からの振動、衝撃等の異常な外乱に対して
も信頬性を得ることができるとともに生産性の向上がは
かれる。
Furthermore, reliability can be obtained even against abnormal disturbances such as external vibrations and shocks, and productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明である回転体支持装置を適用した回転多
面体暁光偏向器の縦断側面図、第2図は本実施例におけ
る回転多面体暁光偏向器の分解斜視図、第3図は本実施
例における回転体支持装置の半径方向の動圧分布を示す
説明図、第4図は従来の回転多面体暁光偏向器を適用し
た光走査装置の斜視図、第5図は従来の回転体支持装置
を適用した回転多面体暁光偏向器の構成図である。 51・・・・・・回転部材、51b・・・・・・回転部
材平面部、52・・・・・・回転多面体鏡、53・・・
・・・ロータ磁石、56・・・・・・回転組立体、60
・・・・・・固定軸、61・・・・・・ベース台、61
b・・・・・・調圧孔、62・・・・・・ヘリングボー
ン溝、63・・・・・・スパイラル溝。 代理人の氏名 弁理士 中尾敏男 はか1名S/−−−
回轍画M 、52−一団拉勿面坏娩 S3−一一ロータ石1石 汀−一一ブブロータ 56−−−回転旭ユ4ネ 0−−−スノでイラル溝 第1図 第3図 /−一一暴尤体 ?−−−丸、1−五都 !o−ra私勿酊休焼光傳体R ノンーーー瓜■伏タriJイ本々先 第4図 / J−1)i訓叱i;イ≧z面イ;ト−4−障り13
−一一固定軸
FIG. 1 is a vertical cross-sectional side view of a rotating polyhedral dawn light deflector to which the rotating body support device of the present invention is applied, FIG. 2 is an exploded perspective view of the rotating polyhedral dawn light deflector in this embodiment, and FIG. 3 is an exploded perspective view of the rotating polyhedral dawn light deflector in this embodiment. 4 is a perspective view of an optical scanning device to which a conventional rotating polyhedral optical deflector is applied, and FIG. 5 is an explanatory diagram showing the dynamic pressure distribution in the radial direction of a rotating body support device. FIG. 2 is a configuration diagram of a rotating polyhedral light deflector. 51... Rotating member, 51b... Rotating member plane part, 52... Rotating polyhedral mirror, 53...
... Rotor magnet, 56 ... Rotating assembly, 60
...Fixed shaft, 61 ...Base stand, 61
b...Pressure adjustment hole, 62...Herringbone groove, 63...Spiral groove. Name of agent: Patent attorney Toshio Nakao Haka1 person S/---
Circular painting M, 52-1 group, mum-men, delivery S3-1-1 rotor stone 1 stone-1-1 rotor 56--Rotating Asahiyu 4ne 0--Snow and iral groove Fig. 1 Fig. 3/ -Ichi-Yantai? ---Maru, 1-Goto! o-ra i muchukyuyakikodentai R non-- gourd ■futa riJ ihonhonsaki fig. 4/J-1) i reprimand i; i ≧z side i; to-4-obstruction 13
−1 fixed axis

Claims (2)

【特許請求の範囲】[Claims] (1)回転体と、前記回転体を有し回転軸方向端面に平
面部が形成されかつ回転軸方向に中空円筒状をなす回転
部材と、前記回転部材の平面部と対向して配され上記回
転体との相対速度により回転軸方向に動圧を発生する気
体軸受を設けたベース台と、上記回転部材の円筒内周面
と半径方向に一定の隙間を有し上記回転体との相対速度
により半径方向に動圧を発生する気体軸受を一箇所設け
た固定軸とを具備し、上記回転体を有する回転部材の重
心位置を上記固定軸上の動圧気体軸受部のほぼ中央付近
に配したことを特徴とする回転体支持装置。
(1) a rotating body, a rotating member including the rotating body and having a flat portion formed on an end face in the rotating shaft direction and having a hollow cylindrical shape in the rotating shaft direction; A base having a gas bearing that generates dynamic pressure in the direction of the rotating shaft due to the relative speed with the rotating body, and a base having a certain gap in the radial direction from the cylindrical inner peripheral surface of the rotating member, and the relative speed with the rotating body. and a fixed shaft provided with a gas bearing that generates dynamic pressure in the radial direction, and the center of gravity of the rotating member having the rotating body is located approximately at the center of the dynamic pressure gas bearing on the fixed shaft. A rotating body support device characterized by:
(2)動圧気体軸受を構成する回転部材およびそれに対
向するベース台と固定軸をセラミック材料より形成した
ことを特徴とする特許請求の範囲第(1)項記載の回転
体支持装置。
(2) The rotating body support device according to claim (1), wherein the rotating member constituting the hydrodynamic gas bearing and the base and fixed shaft opposing the rotating member are made of a ceramic material.
JP31454687A 1987-12-11 1987-12-11 Rotating body supporting device Pending JPH01154115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31454687A JPH01154115A (en) 1987-12-11 1987-12-11 Rotating body supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31454687A JPH01154115A (en) 1987-12-11 1987-12-11 Rotating body supporting device

Publications (1)

Publication Number Publication Date
JPH01154115A true JPH01154115A (en) 1989-06-16

Family

ID=18054593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31454687A Pending JPH01154115A (en) 1987-12-11 1987-12-11 Rotating body supporting device

Country Status (1)

Country Link
JP (1) JPH01154115A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378122U (en) * 1989-11-30 1991-08-07
JPH0385715U (en) * 1989-12-16 1991-08-29
JPH03112721U (en) * 1990-02-28 1991-11-18
JPH0614497A (en) * 1992-06-26 1994-01-21 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing motor
US5754326A (en) * 1992-09-25 1998-05-19 Fuji Xerox Co., Ltd. Optical deflector
JP2007040759A (en) * 2005-08-01 2007-02-15 Denso Corp Mounting structure for current sensor
JP2021011835A (en) * 2019-07-04 2021-02-04 日本精工株式会社 Spindle device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378122U (en) * 1989-11-30 1991-08-07
JPH0385715U (en) * 1989-12-16 1991-08-29
JPH03112721U (en) * 1990-02-28 1991-11-18
JPH0614497A (en) * 1992-06-26 1994-01-21 Sankyo Seiki Mfg Co Ltd Dynamic pressure bearing motor
US5754326A (en) * 1992-09-25 1998-05-19 Fuji Xerox Co., Ltd. Optical deflector
JP2007040759A (en) * 2005-08-01 2007-02-15 Denso Corp Mounting structure for current sensor
JP2021011835A (en) * 2019-07-04 2021-02-04 日本精工株式会社 Spindle device

Similar Documents

Publication Publication Date Title
US4523800A (en) Polygonal mirror optical deflector
JPH05316707A (en) Surface opposed type motor
JPS5917019A (en) Rotary body supporter
JPH08223858A (en) Inner rotor motor
US6031651A (en) Scanning optical apparatus
JPH01154115A (en) Rotating body supporting device
JP3406198B2 (en) Spindle motor and rotating device using spindle motor
JP2637096B2 (en) Air magnetic bearing type optical deflector
JPS63173012A (en) Rotary body supporting device
JPS63173015A (en) Rotation driving device
JPS62184429A (en) Rotary polygonal mirror driving device
JPS63173014A (en) Rotary body supporting device
JPS63173017A (en) Rotation driving device
JPS63173011A (en) Optical scanner
JPH1114929A (en) Deflection scanning device
JPH0516574Y2 (en)
JP2506482B2 (en) Dynamic pressure air bearing motor
JPH01154116A (en) Rotating body supporting device
JP3128975B2 (en) Optical deflector
JPH0565852B2 (en)
JPH0516575Y2 (en)
JPH06110004A (en) Optical deflector
JPS60212717A (en) Optical deflecting device
JP2645526B2 (en) Fluid bearing type optical deflector
JPS5923319A (en) Support device for rotating body