JPS63173014A - Rotary body supporting device - Google Patents

Rotary body supporting device

Info

Publication number
JPS63173014A
JPS63173014A JP530487A JP530487A JPS63173014A JP S63173014 A JPS63173014 A JP S63173014A JP 530487 A JP530487 A JP 530487A JP 530487 A JP530487 A JP 530487A JP S63173014 A JPS63173014 A JP S63173014A
Authority
JP
Japan
Prior art keywords
rotating
rotating member
rotary
gas bearing
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP530487A
Other languages
Japanese (ja)
Inventor
Shoji Oba
荘司 大庭
Toru Arakawa
徹 荒川
Toshiyuki Wada
敏之 和田
Tatsuhiko Inagaki
辰彦 稲垣
Yoshito Urata
浦田 嘉人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP530487A priority Critical patent/JPS63173014A/en
Publication of JPS63173014A publication Critical patent/JPS63173014A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors

Abstract

PURPOSE:To thin the titled device by providing a gas bearing part for generating the dynamic pressure of gas by the rotation of a rotary body, and supporting the axial direction of a rotary member and its inclination in a state of non- contact, between a base plate and a plane part of the rotary member. CONSTITUTION:A rotary body supporting device in an optical reflector is provided with a plane part of a rotary member 51 for holding a rotary body containing a rotary polyhedron mirror 52, and a dynamic pressure gas bearing for generating the dynamic pressure by the rotation between plane parts of a base plate 61 placed so as to be opposed to its plane part and supporting the rotary member 51 in a state of non-contact. Also, in the radial direction of the rotary member 51, a control member for supporting mainly its unbalanced force, for instance, a fixed axis 60 is provided. Accordingly, by the dynamic gas bearing part, the rotary member is supported in the axial direction, and also, its inclination can be held simultaneously. In such a way, the rotary body supporting device can be thinned remarkably, and also, a rotary polyhedron mirror optical deflector which is applied this device is thinned and miniaturized, as well.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えば回転多面体現光偏向器などに適用され
、高精度、高速回転の回転体を安定に支持する回転体支
持装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotating body support device that is applied to, for example, a rotating polyhedral developing deflector, and stably supports a rotating body that rotates with high accuracy and high speed.

従来の技術 近年、オフィス機器の発展に伴って、情報を記録、印刷
するプリンタ関係の機器もますます高速化、小型化およ
び低コスト化が要望されはじめ、これに伴ってレーザプ
リンタに代表されるように印字品質が良く高速性の特徴
を有するプリンタが出現している。
Conventional technology In recent years, with the development of office equipment, there has been a demand for printer-related equipment that records and prints information to be faster, smaller, and lower in cost. Printers with high print quality and high speed are now appearing.

一般にこのレーザビームプリンタは第3図に示すように
予め一様に帯電された感光体1に光走査部2よりレーザ
光を走査して感光体1上に静電潜像を形成し周知の電子
写真方式のプロセスによりプリント出力するもので、上
記光走査部2は半導体レーザ光源4から発せられたレー
ザ光3をビーム整形光学系5を通して適当なビーム形に
整形しそのレーザ光3を回転多面体現光偏向器6を介゛
して偏向させ更に結像光学系7を通して感光体1上に走
査する構成になっている。
Generally, as shown in FIG. 3, this laser beam printer scans a pre-uniformly charged photoreceptor 1 with a laser beam from an optical scanning section 2 to form an electrostatic latent image on the photoreceptor 1. The optical scanning unit 2 shapes the laser beam 3 emitted from the semiconductor laser light source 4 into an appropriate beam shape through the beam shaping optical system 5, and converts the laser beam 3 into a rotating polygon. The light beam is deflected through a light deflector 6 and scanned onto the photoreceptor 1 through an imaging optical system 7.

また上記回転多面体現光偏向器6はその偏向速度すなわ
ち光偏向器の高速性と高精度がレーザビームプリンタの
高速性と高品位化を主に決定しており、回転多面体現と
その回転駆動部より構成される。
In addition, the deflection speed of the rotating polyhedral light deflector 6, that is, the high speed and high precision of the optical deflector, mainly determines the high speed and high quality of the laser beam printer. It consists of

従来、回転多面体現光偏向器は例えば特開昭59−23
319号公報に示されるような回転体支持装置を適用し
た構成がある。その構成を第4図に示す。
Conventionally, a rotating polyhedral developing deflector is disclosed in, for example, Japanese Patent Application Laid-Open No. 59-23
There is a configuration in which a rotating body support device as shown in Japanese Patent No. 319 is applied. Its configuration is shown in FIG.

第4図において、回転多面体現光偏向器10は回転多面
体現11とこの回転多面体現11を所定方向に高速回転
させる回転駆動部12とから構成される。
In FIG. 4, the rotating polyhedron light deflector 10 is composed of a rotating polyhedron 11 and a rotation drive unit 12 that rotates the rotating polyhedron 11 at high speed in a predetermined direction.

13は固定軸でモータハウジング14上に固定されてお
りその固定軸13の外周部とわずかな隙間を介して中空
円筒状の回転部材15が回転自在に外嵌されている。
A fixed shaft 13 is fixed on the motor housing 14, and a hollow cylindrical rotating member 15 is rotatably fitted around the outer circumference of the fixed shaft 13 with a slight gap therebetween.

また、上記固定軸13の外周面上下端部28および29
には回転部材15の内周面との相対速度により半径方向
に動圧を発生するくの字状のへリングボーン′a26お
よび27が形成されている。
Further, the upper and lower ends 28 and 29 of the outer circumferential surface of the fixed shaft 13 are
Dogleg-shaped herringbones 'a26 and 27 are formed in which generate dynamic pressure in the radial direction due to relative speed with the inner circumferential surface of the rotating member 15.

一方、上記回転部材15の下端部にはスラスト支持用の
磁気軸受16の内側磁気リング17が取付けられ、更に
ロータ磁石18が回転部材15にその上下方向はぼ中央
付近に固定されている。
On the other hand, an inner magnetic ring 17 of a magnetic bearing 16 for thrust support is attached to the lower end of the rotating member 15, and a rotor magnet 18 is fixed to the rotating member 15 near the center in the vertical direction.

また、そのロータ磁石18の上方には回転多面体現11
がその下端面を回転部材15に当接した状態で上端面を
鏡押さえ部材20により押し付は固定されている。一方
、前記モータハウジング14には上記ロータ磁石18の
外周部を囲む状態で駆動コイル21を備えたステータ2
2が固定されており回転多面体現11、ロータ磁石18
および内側磁気リング17からなる回転組立体23を周
知の直流ブラシレス駆動方式により回転駆動するように
なっている。
Further, above the rotor magnet 18, a rotating polyhedron 11
While the lower end surface is in contact with the rotating member 15, the upper end surface is pressed and fixed by the mirror holding member 20. On the other hand, the motor housing 14 has a stator 2 provided with a drive coil 21 surrounding the outer periphery of the rotor magnet 18.
2 is fixed, rotating polyhedron 11, rotor magnet 18
The rotating assembly 23 consisting of the magnetic ring 17 and the inner magnetic ring 17 is rotatably driven by a well-known direct current brushless drive system.

また、上記内側磁気リング17の周部に対して一定の隙
間で囲むように外側磁気リング24が同様にモータハウ
ジング14の下方に固定され内側磁気リング17と外側
磁気リング24とは互いに吸引力が働くように着磁され
ており回転組立体23の上下方向(自重方向)を支承す
るスラスト支持磁気軸受16を構成している。更に、モ
ータハウジング14の上部には密閉カバー25が取り付
けられ清浄な空気が封入されている。
Further, an outer magnetic ring 24 is similarly fixed below the motor housing 14 so as to surround the inner magnetic ring 17 with a certain gap, and the inner magnetic ring 17 and the outer magnetic ring 24 have an attractive force with each other. It constitutes a thrust support magnetic bearing 16 that is magnetized to work and supports the rotary assembly 23 in the vertical direction (direction of its own weight). Further, a sealing cover 25 is attached to the upper part of the motor housing 14, and clean air is sealed therein.

以上のような構成にて、駆動コイル21に通電すること
によりステータ22に回転磁界が生じロータ磁石18と
の磁気吸引力により回転組立体23が回転する。
With the above configuration, when the drive coil 21 is energized, a rotating magnetic field is generated in the stator 22, and the rotating assembly 23 is rotated by the magnetic attraction force with the rotor magnet 18.

これにより回転部材15と固定軸13とに相対速度が生
じ固定軸13上下端部のへリングボーン溝部26および
27の隙間に空気が流れ込んで半径方向・に7空気圧が
発生しいわゆる動圧気体軸受部となり非接触の状態で極
めて小さな摩擦抵抗と安定性をもって回転組立体23が
高速度に回転する。従って、回転多面体現11も高速で
回転されそれに伴って光走査部内でレーザ光が高速に偏
向される。この時、偏向されたレーザ光の軌跡の精度は
上記回転多面体現11の各鏡面の回転時の傾き、変形に
より決まるため回転多面体現11の各鏡面の傾き(動的
面倒れ)すなわち光偏向器自体の高速回転時の安定性お
よび回転精度においてかなり高い仕様が要望される。
As a result, a relative speed is generated between the rotating member 15 and the fixed shaft 13, and air flows into the gap between the herringbone grooves 26 and 27 at the upper and lower ends of the fixed shaft 13, generating air pressure in the radial direction, creating a so-called dynamic pressure gas bearing. The rotating assembly 23 rotates at high speed with extremely low frictional resistance and stability in a non-contact state. Therefore, the rotating polygon 11 is also rotated at a high speed, and accordingly, the laser beam is deflected at a high speed within the optical scanning section. At this time, since the accuracy of the trajectory of the deflected laser beam is determined by the inclination and deformation of each mirror surface of the rotating polygon 11 during rotation, the inclination (dynamic surface tilt) of each mirror surface of the rotating polygon 11, that is, the optical deflector Considerably high specifications are required in terms of stability and rotation accuracy during high-speed rotation.

発明が解決しようとする問題点 しかしながら、上記の様な構成においては回転部材15
が固定軸13の上下端部に設けられた2箇所の動圧気体
軸受28および29によりその半径方向が支持され、ま
たスラスト磁気軸受16によりスラスト方向のみの負荷
が保持されるため回転部材15の高速回転時に生じるジ
ャイロモーメント等による傾きの支持は上記固定軸13
上の気体軸受によりなされる。
Problems to be Solved by the Invention However, in the above configuration, the rotating member 15
is supported in the radial direction by two dynamic pressure gas bearings 28 and 29 provided at the upper and lower ends of the fixed shaft 13, and the thrust magnetic bearing 16 holds the load only in the thrust direction. The above-mentioned fixed shaft 13 supports the tilt due to gyro moment etc. that occurs during high-speed rotation.
This is done by a gas bearing on top.

このため高速回転時の負荷能力、安定性および回転部材
の精度例えば振れ、傾き精度は固定軸13の上下端部の
気体軸受部28および29間の軸受間隔とその軸受仕様
、例えばヘリングボーン溝26および27の深さ、溝本
数あるいは回転部材15と固定軸13間の隙間等により
決められる軸受の気体バネ定数等でもって決まる。
Therefore, the load capacity, stability, and accuracy of rotating members during high-speed rotation, such as run-out and tilt accuracy, are determined by the bearing spacing between the gas bearings 28 and 29 at the upper and lower ends of the fixed shaft 13 and the bearing specifications, such as the herringbone groove 26. and the gas spring constant of the bearing, which is determined by the depth of the groove 27, the number of grooves, or the gap between the rotating member 15 and the fixed shaft 13.

特に、固定軸上の気体軸受部の軸受間隔は上記安定性と
精度に大きな影響を与え十分長い軸受間隔が必要とされ
る。
In particular, the bearing spacing of the gas bearing section on the fixed shaft has a great influence on the stability and accuracy, and a sufficiently long bearing spacing is required.

しかしながら、この回転多面体現光偏向器を高速回転の
状態で安定にしかも薄型化をはかるとした場合には、上
記構成においては必然的に軸受間隔を短くする必要があ
り、その結果回転多面体現の安定性および傾き精度が低
下し、しいてはレーザビームプリンタとしての印字品質
が悪化するという問題点を有していた。
However, in order to make this rotating polyhedral light deflector stable under high-speed rotation and to make it thinner, it is necessary to shorten the bearing spacing in the above configuration. This has had problems in that stability and inclination accuracy are lowered, and the printing quality as a laser beam printer is also deteriorated.

特に、上記小型、薄型化にたいしては前記光走査部ユニ
ット2に回転多面体現光偏向器6を組込んだ場合にその
必要性が顕著に現れてくる。すなわち、光走査部2にお
いて光偏向器6を除いた光学ユニット例えば主にレンズ
群で構成されるビーム整形光学系5、結像光学系7がレ
ーザ光3の形成するスポット径に近い薄さまで薄型化が
できるのに対して光偏向器6は回転多面体現11を含め
前記水したような構成が必要であり光走査部ユニット2
に組込んだ場合第3図に示されるようにそのユニット2
から光偏向器2のみ突出した形となる。
In particular, the need for the reduction in size and thickness becomes apparent when the rotating polyhedral light deflector 6 is incorporated into the optical scanning section unit 2. That is, in the optical scanning unit 2, the optical units other than the optical deflector 6, such as the beam shaping optical system 5 and the imaging optical system 7, which are mainly composed of lens groups, are thinned to a thickness close to the spot diameter formed by the laser beam 3. However, the optical deflector 6 requires the above-mentioned structure including the rotating polygon 11, and the optical scanning unit 2
When the unit 2 is assembled into the unit 2 as shown in FIG.
Only the optical deflector 2 protrudes from the frame.

このため、この光走査部2をレーザビームプリンタ本体
に組込む場合、光走査部2が本体全体に占める空間部が
大きくなり本体自身が大型になる問題点を有していた。
For this reason, when this optical scanning section 2 is incorporated into the main body of a laser beam printer, there is a problem that the space occupied by the optical scanning section 2 in the entire main body becomes large and the main body itself becomes large.

問題点を解決するための手段 上記問題点を解決するために本発明の回転体支持装置は
回転体と、該回転体を有しこの回転中心方向の端面にあ
って平面部が形成された回転部材と、該回転部材の平面
部と対向して配され上記回転中心上に回転部材の半径方
向を規制する規制部材とを有するベース台と、該ベース
台と回転部材平面部間に上記回転体の回転時に気体の動
圧を発生し回転部材の軸方向およびその傾きを非接触の
状態で保持する気体軸受部とを具備してなる構成である
Means for Solving the Problems In order to solve the above problems, the rotating body support device of the present invention includes a rotating body, and a rotating body including the rotating body and having a flat portion formed on an end face in the direction of the rotation center. a base pedestal having a member and a regulating member disposed opposite to the flat surface of the rotating member and regulating the radial direction of the rotating member on the rotation center; This configuration includes a gas bearing section that generates gas dynamic pressure when the rotating member rotates and maintains the axial direction and inclination of the rotating member in a non-contact state.

作用 本発明は、上記した構成により回転体の高速回転時に生
じる傾き精度や安定性を従来の固定軸周面の2箇所の動
圧気体軸受部で主に負担しているかわりにベース台と対
向する回転体の平面部に設けた動圧気体軸受部でもって
回転体の軸方向の支持と共にその傾きの保持精度および
安定性を負担するもので、一方回転体の半径方向には主
にその不釣合い力等の小さな負荷を規制部材によって規
制することによりこの回転体支持装置の大幅な薄型化を
はかり、さらにこの装置を適用した回転多面体現光偏向
器の薄型、小型をはかるものである。
Function The present invention has the above-described configuration, and instead of the conventional hydrodynamic gas bearings at two locations on the circumferential surface of the stationary shaft having the tilting accuracy and stability that occur when the rotating body rotates at high speed, The hydrodynamic gas bearing provided on the flat surface of the rotating body supports the rotating body in the axial direction and maintains its tilt accuracy and stability, while the radial direction of the rotating body mainly supports the rotation body. By regulating a small load such as a balancing force with a regulating member, the rotating body support device can be made significantly thinner, and the rotating polyhedral developing deflector to which this device is applied can also be made thinner and smaller.

また、回転体の平面部に気体軸受部を平面展開し上記規
制部材と一体に設けることにより負荷能力を大きくし更
に軸受の許容精度を大にすることにより加工、組立およ
び調整等を容易にするものである。
In addition, by expanding the gas bearing part on the flat surface of the rotating body and installing it integrally with the above-mentioned regulating member, the load capacity is increased, and the permissible accuracy of the bearing is increased, making processing, assembly, adjustment, etc. easier. It is something.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。第1図は本発明の回転駆動装置を用いた回転
多面体現光偏向装置の断面図を示すものであり、第2図
は本発明の回転駆動装置を用いた回転多面体現光偏向装
置の分解斜視図を示すものである。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional view of a rotating polyhedron developing/deflecting device using the rotary drive device of the present invention, and FIG. 2 is an exploded perspective view of the rotating polyhedron developing/deflecting device using the rotary drive device of the present invention. The figure is shown below.

第1図において、51はフランジ状の形状を有し鉛直方
向に回転中心を持つ回転部材であり、回転多面体現52
がフランジ部上面51aに当接して接着等の手段で固定
されている。53はリング状のロータ磁石であり、軟磁
性体の材料で構成されたバックヨーク54に接着された
状態で回転軸方向に多極着磁され、またバックヨーク5
4は、回転多面体現52の上面に当接して接着等の手段
で固定されている。また、回転部材51のフランジ部及
びバックヨーク54の直径は回転多面体現52の外径よ
り大に作られている。つまり、回転多面体現52は直径
がより大なる回転部材51のフランジ部及びバックヨー
ク54にはさみ込まれている。55は軟磁性体の材料で
構成されたサブロータであり、ロータ磁石53と軸方向
に一定の空隙をもって配置されロータ磁石による磁束が
流れるように構成され、回転部材52に接着等の手段で
固定されている。すなわち、回転部材51、回転多面体
現52、ロータ磁石53、バックヨーク54、サブロー
タ55は互いに固定され、回転組立体56を構成してい
る。
In FIG. 1, reference numeral 51 is a rotating member having a flange-like shape and having a center of rotation in the vertical direction, and a rotating polyhedron 52
is in contact with the upper surface 51a of the flange portion and fixed by adhesive or other means. Reference numeral 53 denotes a ring-shaped rotor magnet, which is bonded to a back yoke 54 made of a soft magnetic material and magnetized with multiple poles in the direction of the rotation axis.
4 is in contact with the upper surface of the rotating polyhedron 52 and is fixed by means of adhesive or the like. Further, the diameters of the flange portion of the rotating member 51 and the back yoke 54 are made larger than the outer diameter of the rotating polyhedron 52. In other words, the rotating polygon 52 is sandwiched between the flange portion of the rotating member 51 having a larger diameter and the back yoke 54. A sub-rotor 55 is made of a soft magnetic material, is arranged with a certain gap in the axial direction from the rotor magnet 53 so that the magnetic flux from the rotor magnet flows, and is fixed to the rotating member 52 by adhesive or other means. ing. That is, the rotating member 51, the rotating polygon 52, the rotor magnet 53, the back yoke 54, and the sub-rotor 55 are fixed to each other and constitute a rotating assembly 56.

上記、回転部材51のフランジ部下部端面には、平滑平
面部51bが形成され、その平面部51bに対向して、
平滑平面61aを有するベース台61が配され、ベース
台61は筐体(図示せず)に固定されている。またベー
ス台61の平面61aには、スパイラル溝63がその求
心する方向が回転組立体56の回転方向と一致するよう
に形成されており、上記回転部材51の平面部51bと
対向して動圧気体軸受を構成している。また平面図51
bの動圧気体軸受に関与しない部分はヌスミ51cを施
している。また61bはこのヌスミ51cから外部へ通
じる調圧孔である。
A smooth plane part 51b is formed on the lower end surface of the flange part of the rotating member 51, and facing the plane part 51b,
A base 61 having a smooth flat surface 61a is arranged, and the base 61 is fixed to a casing (not shown). Further, a spiral groove 63 is formed on the flat surface 61a of the base 61 so that its centripetal direction coincides with the rotating direction of the rotary assembly 56, and faces the flat surface 51b of the rotary member 51 to apply dynamic pressure. It constitutes a gas bearing. Also, plan view 51
The portions not involved in the dynamic pressure gas bearing shown in b are coated with a mat 51c. Further, 61b is a pressure regulating hole that communicates with the outside from this hollow hole 51c.

ベース台61の中央部には、回転組立体56の半径方向
の移動を規制する規制部材が配され、本実施例において
は固定軸60が規制部材となっており、ベース台61に
圧入環により固定されている。また固定軸60にはこの
固定軸外周部と一定の隙間を介して上記回転組立体56
が回転自在に外嵌されており、固定軸の周面には一箇所
のベリングボーン溝62が、矢印状先端が回転組立体5
6の回転方向を向く形状に形成され動圧気体軸受を構成
している。
A regulating member for regulating the movement of the rotating assembly 56 in the radial direction is disposed in the center of the base 61. In this embodiment, the fixed shaft 60 is the regulating member, and a press-fit ring is attached to the base 61. Fixed. Further, the rotary assembly 56 is connected to the fixed shaft 60 through a certain gap from the outer circumference of the fixed shaft.
is rotatably fitted on the outside, and a belling bone groove 62 is formed at one place on the circumferential surface of the fixed shaft, and the arrow-shaped tip is connected to the rotating assembly 5.
6, and constitutes a dynamic pressure gas bearing.

また固定軸の動圧気体軸受に関与しない部分はヌスミ6
0aを施している。
Also, the parts that are not involved in the dynamic pressure gas bearing of the fixed shaft are Nusumi 6
0a is applied.

また回転部材51の下部平面部51bの外周部と、サブ
ロータ55の上部の外周部にはダイナミックバランスの
調整用の重りを取り付けるための溝57.58が形成さ
れており、回転組立体56を組立た状態で高精度にダイ
ナミックバランスを調整することができる。
Furthermore, grooves 57 and 58 are formed on the outer circumference of the lower flat part 51b of the rotating member 51 and on the outer circumference of the upper part of the sub-rotor 55 for attaching weights for adjusting dynamic balance. The dynamic balance can be adjusted with high precision under the same conditions.

また、第2図において、65はモータフレーム64に取
付はネジ71で固定された2個に分割可能な固定コイル
基板65a及び65bであり、複数個の偏平コイル66
と、ロータ磁石の位置検出センサ67と、2枚のプリン
ト基板68a、6日すから構成されている。本実施例で
はフレキシブルプリント基板を上記プリント基板68a
、68bに用いている。複数個の偏平コイル66と、ロ
ータ磁石の位置検出センサ67は、プリント基板68a
及び68b上に配線され、さらに樹脂70でモールドさ
れている。従って固定コイル基板65は2個に分割して
、前記回転組立体56のダイナミックバランスを調整し
た後、ロータ磁石53とサブロータ55の間の空隙中に
配置させることができるようになっている。
Further, in FIG. 2, reference numeral 65 denotes fixed coil substrates 65a and 65b which are fixed to the motor frame 64 with screws 71 and can be divided into two pieces, and a plurality of flat coils 66 are attached to the motor frame 64.
, a rotor magnet position detection sensor 67, and two printed circuit boards 68a. In this embodiment, the flexible printed circuit board is the printed circuit board 68a.
, 68b. The plurality of flat coils 66 and the rotor magnet position detection sensor 67 are mounted on a printed circuit board 68a.
and 68b, and is further molded with resin 70. Therefore, the fixed coil substrate 65 can be divided into two parts and arranged in the gap between the rotor magnet 53 and the sub-rotor 55 after adjusting the dynamic balance of the rotating assembly 56.

以上のように構成された回転多面体現光偏向装置におい
て、固定コイル基板65に通電することにより、ロータ
磁石53とサブロータ55間の空隙の磁束に回転トルク
が発生し回転組立体56は高速で回転し、前記回転部材
51の平面部51bとベース台61の平面部61aの対
向部の隙間にはスパイラル溝63の働きにより、前記回
転部材51と固定軸60の隙間にはへリングボーン溝6
2の働きにより、空気が流入し空気圧が発生し、回転組
立体56は、ベース台61及び固定軸60と非接触の状
態で支持され、極めて小さな摩擦抵抗と安定性をもって
、低損失でしかも高精度で回転する。
In the rotating polyhedron development deflection device configured as described above, by energizing the fixed coil board 65, rotational torque is generated in the magnetic flux in the air gap between the rotor magnet 53 and the sub-rotor 55, and the rotating assembly 56 rotates at high speed. However, a spiral groove 63 is formed in the gap between the opposing plane part 51b of the rotating member 51 and the plane part 61a of the base 61, and a herringbone groove 6 is formed in the gap between the rotating member 51 and the fixed shaft 60.
2, air flows in and generates air pressure, and the rotating assembly 56 is supported without contact with the base 61 and the fixed shaft 60, with extremely low frictional resistance and stability, low loss and high performance. Rotate with precision.

以上のように本実施例によれば、光偏向器中の回転体支
持装置が回転多面体現52を含む回転体を保持する回転
部材51の平面部と、その平面部に対向して配されたベ
ース台61平面部の間に回転により動圧を発生して回転
部材51を非接触の状態で支持する動圧気体軸受とを設
け、更に回転部材51の半径方向には主にその不釣合い
力を支持する規制部材本実施例においては固定軸60を
設けた構成であることより上記動圧気体軸受部でもって
回転部材51の軸方向の支持を行うと共にその傾きの保
持をも同時に行うことができる。
As described above, according to this embodiment, the rotating body support device in the optical deflector is disposed opposite to the plane part of the rotating member 51 that holds the rotating body including the rotating polygon 52. A dynamic pressure gas bearing is provided between the flat surface of the base 61 to generate dynamic pressure by rotation and support the rotating member 51 in a non-contact state, and furthermore, the unbalanced force is mainly applied in the radial direction of the rotating member 51. In this embodiment, since the fixed shaft 60 is provided, the dynamic pressure gas bearing section can support the rotating member 51 in the axial direction and maintain its inclination at the same time. can.

しかも、上記ベース台61と回転部材51の平面部に展
開される気体軸受部の占める面積は光偏向器本体中で許
容される平面部51bの大きさまで軸受面積を任意に設
定できる。
Moreover, the area occupied by the gas bearing section developed on the flat surface of the base 61 and the rotating member 51 can be arbitrarily set up to the size of the flat surface 51b allowed in the optical deflector main body.

また、回転部材51の半径方向は主にその不釣合い力に
よる負荷のみを保持すればよく一箇所程度の気体軸受部
を有する規制手段で十分である。
Further, in the radial direction of the rotating member 51, it is sufficient to maintain only the load mainly due to the unbalanced force, and a regulating means having a gas bearing portion at about one location is sufficient.

このため本実施例は回転部材51の高速回転時に生じる
傾き精度や安定性を従来の2箇所の固定軸周面の気体軸
受部で負担する構造に対して回転体支持装置の大幅な薄
型化がはかれるとともにこの装置を適用した回転多面体
現光偏向器も薄型、小型になる。
Therefore, in this embodiment, the rotor support device can be made significantly thinner than the conventional structure in which the inclination accuracy and stability that occur when the rotary member 51 rotates at high speed are borne by gas bearings on the circumferential surface of the fixed shaft at two locations. In addition to being measurable, the rotating polyhedral light deflector to which this device is applied also becomes thinner and smaller.

また、上記平面部の軸受面積を大きく取れることは回転
部材51の自重方向の負荷に対してもその面圧を小さく
できるため動圧気体軸受特有の特徴である回転部材の起
動、停止時の異常摩耗による焼き付は等の損傷や回転不
良を起こす可能性が少なくなる。
In addition, by increasing the bearing area of the flat part, the surface pressure can be reduced even when the rotating member 51 is loaded in the direction of its own weight, which is a unique feature of hydrodynamic gas bearings. There is less possibility of damage such as seizure due to wear or rotation failure.

更に、前記ベース台千面61a上に動圧気体軸受の一部
であるスパイラル溝63を形成しているため、従来の固
定軸の溝加工例えばエツチング加工等と比較してプレス
加工や樹脂成形等の量産性に富む一体成形工法に適して
いる。
Furthermore, since the spiral groove 63, which is a part of the hydrodynamic gas bearing, is formed on the base 1000-sided surface 61a, press working, resin molding, etc. It is suitable for the integral molding method, which is highly suitable for mass production.

また、回転体の不釣合い力はその不釣合い量を十分数る
ことにより前記回転体の半径方向を規制する規制手段、
本実施例においては固定軸60!y)気体軸受部の軸受
仕様に対して許容精度が大きく取れ、しかも上記ベース
台61の平面部には大きな負荷能力を有する気体軸受部
と上記規制手段を一体に設けて組立てられているため加
工、組み立て等が容易になり生産性の向上がはかれる。
Further, a regulating means for regulating the unbalanced force of the rotating body in the radial direction of the rotating body by sufficiently counting the amount of unbalance;
In this embodiment, the fixed shaft 60! y) The permissible accuracy for the bearing specifications of the gas bearing section is large, and the gas bearing section with a large load capacity and the above-mentioned regulating means are integrated and assembled on the flat surface of the base pedestal 61, making it easy to process. , assembly becomes easier and productivity is improved.

なお、上述の実施例については回転多面体現を有する回
転体を支持する回転体支持装置であるが、本発明はこれ
に限らず回転体であればどの回転体にも適用できる。
Although the above embodiment is a rotating body support device that supports a rotating body having a rotating polygon, the present invention is not limited thereto and can be applied to any rotating body.

なお、上述の実施例について規制部材を固定軸としてそ
れに動圧気体軸受を構成しているが、本発明は、これに
限らずすべり軸受があれば適用できる。
In addition, in the above-mentioned embodiment, the regulating member is a fixed shaft and a dynamic pressure gas bearing is configured thereon, but the present invention is not limited to this and can be applied as long as there is a sliding bearing.

発明の効果 以上のように本発明は、回転体と、該回転体を有しこの
回転中心方向の端面にあって平面部が形成された回転部
材と、該回転部材の平面部と対向して配されたベース台
と、上記回転中心方向に配され回転部材の半径方向の移
動を規制する規制部材とを具備し、上記ベース台と回転
部材の平面部間に回転体の回転時に気体の動圧を発生し
て回転部材の軸方向およびその傾きを非接触の状態で保
持する気体軸受部を設けた構成により、従来の固定軸周
面に設けた三箇所の動圧気体軸受部を有する構造に対し
て回転体の高速回転時の傾き精度や安定性を保証しなが
ら回転体支持装置の大幅な薄型化がはかれるとともにこ
の装置を適用した回転多面体連光偏向器も薄型、小型化
がはかれるというすぐれた効果がある。
Effects of the Invention As described above, the present invention includes a rotating body, a rotating member including the rotating body and having a flat portion formed on an end face in the direction of the center of rotation, and a rotating member opposite to the flat portion of the rotating member. the base pedestal, and a regulating member disposed in the direction of the rotation center to restrict radial movement of the rotating member; the gas movement between the base pedestal and the flat surface of the rotating member during rotation of the rotating body; The structure includes a gas bearing section that generates pressure and maintains the axial direction and inclination of the rotating member in a non-contact state, compared to the conventional structure with three dynamic pressure gas bearing sections provided on the circumferential surface of a fixed shaft. In contrast, the rotating body support device can be made significantly thinner while guaranteeing tilt accuracy and stability during high-speed rotation of the rotating body, and the rotating polyhedral optical deflector to which this device is applied can also be made thinner and smaller. It has excellent effects.

また、上記ベース台の平面部に気体軸受部と回転体の半
径方向の規制手段を一体に設け、この平面部の軸受部に
主に回転体の負荷および精度の保持機能を持たせている
ため規制部材である固定軸周辺の許容精度が大きくなり
装置の加工、組立て等が容易になり生産性が大幅に上が
る。また、上記平面部に気体軸受部を展開しているため
軸受の負荷能力を大きくすることができ軸受面の損傷が
少なく安定でかつ高精度な回転を得ることができる。
In addition, the gas bearing part and the means for regulating the radial direction of the rotating body are integrally provided on the flat part of the base, and the bearing part of this flat part mainly has the function of maintaining the load and accuracy of the rotating body. The permissible accuracy around the fixed shaft, which is a regulating member, is increased, making processing and assembly of the device easier, and productivity is greatly increased. Furthermore, since the gas bearing section is developed on the flat surface, the load capacity of the bearing can be increased, and stable and highly accurate rotation can be obtained with less damage to the bearing surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明である回転体支持装置を適用した回転多
面体連光偏向器の縦断側面図、第2図は本−実施例にお
ける回転多面体連光偏向器の分解斜視図、第3図は従来
の回転多面体連光偏向器を適用した光走査装置の斜視図
、第4図は従来の回転体支持装置を適用した回転多面体
連光偏向器の構成図である。 51・・・・・・回転部材、51b・・・・・・回転部
材平面部、52・・・・・・回転多面体現、53・・・
・・・ロータ磁石、56・・・・・・回転組立体、60
・・・・・・規制部材、61・・・・・・ベース台、6
1b・・・・・・調圧孔、63・・・・・・スパイラル
巻。 代理人の氏名 弁理士 中尾敏男 ほか1名1s2図 l−秀光体 2、−  先走1f IO−回にル面体侘光j4#J器 n−−ロ転争面体境 第3図 II−回にシ面体現 13−固定軸 15 −  凹 k @ 7オ 16−− スラヌト磁気軸受 18−ロータ磁石 23−[i1転組立体 21、.71−−−ヘリングポーレ慎 28.7?−一動圧気体軸受 第4図
FIG. 1 is a vertical cross-sectional side view of a rotating polyhedral continuous optical deflector to which the rotating body support device of the present invention is applied, FIG. 2 is an exploded perspective view of the rotating polyhedral continuous optical deflector according to the present embodiment, and FIG. FIG. 4 is a perspective view of an optical scanning device to which a conventional rotating polyhedral continuous light deflector is applied, and FIG. 4 is a configuration diagram of a rotating polyhedral continuous light deflector to which a conventional rotating body support device is applied. 51... Rotating member, 51b... Rotating member plane part, 52... Rotating polyhedron embodiment, 53...
... Rotor magnet, 56 ... Rotating assembly, 60
...Regulation member, 61 ...Base stand, 6
1b...Pressure adjustment hole, 63...Spiral winding. Name of agent: Patent attorney Toshio Nakao and 1 other person 1s2 figure l-Hideko body 2, - advance 1f IO-time Le face body Wamitsu j4 #J device n--ro change face body figure 3 II-time Side surface embodiment 13 - fixed shaft 15 - concave k @ 7 o 16 - slanut magnetic bearing 18 - rotor magnet 23 - [i1 rotation assembly 21, . 71---Herringpole Shin 28.7? -One dynamic pressure gas bearing Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)回転体と、上記回転体を有しこの回転中心方向の
端面にあって平面部と形成した回転部材と、上記回転部
材の平面部と対向して配されたベース台と、上記回転中
心方向に配され回転部材の半径方向の移動を規制する規
制部材とを具備し、上記ベース台と回転部材の平面部間
に回転体の回転により気体の動圧を発生して回転部材の
軸方向およびその傾きを非接触の状態で支持する気体軸
受部を設けたことを特徴とする回転体支持装置。
(1) a rotating body, a rotating member having the rotating body and formed with a flat part on an end face in the direction of the rotation center; a base disposed opposite to the flat part of the rotating member; and a regulating member disposed in the center direction to regulate the movement of the rotating member in the radial direction, the rotation of the rotating member generates gas dynamic pressure between the base table and the flat surface of the rotating member, and the axis of the rotating member is adjusted. A rotating body support device comprising a gas bearing portion that supports the direction and inclination thereof in a non-contact manner.
(2)規制部材がベース台上に設けた固定軸でありこの
固定軸周面と回転部材内周面とに一定の隙間を有し一箇
所の動圧気体軸受を形成したことを特徴とする特許請求
の範囲第(1)項記載の回転体支持装置。
(2) The regulating member is a fixed shaft provided on the base, and there is a certain gap between the circumferential surface of the fixed shaft and the inner circumferential surface of the rotating member, forming a hydrodynamic gas bearing at one location. A rotating body support device according to claim (1).
JP530487A 1987-01-13 1987-01-13 Rotary body supporting device Pending JPS63173014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP530487A JPS63173014A (en) 1987-01-13 1987-01-13 Rotary body supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP530487A JPS63173014A (en) 1987-01-13 1987-01-13 Rotary body supporting device

Publications (1)

Publication Number Publication Date
JPS63173014A true JPS63173014A (en) 1988-07-16

Family

ID=11607525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP530487A Pending JPS63173014A (en) 1987-01-13 1987-01-13 Rotary body supporting device

Country Status (1)

Country Link
JP (1) JPS63173014A (en)

Similar Documents

Publication Publication Date Title
US4523800A (en) Polygonal mirror optical deflector
EP0433483B1 (en) A rotation device supporting a polygon mirror
JPH06267823A (en) Positioning equipment
JPH0421844B2 (en)
JPS5917019A (en) Rotary body supporter
JPH08223858A (en) Inner rotor motor
EP0684497A1 (en) Magnetic thrust bearing for polygon mirror scanner
JPH01154115A (en) Rotating body supporting device
US6145377A (en) Balance corrector for scanner motors and balance correcting method thereof
JPS63173012A (en) Rotary body supporting device
JPS63173014A (en) Rotary body supporting device
JPS63173017A (en) Rotation driving device
JPS63173015A (en) Rotation driving device
JP2637096B2 (en) Air magnetic bearing type optical deflector
JP3240637B2 (en) Bearing device
JPS63173011A (en) Optical scanner
JPH05332354A (en) Bearing structure and scanner motor
JPH01154116A (en) Rotating body supporting device
JPS62184429A (en) Rotary polygonal mirror driving device
JPS63173016A (en) Rotation driving device
JPH0516574Y2 (en)
JPH0725774Y2 (en) Polygon mirror device
JP3128975B2 (en) Optical deflector
JPH0787679B2 (en) Toroidal motor
JP2888361B2 (en) Dynamic pressure air bearing type polygon scanner