JPH01154034A - Nonlinear element - Google Patents

Nonlinear element

Info

Publication number
JPH01154034A
JPH01154034A JP62312608A JP31260887A JPH01154034A JP H01154034 A JPH01154034 A JP H01154034A JP 62312608 A JP62312608 A JP 62312608A JP 31260887 A JP31260887 A JP 31260887A JP H01154034 A JPH01154034 A JP H01154034A
Authority
JP
Japan
Prior art keywords
conductor
mim
nonlinear
nonlinear element
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62312608A
Other languages
Japanese (ja)
Other versions
JP2600731B2 (en
Inventor
Shirou Takahashi
高橋 士良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP31260887A priority Critical patent/JP2600731B2/en
Priority to GB8828610A priority patent/GB2213639B/en
Priority to DE3841384A priority patent/DE3841384C2/en
Priority to US07/282,239 priority patent/US4929059A/en
Publication of JPH01154034A publication Critical patent/JPH01154034A/en
Application granted granted Critical
Publication of JP2600731B2 publication Critical patent/JP2600731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To uniformly for many nonlinear elements over a wide region with decreased defects by providing island-shaped protective parts consisting of a 1st conductor near the nonlinear elements in such a manner that the parts for forming the nonlinear elements consisting of the 1st conductor and the parts forming the protective parts are not electrically connected to each other. CONSTITUTION:An insulator TaOx 3 is formed in place between the 1st conductor Ta 1 and the 2nd conductor Cr 2 to form the MIM (metal-insulator-metal) element (nonlinear element). The protective part 4 is formed of Ta near the part (hatched part) where the MIM element consisting of the Ta 1 is formed, independently from the Ta which forms the MIM element part. Generation of the misregistration of the MIM element part and the protective part 4 by misalignment is obviated if the Ta is commonly used in the protective part 4. The parts where the MIM elements consisting of the Ta are to be formed are fined and uniformized in the case of patterning the Ta by etching. The fluctuation in the characteristics occurring in the nonuniformity in the shapes of the nonlinear elements and the defects such as exfoliation and breakage of a part of the films of the nonlinear elements are eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 非線形素子の構造に関する。[Detailed description of the invention] [Industrial application field] Regarding the structure of nonlinear elements.

〔従来の技術〕[Conventional technology]

従来の非線形素子の構造を第3図及び第4図に示す、第
3図は非線形素子を液晶表示HRの画素を駆動する用途
に用いた場合の非線形素子と画素の平面図で、第4図は
第3図bb’部の断面図である。従来の非線形素子の構
造はfis図または第4図に示されるように、wElの
導電体1と絶縁体3と第2の導電体2を積層したものが
知られている。ここで第3図斜線部で示される部分が非
線形素子となっている。第1の導電体1は絶縁体3と第
2の導電体2を介して画素電極5に接続されている。特
にtJlの4電体1がTaで、絶縁体3がTaの酸化膜
(TaOx)で、第2の導電体2がCrからなる非線形
素子の構造は良く知られている。
The structure of a conventional nonlinear element is shown in Figs. 3 and 4. Fig. 3 is a plan view of the nonlinear element and pixels when the nonlinear element is used to drive pixels of a liquid crystal display HR, and Fig. 4 3 is a sectional view of section bb' in FIG. 3. A known structure of a conventional nonlinear element is one in which a wEl conductor 1, an insulator 3, and a second conductor 2 are laminated, as shown in the FIS diagram or FIG. Here, the shaded area in FIG. 3 is a nonlinear element. The first conductor 1 is connected to the pixel electrode 5 via the insulator 3 and the second conductor 2. In particular, the structure of a nonlinear element with tJl in which the four-electric body 1 is Ta, the insulator 3 is a Ta oxide film (TaOx), and the second conductor 2 is Cr is well known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では、第3図及び第4図で示さ
れる非線形素子部(第3図の斜線部)は極めて微細であ
るため、例えば5mmmm下であるこぶが一般的であり
、非線形素子を形成する手段であるホトエツチング時の
バラツキ等によって広い領域に渡って均一に数多くの(
通常は10万個程度)非線形素子を作ることが困難であ
り、非線形素子を集積してなる例は液晶表示装置などの
歩留りを上げることが困難であった。
However, in the above-mentioned conventional technology, the nonlinear element portion shown in FIGS. 3 and 4 (the shaded area in FIG. 3) is extremely fine, so the bump is generally 5 mm below, for example, and the nonlinear element is Due to variations in photoetching, which is the means of forming
It is difficult to manufacture nonlinear elements (usually about 100,000), and it has been difficult to increase the yield of liquid crystal display devices in which nonlinear elements are integrated.

また第2の導電体2が基板6との密着が悪い場合には、
第2の導電体2が基板6上で判れたり、切れたりする欠
陥が多(、非線形素子を集積してなる例えば液晶表示装
置などの歩留りを上げることが困難であった。特に第1
の導電体1がTaからなり、第2の4電体2がCrから
なり、基板6がガラスからなり、第1の導電体1である
Taのエツチングをドライエツチングで行なう場合に、
第2の導電体2であるCrと基板6であるガラスとの密
着性が悪く、第2の導電体の基板上での?りれや切れな
どの欠陥が顕著であった。
Furthermore, if the second conductor 2 has poor adhesion to the substrate 6,
There were many defects such as the second conductor 2 being visible or broken on the substrate 6 (this made it difficult to increase the yield of, for example, a liquid crystal display device that integrates nonlinear elements.
When the conductor 1 is made of Ta, the second quadrielectric body 2 is made of Cr, and the substrate 6 is made of glass, and Ta, which is the first conductor 1, is etched by dry etching,
The adhesion between Cr, which is the second conductor 2, and glass, which is the substrate 6, is poor. Defects such as rips and cuts were noticeable.

これは、第1の導電膜であるTaのパタニングをドライ
エツチングで行なった場合、基板ガラスがプラズマにさ
らされるが、プラズマにさらされた基板ガラスは導電体
である金属との密着性が悪化することに起因する。
This is because when patterning Ta, which is the first conductive film, by dry etching, the substrate glass is exposed to plasma, but the adhesiveness of the substrate glass exposed to plasma with the metal, which is a conductor, deteriorates. This is due to this.

従来技術は、以上のような問題点を有していた。そこで
本発明はこのような問題点を解決するもので、その目的
とするところは広い領域に渡って数多くの非線形素子を
均一にしかも欠陥を少なく形成するもので、非線形素子
を集積してなる例えば液晶表示装置などの歩留りを向上
させることにある。
The conventional technology had the above-mentioned problems. The present invention is intended to solve these problems, and its purpose is to form a large number of nonlinear elements uniformly over a wide area and with fewer defects. The objective is to improve the yield of liquid crystal display devices and the like.

C問題点を解決するための手段〕 本発明の非線形素子はく (1)−第1の導電体と絶縁体と第2の導電体を基板上
に積層してなる非線形素子において、非線形素子の近傍
に第1の導電体による島状の保護部を設け、第1の4電
体の前記非線形素子を形成する部分と前記保護部を形成
する部分は電気的に繋がっていないことを特徴とする。
Means for Solving Problem C] Nonlinear element foil of the present invention (1) - In a nonlinear element formed by laminating a first conductor, an insulator, and a second conductor on a substrate, An island-shaped protective portion made of a first conductor is provided in the vicinity, and a portion of the first four-electric body forming the nonlinear element and a portion forming the protective portion are not electrically connected. .

■ 前記絶縁体を半導体とした、特許請求第1項記載の
非線形素子であることを特徴とする。
(2) The nonlinear element according to claim 1, wherein the insulator is a semiconductor.

〔実施例〕〔Example〕

以下に本発明の実施例を図面にもとづいて説明する。第
1図は本発明による非線形素子の平面図で、非線形素子
を液晶表示装置の画素を駆動する用途に用いた場合の非
線形素子と画素の一部の平面図である。第2図は第1図
に示されるaa’の断面図である。非線形素子の例とし
てMIM (メタル、インシュレータ、メタル)素子を
挙げである。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a plan view of a nonlinear element according to the present invention, and is a plan view of a part of a nonlinear element and a pixel when the nonlinear element is used for driving pixels of a liquid crystal display device. FIG. 2 is a sectional view taken along aa' shown in FIG. An example of a nonlinear element is an MIM (metal, insulator, metal) element.

以下MIM素子として特に良く知られている素子構造を
もとに実施例を説明する。以下第1の4電体がTa1絶
縁体がTaの酸化物(以下Ta0X)、第2の導電体が
Crの場合に基づいて説明する。
Examples will be described below based on an element structure that is particularly well known as an MIM element. The following description will be made based on the case where the first four-electric conductor is Ta1, the insulator is Ta oxide (hereinafter referred to as Ta0X), and the second conductor is Cr.

第1図傾線部が非線形素子を形成しており、その面積は
小さい方が素子特性上望ましい。
The inclined line portion in FIG. 1 forms a nonlinear element, and it is desirable for the area to be small in terms of element characteristics.

非線形素子はζその構造上容量でもある。応用面では素
子容量は小さいことが電気的効率性から求められる。こ
のことは一般的に良く知られている。また素子の大きさ
のバラツキは直接素子特性のバラツキとなり、信頼性上
の欠陥となってしまう。非線形素子は小さく、数多(を
均一に形成することが望まれる。
The nonlinear element is also a capacitor due to its structure. In terms of application, a small element capacitance is required from the viewpoint of electrical efficiency. This is generally well known. Furthermore, variations in the size of the elements directly lead to variations in the element characteristics, resulting in defects in reliability. It is desirable that the nonlinear elements be small and uniformly formed in large numbers.

第1図及び第2図ではTalとCr2の間にTaox3
をはさみMIM素子を形成しているが、TalのMIM
素子を形成する部分(斜線部)の近傍に、MIM素子部
を形成しているTaとは独立に、T2Lで保護部4を形
成しである。Taを保護部4で共用すれば、アライメン
トずれによるMIM素子部と保護部との位置ずれが生じ
ない。そしてTaをエツチングによってパタニングする
場合にTaのMIM素子を形成する部分の微細化、均一
化が行なわれる。これは以下の理由による。
In Figures 1 and 2, Taox3 is present between Tal and Cr2.
are used to form an MIM element, but Tal's MIM
A protective portion 4 of T2L is formed in the vicinity of the portion (shaded portion) where the device is formed, independently of the Ta forming the MIM device portion. If Ta is shared by the protection part 4, positional deviation between the MIM element part and the protection part due to misalignment will not occur. When Ta is patterned by etching, the portion of Ta where the MIM element will be formed is made finer and more uniform. This is due to the following reasons.

TaのMIM素子を形成する部分は通常5μm以下と小
さく 、T aで形成される他の部分、例えば液晶表示
装置の場では、引き回し部分や、端子部分などに比較し
て十分に小さく、結果的に同一フォトエツチング工程で
形成しなければならないパタンにかなりの設計上の大き
さのバラツキがあり、その中で最も小さい部分であるM
IM素子を形成する部分はエツチングレートが最も早く
なり、またエツチングのバラツキも大きくなってしまう
。このバラツキに関しては、エツチング自体のバラツキ
と上記MIM素子を形成する部分が存在している場所に
起因するバラツキがある。前者の場合は例えば基板の周
辺部のエツチングレートが早い場合、逆に基板の中央部
のエツチングレートが早い場合等がある。後者の場合は
例えばそのMIM素子を形成する部分の周囲に何らかの
パタンか存在するか、または存在しないか、存在するな
らば、その密度や大きさ等でもエツチングレートは変わ
ってくるなどがある。
The portion of Ta that forms the MIM element is usually small, 5 μm or less, and other portions formed of Ta, such as the routing portions and terminal portions in liquid crystal display devices, are sufficiently small, and the resulting There is considerable variation in the design size of the patterns that must be formed in the same photoetching process, and the smallest part of the pattern is M.
The etching rate is the fastest in the area where the IM element is to be formed, and the variation in etching is also large. Regarding this variation, there are variations due to the etching itself and the location where the portion forming the MIM element is located. In the former case, for example, there are cases where the etching rate at the periphery of the substrate is high, and conversely, where the etching rate at the center of the substrate is high. In the latter case, for example, the etching rate may vary depending on whether some pattern exists or does not exist around the portion where the MIM element is formed, and if it does exist, its density and size.

一般的に残すパタン上にレジストを付けてエツチングす
る場合には、周辺に何もパタンを残さない場合ではエツ
チングレートが早くなり、逆に周辺にペタのパタンを残
す場合ではエツチングレートが遅くなる。従って、液晶
表示装置の場合では工程上のエツチングのバラツキは別
としても、画面の中心付近に相当する部分ではエツチン
グレートが早く、画面の周辺付近に相当する部分ではエ
ツチンググレートが遅(なる、結果的にMIM素子のバ
ラツキが大きくなり特にMIM素子が微細化すればする
ほどその傾向は太き(なる。
Generally, when etching is performed with a resist attached to a pattern to be left, the etching rate becomes faster if no pattern is left around the pattern, and conversely, the etching rate becomes slower if a small pattern is left around the periphery. Therefore, in the case of liquid crystal display devices, even apart from variations in etching due to the process, the etching rate is fast in the area near the center of the screen, and slow in areas near the periphery of the screen. Generally speaking, the variation in MIM elements becomes larger, and this tendency becomes more pronounced as the MIM elements become finer.

そこでTalのMIM素子を形成する部分(f!E1図
斜線部)の近傍に第1図または第2図で示されるような
保護部4を形成すれば、TaのMIM素子部の近傍には
、そのMIM素子が基板上どとにあろうとも、保護部4
があるために、−様にエツチングレートは下がり、また
均一性も良くなる。当然のことながら保護部(4)がM
 I M素子部からどの程度の位置にあるかによってエ
ツチングレートは変わり、近くにあればあるほどエッチ
/グレートは遅(なることになる。特にTaのエツチン
グをドライエツチングで行なう場合には上記傾向は大き
くなる。
Therefore, if a protection part 4 as shown in FIG. 1 or 2 is formed near the part where the Ta MIM element is formed (the shaded part in figure f!E1), the area near the Ta MIM element part will be No matter where the MIM element is on the board, the protection part 4
Because of this, the etching rate decreases and the uniformity improves. Naturally, the protection department (4) is M
The etching rate changes depending on the position from the IM element, and the closer it is, the slower the etching rate will be.Especially when Ta is etched by dry etching, the above tendency will not occur. growing.

従っである程度自由に、MIM素子部を形成するTaの
エツチングレートを設定することが可能なため、Taの
パタン設計上及び工程上のエツチングレートのバラツキ
を減少させることができる。、 またCr2が基板6と密着性の悪い場合など、Cr2が
基板6から剥れたり、切れたりする欠陥が生じるが、第
1図または第2図の構造にすれば上記欠陥も減少させら
れる。これはCrと基板の密着が悪くてもCrとTaは
密着性が良い場合に有効である。特に基板がガラスで、
Taのパタニングをドライエツチングで行なった場合に
は顕著である。上記理由を以下に示す。
Therefore, since it is possible to set the etching rate of Ta forming the MIM element portion with some degree of freedom, variations in the etching rate due to Ta pattern design and process can be reduced. In addition, when Cr2 has poor adhesion to the substrate 6, defects such as peeling or cutting of Cr2 from the substrate 6 occur, but if the structure shown in FIG. 1 or 2 is used, the above-mentioned defects can be reduced. This is effective when the adhesion between Cr and the substrate is poor but the adhesion between Cr and Ta is good. Especially when the substrate is glass,
This is noticeable when patterning of Ta is carried out by dry etching. The above reasons are shown below.

Talのエツチングはドライエツチングで行なうことが
一般的である。このときエツチングガスであるプラズマ
(例えばCOFラジカルなど)にさらされたガラス基板
は金属との密着性が悪(なる。従ってCr2は基板6と
の密着性が悪い。またCrもMIM素子の微細化という
観点からMIM素子を形成する部分は5μm以下と極め
て細くしなければならない。さらにTaとのアライメン
ト精度の問題から素子を形成する部分は第1図または第
3図に示すようにアライメント精度を考慮し余裕をもた
せた分だけの長さが必要になる。従って従来は密着の悪
いガラスに形成しなければならないCr部分で特に細い
部分が剥れたり切れたりする欠陥が多い。第1図に示す
ように保護部4をTalで形成してあれば、Crか細く
密着の悪い場所に形成しなければならない領域は狭(、
保護部4上でCrのパタンを広げて密着の悪い部分では
Crを可能な限り広いパタンで形成することができる。
Etching of Tal is generally performed by dry etching. At this time, the glass substrate exposed to etching gas plasma (e.g. COF radicals) has poor adhesion to the metal. Therefore, Cr2 has poor adhesion to the substrate 6. Also, Cr is used for miniaturization of MIM elements. From this point of view, the part where the MIM element is formed must be extremely thin, 5 μm or less.Furthermore, due to the problem of alignment accuracy with Ta, the part where the element is formed must be made with consideration for alignment accuracy as shown in Figures 1 and 3. Therefore, in the past, the Cr part had to be formed on glass with poor adhesion, and there were many defects such as peeling and cutting, especially in the thin part.As shown in Figure 1. If the protective part 4 is formed of Tal as shown in the figure, the area where Cr must be formed in a thin and poor adhesion area is narrow (,
By widening the Cr pattern on the protective portion 4, Cr can be formed in the widest possible pattern in areas where adhesion is poor.

これによってCrが♀りれたり切れたりする領域を狭く
することができ、それらの欠陥を減少させることになる
This makes it possible to narrow the area where Cr is broken or broken, thereby reducing these defects.

第6図に示す実施例は、第1図で示される保護部4の面
積を大きくし、Crの密着力をさらに高めたものである
In the embodiment shown in FIG. 6, the area of the protective portion 4 shown in FIG. 1 is increased to further enhance the adhesion of Cr.

第6図の実施例は基板6とT a 1 、さらにCr2
との密着性を高めるためにTalを形成する前に基板6
上に下地として絶縁体を形成したものである。例えば絶
縁体がTaの酸化物(TaOx)である場合などがある
。通常はTaのパタン形成時にTaxiもエツチングさ
れる。エツチングが均一に行なわれるならばTaのパタ
ンだけをエツチングし、下地で゛あるTaOxを残し、
Crとの密着性を高めることが可能であるが、一般的に
は工程上のバラツキやTaバタンの影響などをうけ、エ
ツチングは均一には行なわれない。従って最もエツチン
グレートの遅い部分に合せてエッチングを行なうのが一
般的で、通常はMIM素子を形成する部分の近傍、つま
りCrの密着性を高めたい部分に下地であるTaOxは
残らない。これは下地のTaOxがTaと基板であるガ
ラスとの密着性を高めるために利用されているに過ぎな
い。ここでMIM素子形成部の近傍に保護部4をTaの
バタン形成時に同時に形成すれば、保護部4とM I 
M素子形成部の間の領域はエツチングレートが遅くなり
、Crか細く密着性を高めたい部分に下地の絶縁膜が残
り、Crの密着性を高めることになり、Cr別れやCr
切れなどを減少させることになる。
The embodiment of FIG. 6 has a substrate 6, T a 1 , and Cr2
Substrate 6 before forming Tal to improve adhesion with
An insulator is formed on top as a base. For example, the insulator may be Ta oxide (TaOx). Normally, Taxi is also etched when forming a Ta pattern. If the etching is done uniformly, only the Ta pattern will be etched, leaving the underlying TaOx.
Although it is possible to improve the adhesion with Cr, etching is generally not performed uniformly due to variations in the process and the influence of the Ta baton. Therefore, it is common practice to perform etching in accordance with the part where the etching rate is slowest, and usually no underlying TaOx remains in the vicinity of the part where the MIM element is to be formed, that is, in the part where Cr adhesion is desired to be improved. This is simply because the underlying TaOx is used to enhance the adhesion between Ta and the glass substrate. Here, if the protective part 4 is formed near the MIM element forming part at the same time as the Ta baton is formed, the protective part 4 and the MIM
The etching rate slows down in the area between the M element formation areas, and the underlying insulating film remains in the areas where Cr is thin and where you want to improve adhesion, increasing Cr adhesion, resulting in Cr separation and Cr
This will reduce breakage and the like.

第7図に示す実施例は、Crと保護部4の形状を変えた
実施例である。素子の面積効率は良(なる。
The embodiment shown in FIG. 7 is an embodiment in which Cr and the shape of the protection part 4 are changed. The area efficiency of the element is good.

また、絶縁体3を半導体膜にしたものも非線形素子とな
ることが知られており同様の効果をもつ。
Furthermore, it is known that a device in which the insulator 3 is a semiconductor film also becomes a nonlinear element and has a similar effect.

第1の導電体と第2の導電体の積層位置を互いに入れ代
えた場合の実施例を第8図に示す。
FIG. 8 shows an embodiment in which the stacking positions of the first conductor and the second conductor are interchanged.

第9図は、他の実施例で第5図と同様である。FIG. 9 is similar to FIG. 5 in another embodiment.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によって、従来問題であった非
線形素子を広い領域に渡って数多く形成してなる例えば
液晶表示装置などの場合に、非線形素子の形状の不均一
に起因する特性のベラツキや、非線形素子の一部の膜が
剥れたり切れたりする欠陥によって歩留りを上げられな
いという問題点を解決することができる。
As described above, the present invention solves the conventional problem of unevenness in characteristics due to non-uniformity of the shape of the nonlinear elements in the case of liquid crystal display devices, etc., in which a large number of nonlinear elements are formed over a wide area. , it is possible to solve the problem that the yield cannot be increased due to defects such as peeling or cutting of a part of the film of the nonlinear element.

これによって非線形素子を数多く広い領域に渡りで均一
に集積してなる例えば液晶表示装置などを良好な品質で
かつ歩留りを高く生産することができるという効果を存
する。
This has the effect that, for example, a liquid crystal display device, etc., in which a large number of nonlinear elements are uniformly integrated over a wide area, can be produced with good quality and high yield.

また、本発明の構造は既に存在する層のバタン変更で達
成できるためコスト上も従来品と全く変わらないという
量産上不可欠な要素も満足している。
Furthermore, since the structure of the present invention can be achieved by simply changing the layers that already exist, the cost is no different from conventional products, which is an essential element for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例による非線形素子の平面図。 第2図は本発明の実施例による非線形素子の断面図。 第3図は従来の非線形素子の平面図。 第4図は従来の非線形素子の断面図。 第5図は本発明の実施例による非線形素子の平面図。 第6図は本発明の実施例による非線形素子の断面図。 第7図は本発明の実施例による非線形素子の平面図。 第8図は本発明の実施例による非線形素子の平面図。 第9図は本発明の実施例による非線形素子の平面図。 1・・・第1の導電体(Ta) 2・・・第2の導電体(Cr) 3・・・絶縁体(TaOx) 4・・・保護部 5・・・画素電極 6・・・基板 以  上 出願人  セイコーエプソン株式会社 第1図 第3図 第5図 第6図 第8図 FIG. 1 is a plan view of a nonlinear element according to an embodiment of the present invention. FIG. 2 is a sectional view of a nonlinear element according to an embodiment of the present invention. FIG. 3 is a plan view of a conventional nonlinear element. FIG. 4 is a cross-sectional view of a conventional nonlinear element. FIG. 5 is a plan view of a nonlinear element according to an embodiment of the present invention. FIG. 6 is a sectional view of a nonlinear element according to an embodiment of the present invention. FIG. 7 is a plan view of a nonlinear element according to an embodiment of the present invention. FIG. 8 is a plan view of a nonlinear element according to an embodiment of the present invention. FIG. 9 is a plan view of a nonlinear element according to an embodiment of the present invention. 1... First conductor (Ta) 2...Second conductor (Cr) 3... Insulator (TaOx) 4...Protection section 5... Pixel electrode 6... Board that's all Applicant: Seiko Epson Corporation Figure 1 Figure 3 Figure 5 Figure 6 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電体と絶縁体と第2の導電体を基板上に
積層してなる非線形素子において、非線形素子の近傍に
第1の導電体による島状の保護部を設け、第1の導電体
の前記非線形素子を形成する部分と前記保護部を形成す
る部分は、電気的に繋がっていないことを特徴とする非
線形素子。
(1) In a nonlinear element formed by laminating a first conductor, an insulator, and a second conductor on a substrate, an island-shaped protection part made of the first conductor is provided near the nonlinear element, and the first A nonlinear element characterized in that a portion of the conductor forming the nonlinear element and a portion forming the protection portion are not electrically connected.
(2)前記絶縁体を半導体としたことを特徴とする特許
請求の範囲、第1項記載の非線形素子。
(2) The nonlinear element according to claim 1, wherein the insulator is a semiconductor.
JP31260887A 1987-12-10 1987-12-10 Liquid crystal device Expired - Lifetime JP2600731B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31260887A JP2600731B2 (en) 1987-12-10 1987-12-10 Liquid crystal device
GB8828610A GB2213639B (en) 1987-12-10 1988-12-07 "non-linear device, e.g. for a liquid crystal display"
DE3841384A DE3841384C2 (en) 1987-12-10 1988-12-08 Arrangement with a large number of electrical components with a non-linear current-voltage characteristic and method for producing such an arrangement
US07/282,239 US4929059A (en) 1987-12-10 1988-12-09 Non-linear element for liquid crystal displays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31260887A JP2600731B2 (en) 1987-12-10 1987-12-10 Liquid crystal device

Publications (2)

Publication Number Publication Date
JPH01154034A true JPH01154034A (en) 1989-06-16
JP2600731B2 JP2600731B2 (en) 1997-04-16

Family

ID=18031255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31260887A Expired - Lifetime JP2600731B2 (en) 1987-12-10 1987-12-10 Liquid crystal device

Country Status (1)

Country Link
JP (1) JP2600731B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080460B2 (en) 2008-11-26 2011-12-20 Micron Technology, Inc. Methods of forming diodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138929A (en) * 1984-07-30 1986-02-25 Seiko Epson Corp Liquid crystal display body
JPS61163677A (en) * 1985-01-14 1986-07-24 Seiko Epson Corp Mim structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138929A (en) * 1984-07-30 1986-02-25 Seiko Epson Corp Liquid crystal display body
JPS61163677A (en) * 1985-01-14 1986-07-24 Seiko Epson Corp Mim structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8080460B2 (en) 2008-11-26 2011-12-20 Micron Technology, Inc. Methods of forming diodes
US8343828B2 (en) 2008-11-26 2013-01-01 Micron Technology, Inc. Methods of forming diodes
US8617958B2 (en) 2008-11-26 2013-12-31 Micron Technology, Inc. Methods of forming diodes

Also Published As

Publication number Publication date
JP2600731B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
WO2018157814A1 (en) Touch screen manufacturing method, touch screen ,and display device
EP3358401B1 (en) Array substrate, manufacturing method, and corresponding display panel and electronic device
WO2020258382A1 (en) Touch panel and touch display device
JPH01154034A (en) Nonlinear element
CN113157142B (en) Touch display panel and display device
CN110096175A (en) Display panel
JPH09101541A (en) Array substrate for display device and its production
CN109659310A (en) The production method of dot structure and dot structure
JP2545590B2 (en) Liquid crystal device
JP2814814B2 (en) Thin film transistor substrate
JPH06163891A (en) Thin film transistor
JP2005303220A (en) Tft array substrate
JP3155076B2 (en) Liquid crystal display
JP3194293B2 (en) Liquid crystal panel manufacturing method
US20240155888A1 (en) Display substrate, method for fabricating same, and vapor deposition apparatus
JPH0634985A (en) Electrode structure of liquid crystal panel
JPH02259728A (en) Liquid crystal display device
CN117457685A (en) Array substrate, manufacturing method thereof and display panel
JPS6033533A (en) Electrode for liquid crystal matrix display
JPH1090706A (en) Array substrate for display device
JP2001144297A (en) Manufacturing method for thin-film transistor
JPH11249161A (en) Active matrix substrate, production thereof and reflection type liquid crystal panel
JPH0345933A (en) Production of mim type nonlinear switching element
JPH03296024A (en) Mim liquid crystal panel and its manufacture
JP2001195005A (en) Display device and method for manufacturing display device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term