JPH0115363B2 - - Google Patents
Info
- Publication number
- JPH0115363B2 JPH0115363B2 JP3264080A JP3264080A JPH0115363B2 JP H0115363 B2 JPH0115363 B2 JP H0115363B2 JP 3264080 A JP3264080 A JP 3264080A JP 3264080 A JP3264080 A JP 3264080A JP H0115363 B2 JPH0115363 B2 JP H0115363B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- single crystal
- crystal member
- processing tool
- cut
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005520 cutting process Methods 0.000 claims description 71
- 239000013078 crystal Substances 0.000 claims description 66
- 238000012545 processing Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 11
- 238000003776 cleavage reaction Methods 0.000 claims description 6
- 230000007017 scission Effects 0.000 claims description 6
- 238000003754 machining Methods 0.000 description 6
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
【発明の詳細な説明】
本発明は単結晶部材を迅速に切断する単結晶切
断方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single crystal cutting method for rapidly cutting a single crystal member.
近時、シリコン単結晶、タンタル酸リチウム
(LiTaO3)、サフアイヤ(Al2O3)など主として
半導体用の材料として用いられる単結晶部材はワ
イヤーソーとかブレードソーなどによつて切断さ
れている。上記の切断方法は他の加工方法に比べ
て加工精度が高いという利点があるが、その反面
において、とりわけ加工速度が遅いという難点が
ある。すなわち、単結晶部材には特有の異方性が
あり、切込んだ結晶方位によつては切屑が形成さ
れにくく、しかも砥粒とともに排出されにくいた
め加工能率が他の結晶方位に比べて著しく低減す
る。その上、このような場合には、しばしば切断
されたウエハーに曲りやそりが多発し、種々の事
故の誘因となつている。にもかかわらず、従来に
おける単結晶部材の切断には何ら効果的な方策は
講じられておらず無作為に切断されているのが現
状である。このため単結晶部材の効率的な切断方
法が要請されている。 BACKGROUND ART Recently, single crystal members such as silicon single crystal, lithium tantalate (LiTaO 3 ), and sapphire (Al 2 O 3 ), which are mainly used as materials for semiconductors, are cut with a wire saw, a blade saw, or the like. The above-mentioned cutting method has the advantage of higher machining accuracy than other machining methods, but on the other hand, it has the drawback that the machining speed is particularly slow. In other words, single-crystal parts have a unique anisotropy, and depending on the crystal orientation in which the cut is made, chips are less likely to form and are also less likely to be ejected together with the abrasive grains, resulting in significantly lower machining efficiency compared to other crystal orientations. do. Moreover, in such cases, the cut wafers often become bent or warped, causing various accidents. Nevertheless, in the past, no effective measures have been taken for cutting single crystal members, and the current state is that they are cut at random. Therefore, there is a need for an efficient method for cutting single crystal members.
本発明は上記事情を参酌してなされたもので、
単結晶部材の予定切断面上にありこの予定切断面
と劈開面との交線に垂直な法線に対し上記単結晶
部材の切屑が排出される方向を正の回転角としこ
の正の回転角をもつ上記単結晶部材の結晶学的特
性およびこの単結晶部材と加工工具との圧接力に
より決定される切断能率極大な方向から切込みを
与えて上記単結晶部材を切断して、切断加工能率
を格段に向上させる単結晶切断方法を提供するこ
とを目的とする。 The present invention has been made in consideration of the above circumstances,
A positive rotation angle is defined as the direction in which chips of the single crystal member are discharged with respect to a normal line that is on the planned cutting plane of the single crystal member and perpendicular to the line of intersection between this planned cutting plane and the cleavage plane. The cutting efficiency is determined by the crystallographic properties of the single crystal member having The object of the present invention is to provide a method for cutting single crystals that is significantly improved.
以下、本発明を詳細に説明する。 The present invention will be explained in detail below.
まず、単結晶部材の切断加工の最適切込方位を
確定するために、つぎのようなゾーンスライシン
グ試験と称する予備試験を実施する。すなわち、
第1図に示すように、実際に切断しようとする単
結晶の予定切断面と同一の結晶方位関係を有する
端面1をもつ円柱状の単結晶部材2に、高速で矢
印3方向に回転する外周刃加工工具4を介して一
定の荷重をかけ、上記単結晶部材2を上記外周刃
加工工具4より低い一定の回転速度で矢印5方向
に回転させて、上記単結晶部材2の外周面に溝加
工を行う。このゾーンスライシング試験により形
成された単結晶部材2の切屑は矢印6方向に排出
される。また、同様にして単結晶部材2を矢印7
方向に、外周刃加工工具4を矢印8方向に回転さ
せて、ゾーンスライシング試験を行なう。このと
き切屑は矢印9方向に排出される。以上の互いに
正逆方向のゾーンスライシング試験によつて形成
された溝10の深さは同心円状でなく、単結晶部
材2の結晶学的異方性および切屑の排出特性およ
び単結晶部材2と加工工具4との圧接荷重の大き
さに主として基因する特有の起伏を有している。
この溝10の深さの起伏はとりもなおさず、切断
加工の難易を示している。すなわち、単結晶部材
2の回転を止めた状態で、溝10の深さが深いと
ころから加工工具を切込むほど一定荷重、工具の
一定回転速度でより多く切削除去される、つまり
切断加工能率が高いことを意味している。要する
に、溝10の深さが深いところからの切込方向
は、切断容易方向となつている。ちなみに、第2
図はタンタル酸リチウムの単結晶に対して上記ゾ
ーンスライシング試験を行ない形成された溝の深
さを測定して、測定値を極座標の中心からブロツ
トしたものである。この図において紙面は結晶面
1,0,0の切断予定面になつている。この場
合、単結晶部材2の図示せぬ劈開面は切断予定面
上にて交線A,Bとして表われている。また、溝
深さ曲線11は切屑の排出方向が第2図において
反時計回りの場合、溝深さ曲線12は切屑の排出
方向が時計回りの場合である。上記溝深さ曲線1
1,12はこの図の場合中心点13に対してほぼ
回転対称性を有する。この図から、切断能率が極
大の位置は、切屑排出方向が反時計回りの場合
は、点14,15,16,17になつており、ま
た、切屑排出方向が第2図中において時計回りの
場合、切断能率が極大の位置は、点18,19,
20,21である。すなわち図示のごとく、切断
能率が極大となる切込方向は交線A,Bのそれぞ
れに対して垂直な法線P,Qから時計回りか反時
計回りかのいずれかの切屑の排出方向側に回転角
θ1,θ2,θ3,θ4,θ5,θ6,θ7,θ8だけ傾いたZ1
,
Z2,Z3,Z4,Z5,Z6,Z7,Z8方向である。上記回
転角の具体的な数値はタンタル酸リチウムの場
合、θ1は24゜、θ2は7゜、θ3は16゜、θ4は8゜、θ5
は20゜、
θ6は17゜、θ7は16゜、θ8は5゜となつており、後述の
実
施例においてもこの数値を前提としている。同様
のことはシリコン、フエライトなどの他の単結晶
についても実証されている。かくして、加工工具
の適正な切込方向は単結晶部材2の予定切断面と
この単結晶部材2の劈開面との交線A,Bに垂直
で上記予定切断面上にある法線P,Qに対して切
屑の排出方向側に傾斜する方向であるという経験
則を帰納できる。この経験則は、従来単結晶部材
の研摩加工において、単結晶部材の予定切断面上
にあり、この予定切断面と劈開面との交線に直交
する法線方向に切込むように研摩すると研摩能率
が格段に向上するという既知の事実と予盾せず、
切断加工における適正な切込方向を確定するもの
である。ただ、単結晶部材の切断加工において
は、単純な研摩加工と異なり、切屑の形成機構お
よび形成された切屑の排出能率によつて加工能率
が大きく影響される。そのため、切断加工の最適
の切込方向は研摩加工のように上記予定切断面上
の交線に対して垂直な法線方向でなく、この法線
に対して切屑の排出方向側に若干傾いた方向にな
つていると考えられる。 First, in order to determine the optimal insertion direction for cutting a single crystal member, a preliminary test called a zone slicing test as described below is performed. That is,
As shown in Figure 1, a cylindrical single-crystal member 2 having an end face 1 having the same crystal orientation relationship as the planned cut plane of the single crystal to be actually cut is rotated at high speed in the direction of arrow 3. A constant load is applied via the blade processing tool 4, and the single crystal member 2 is rotated in the direction of arrow 5 at a constant rotation speed lower than that of the peripheral blade processing tool 4, thereby forming grooves on the outer peripheral surface of the single crystal member 2. Perform processing. Chips of the single crystal member 2 formed by this zone slicing test are discharged in the direction of arrow 6. Also, in the same way, move the single crystal member 2 to the arrow 7
The zone slicing test is performed by rotating the peripheral cutting tool 4 in the direction of arrow 8. At this time, the chips are discharged in the direction of arrow 9. The depths of the grooves 10 formed by the above zone slicing test in mutually opposite directions are not concentric, and the depths of the grooves 10 are not concentric, and the depths of the grooves 10 are not concentric. It has unique undulations mainly due to the magnitude of the pressure contact load with the tool 4.
The depth of the groove 10 is uneven, indicating the difficulty of cutting. In other words, when the rotation of the single crystal member 2 is stopped, the deeper the groove 10 is cut by the processing tool, the more the material is removed under a constant load and the constant rotational speed of the tool, that is, the cutting efficiency increases. It means high. In short, the direction of cutting from the deep groove 10 is the direction of easy cutting. By the way, the second
The figure shows the depth of the groove formed by carrying out the above-mentioned zone slicing test on a single crystal of lithium tantalate, and the measured values are blotted from the center of the polar coordinates. In this figure, the plane of the paper is the planned cutting plane of crystal planes 1, 0, 0. In this case, cleavage planes (not shown) of the single crystal member 2 appear as intersecting lines A and B on the planned cutting plane. Further, the groove depth curve 11 corresponds to the case where the chip discharge direction is counterclockwise in FIG. 2, and the groove depth curve 12 corresponds to the case where the chip discharge direction is clockwise. Groove depth curve 1 above
1 and 12 have approximately rotational symmetry with respect to the center point 13 in this figure. From this figure, the positions where the cutting efficiency is maximum are points 14, 15, 16, and 17 when the chip discharge direction is counterclockwise, and points 14, 15, 16, and 17 when the chip discharge direction is clockwise in Figure 2. In this case, the positions where the cutting efficiency is maximum are points 18, 19,
20, 21. In other words, as shown in the figure, the cutting direction in which cutting efficiency is maximized is either clockwise or counterclockwise from the normal lines P and Q perpendicular to the intersection lines A and B, respectively, toward the chip discharge direction. Z 1 tilted by rotation angle θ 1 , θ 2 , θ 3 , θ 4 , θ 5 , θ 6 , θ 7 , θ 8
,
These are the Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , and Z 8 directions. In the case of lithium tantalate, the specific values of the rotation angles above are θ 1 = 24°, θ 2 = 7°, θ 3 = 16°, θ 4 = 8°, θ 5
is 20°,
θ 6 is 17°, θ 7 is 16°, and θ 8 is 5°, and the examples described later are also based on these values. Similar findings have been demonstrated for other single crystals such as silicon and ferrite. Thus, the proper cutting direction of the processing tool is perpendicular to the intersection lines A and B between the planned cutting plane of the single crystal member 2 and the cleavage plane of this single crystal member 2, and the normals P and Q on the above planned cutting plane. It is possible to infer an empirical rule that the direction is inclined toward the chip discharge direction. This rule of thumb is that in conventional polishing of single crystal members, if the cut is made on the planned cut plane of the single crystal member and in the normal direction perpendicular to the intersection of this planned cut plane and the cleavage plane, the polishing Despite the known fact that efficiency is greatly improved,
This is to determine the proper direction of cut in the cutting process. However, in cutting a single crystal member, unlike simple polishing, the processing efficiency is greatly affected by the chip formation mechanism and the efficiency of discharging the formed chips. Therefore, the optimal direction of cut for cutting is not the normal direction perpendicular to the intersection line on the planned cutting plane, as is the case with grinding, but is slightly inclined toward the chip ejection direction with respect to this normal. It is thought that the direction is oriented.
つぎに、具体的な実施例にもとづいて詳述す
る。第3図は本発明の単結晶切断方法に用いるマ
ルチワイヤーソーの要部を示している。このマル
チワイヤーソーは従来一般に知られているマルチ
ワイヤーソーに、円柱状の単結晶部材2の軸線を
中心として所定量回動させる回動機構22を備え
ている。この回動機構22は図示せぬ加工テーブ
ル昇降機構により矢印S1,S2方向に昇降自在な加
工テーブル23上に載置されている。加工テーブ
ル23の上方にはワイヤー駆動機構24が設けら
れている。このワイヤー駆動機構24は複数のワ
イヤーからなる加工工具25が矢印M,N方向に
往復動するように張架されている。また、ワイヤ
ー駆動機構24には図示していないが往動から復
動への切換を検出して電気信号を出力するたとえ
ばリミツトスイツチなどからなる切換検出器が設
けられている。上記回動機構22の内部には図示
せぬ正逆回転自在のパルスモータが内蔵されてい
る。このパルスモータは回動角を厳密に制御でき
るもので、回動軸の一部は回動機構22のケース
前面26に突出しており、その突出部により円柱
状の保持体27が枢支されている。この保持体2
7の端面28には高性能の接着剤により円柱状の
単結晶部材2の一方の端面が取付けられている。
また、マルチワイヤーソー本体とは別に制御装置
29が設置されている。この制御装置29は回線
30によりワイヤー駆動機構24に、回線31に
より加工テーブル昇降機構に、回線32により回
動機構22にそれぞれ電気的に接続されている。
この制御装置29において、あらかじめ保持体2
7の回転角θおよび加工工具25と単結晶部材2
との圧接荷重値が設定される。さらに、ケース前
面26には油と遊離砥粒からなるスラリー33を
加工工具25と単結晶部材2との摺接部分に供給
する2個のスラリー供給管34が突設されてい
る。 Next, a detailed description will be given based on a specific example. FIG. 3 shows the main parts of a multi-wire saw used in the single crystal cutting method of the present invention. This multi-wire saw is a conventionally known multi-wire saw equipped with a rotation mechanism 22 that rotates a cylindrical single crystal member 2 by a predetermined amount about its axis. This rotation mechanism 22 is placed on a processing table 23 that can be raised and lowered in the directions of arrows S 1 and S 2 by a processing table elevating mechanism (not shown). A wire drive mechanism 24 is provided above the processing table 23. This wire drive mechanism 24 is suspended so that a processing tool 25 made of a plurality of wires can reciprocate in the directions of arrows M and N. Although not shown, the wire drive mechanism 24 is provided with a switching detector, such as a limit switch, which detects switching from forward movement to backward movement and outputs an electrical signal. Inside the rotation mechanism 22, a pulse motor (not shown) capable of forward and reverse rotation is built-in. The rotation angle of this pulse motor can be precisely controlled, and a part of the rotation shaft protrudes from the case front surface 26 of the rotation mechanism 22, and a cylindrical holder 27 is pivotally supported by the protrusion. There is. This holding body 2
One end face of the cylindrical single crystal member 2 is attached to the end face 28 of 7 with a high performance adhesive.
Further, a control device 29 is installed separately from the multi-wire saw body. This control device 29 is electrically connected to the wire drive mechanism 24 via a line 30, to the processing table lifting mechanism via a line 31, and to the rotating mechanism 22 via a line 32.
In this control device 29, the holding body 2
7 rotation angle θ, processing tool 25 and single crystal member 2
The pressure welding load value is set. Further, two slurry supply pipes 34 are provided protruding from the case front surface 26 to supply a slurry 33 consisting of oil and free abrasive grains to the sliding contact portion between the processing tool 25 and the single crystal member 2.
つぎに、本発明の単結晶切断方法について装置
の作動とともに説明する。 Next, the single crystal cutting method of the present invention will be explained along with the operation of the apparatus.
切断する単結晶部材として、予定切断面の切断
能率特性があらかじめ前述のゾーンスライシング
試験により確定した第2図に示す切断能率特性を
有するタンタル酸リチウムを用いる。第2図にお
いて、輪郭35は単結晶部材2の予定切断面のも
のとすると、この輪郭35上の適正な切込み位置
は点36,37,38,39,40,41,4
2,43で示される。そこで、これらのうちから
点36に加工工具25が接触し、かつ、単結晶部
材2の中心点13が保持体27の回動中心に一致
するように単結晶部材2の一方の端面を高性能の
接着剤を用いて保持体27に固着する。しかる
後、回転角θ1と回転角θ2との和である回転角θを
制御装置29に設定する。同時に、圧接荷重を決
定して制御装置29に設定する。それからスラリ
ー供給管34からスラリー33を加工工具25と
単結晶部材2の摺接部に放射し、ワイヤー駆動機
構24を駆動させ加工工具25を第3図中矢印N
方向に往動させる。このとき加工テーブル23は
制御装置29からの指令に基づいて加工工具25
と単結晶部材2とが一定の圧接荷重で摺接するよ
うに矢印S1方向に上昇している。 As the single-crystal member to be cut, lithium tantalate is used, which has the cutting efficiency characteristics of the planned cutting surface shown in FIG. 2, which were determined in advance by the above-mentioned zone slicing test. In FIG. 2, assuming that the contour 35 is the planned cutting surface of the single crystal member 2, the appropriate cutting positions on this contour 35 are points 36, 37, 38, 39, 40, 41, 4.
2.43. Therefore, one end surface of the single-crystal member 2 is cut into high-performance parts so that the processing tool 25 contacts the points 36 among these points and the center point 13 of the single-crystal member 2 coincides with the center of rotation of the holder 27. It is fixed to the holder 27 using an adhesive. Thereafter, the rotation angle θ, which is the sum of the rotation angle θ 1 and the rotation angle θ 2 , is set in the control device 29 . At the same time, the pressure contact load is determined and set in the control device 29. Then, the slurry 33 is radiated from the slurry supply pipe 34 to the sliding contact area between the processing tool 25 and the single crystal member 2, and the wire drive mechanism 24 is driven to move the processing tool 25 to the arrow N in FIG.
move in the same direction. At this time, the processing table 23 controls the processing tool 25 based on the command from the control device 29.
and the single-crystal member 2 are raised in the direction of arrow S1 so that they come into sliding contact with each other under a constant pressure load.
上記加工工具25は単結晶部材2に対して第2
図中の法線Qから回転角θ1だけ反時計回りに傾い
た矢印Z1方向に切込む。加工工具25によつて圧
砕されて形成された単結晶部材2の切屑はスラリ
ー33の遊離砥粒とともに矢印N方向すなわち第
2図中において輪郭35上の点36において接線
をなす矢印44方向に排出される。しかして、矢
印N方向の往動が終結し矢印M方向の復動に切換
わるとき、切換検出器から電気信号Eが第3図中
の回線30を介して制御装置29に出力される。
この電気信号Eに基づいてあらかじめ設定されて
いる回転角θだけ保持体27を回動させるための
電気信号Rを制御装置29から回動機構22に出
力する。この電気信号Rによりパルスモータが第
3図中矢印V方向に反転し、単結晶部材2は回転
角θだけ回転し、第2図中の点37が加工工具2
5に摺接する。この後、加工工具25は第3図中
矢印M方向に復動し法線Qから第2図中矢印45
側に回転角θ2だけ傾いた矢印Z2方向から単結晶部
材2に切込む。このとき形成された切屑は第2図
中において輪郭35上の点37において接線をな
す矢印45方向に排出される。しかして、矢印M
方向の復動が終結すると、再び切換検出器から電
気信号Eが出力され、保持体27は回転角θだけ
矢印W方向に回動して加工工具25は法線Qから
回転角θ1だけ傾いた矢印Z1方向に切込む。このよ
うにして、回動機構22により、往動と復動のそ
れぞれについて切断能率が極大な位置に切換えな
がら所要のウエハーが分離するまで切断を続行す
る。切込み位置はこの場合前述のごとく第2図の
点36,37に限られることなく点38と点39
との組合せ、点40と点41との組合せ、点42
と点43との組合せをもつて切断してもよい。ま
た、同一種類かつ同一予定切断面である限り、切
込適正方向は既知であるので同一手順ですみやか
に切断を続行できる。 The processing tool 25 is a second tool for the single crystal member 2.
Cut in the direction of arrow Z 1 tilted counterclockwise by rotation angle θ 1 from the normal Q in the figure. The chips of the single crystal member 2 crushed and formed by the processing tool 25 are discharged together with the free abrasive grains of the slurry 33 in the direction of arrow N, that is, in the direction of arrow 44, which is tangent to point 36 on outline 35 in FIG. be done. Thus, when the forward movement in the direction of arrow N ends and the movement is switched to the backward movement in the direction of arrow M, an electric signal E is outputted from the switching detector to the control device 29 via the line 30 in FIG. 3.
Based on this electric signal E, the control device 29 outputs an electric signal R to the rotation mechanism 22 for rotating the holding body 27 by a preset rotation angle θ. This electric signal R causes the pulse motor to reverse in the direction of the arrow V in FIG.
Slide into contact with 5. Thereafter, the machining tool 25 moves back in the direction of arrow M in FIG.
Cut into the single-crystal member 2 from the direction of arrow Z 2 , which is inclined by a rotation angle θ 2 to the side. The chips formed at this time are discharged in the direction of arrow 45, which is tangent to point 37 on outline 35 in FIG. However, arrow M
When the backward motion in the direction is completed, the switching detector outputs the electric signal E again, the holder 27 rotates in the direction of the arrow W by the rotation angle θ, and the processing tool 25 is tilted from the normal Q by the rotation angle θ 1 . Cut in the direction of arrow Z 1 . In this way, the rotation mechanism 22 continues cutting until the desired wafer is separated while switching to the position where the cutting efficiency is maximized in each of the forward and backward movements. In this case, the cutting position is not limited to points 36 and 37 in Fig. 2 as described above, but also points 38 and 39.
combination, combination of point 40 and point 41, point 42
It is also possible to cut at a combination of and point 43. Further, as long as the cutting surface is of the same type and planned to be cut, the appropriate cutting direction is known, so cutting can be continued promptly using the same procedure.
しかして、本実施例の場合切断除去速度が最小
の方向から切込む場合に比べて10%ないし90%切
断能率が増加する。 Therefore, in this embodiment, the cutting efficiency is increased by 10% to 90% compared to the case where the cutting is performed from the direction where the cutting removal speed is the minimum.
上述のように本発明の単結晶切断方法は単結晶
の予定切断面上にありこの予定切断面と劈開面と
の交線に垂直な法線に対し上記単結晶部材の切屑
が排出される方向を正の回転角としてこの正の回
転角をもつ上記単結晶部材の結晶学的特性および
この単結晶部材と加工工具との圧接力により決定
される切断能率極大な方向から切込みを与え上記
単結晶部材を切断するもので、従来の単結晶部材
の切断方法に比べて切断除去能率が格段に向上
し、長時間費消していた切断加工時間を最大限短
縮できる。また、加工中に単結晶部材に過度の歪
がかかることがないので、切断されたウエハーに
曲りやそりが生じず、品質管理上きわめて実益が
ある。さらに、新たに切断加工を実施する場合で
も、ゾーンスライシング試験によつて切断能率極
大な方向を簡易軽便に確定できるので、本方法の
汎用性は一層拡大する。また、加工工具の往復動
によつて単結晶を切断する場合、その往動と復動
のそれぞれに対応する適正な切込位置に切換える
ので、切断能率は往復動により差異を生じない。 As mentioned above, the single crystal cutting method of the present invention is performed on the planned cutting plane of the single crystal, and in the direction in which the chips of the single crystal member are discharged with respect to the normal line perpendicular to the intersection line between the planned cutting plane and the cleavage plane. is a positive rotation angle, and a cut is made from the direction of maximum cutting efficiency determined by the crystallographic properties of the single crystal member with this positive rotation angle and the pressure contact force between the single crystal member and the processing tool. This method cuts parts, and compared to conventional methods of cutting single-crystal parts, the cutting and removal efficiency is significantly improved, and cutting processing time, which used to be wasted over a long period of time, can be reduced to the maximum. Furthermore, since excessive strain is not applied to the single crystal member during processing, the cut wafers do not suffer from bending or warping, which is extremely beneficial in terms of quality control. Furthermore, even when performing a new cutting process, the direction of maximum cutting efficiency can be easily and easily determined by the zone slicing test, which further expands the versatility of this method. Further, when cutting a single crystal by reciprocating the processing tool, the cutting efficiency is not affected by the reciprocating movement because the cutting position is changed to an appropriate cutting position corresponding to each of the forward movement and backward movement.
なお、上記実施例においては第2図中において
点36と点37との間で切換えているが、たとえ
ば点36と点39との間で切換えるごとく、回転
角θが若干大きくなつても、切断加工能率が向上
するのであれば組合せを変えてよい。さらに、上
記実施例においてはマルチワイヤーソーによつて
切断したが、バンドソーまたは外周刃加工装置を
用いてもよい。また、本発明の切断方法が適用で
きる加工部材はタンタル酸リチウムに限らずシリ
コン、サフアイヤ、ゲルマニウム等の結晶学的異
方性を有する単結晶であるならば普遍的に適用で
きる。その他本発明の要旨を逸脱しない限度で
種々変更自在である。 In the above embodiment, the switching is made between points 36 and 37 in FIG. The combination may be changed if machining efficiency is improved. Further, in the above embodiments, a multi-wire saw was used for cutting, but a band saw or a peripheral blade processing device may be used. Furthermore, the cutting method of the present invention is not limited to lithium tantalate, but can be applied to any single crystal having crystallographic anisotropy such as silicon, sapphire, germanium, etc. Various other changes may be made without departing from the gist of the present invention.
第1図は単結晶部材のゾーンスライシング試験
を示す図、第2図はゾーンスライシング試験より
求められた溝深さ曲線および加工工具の適正な切
込方向を示す図、第3図は単結晶部材を切断する
切断装置の正面図である。
2:単結晶部材、25:加工工具。
Figure 1 is a diagram showing the zone slicing test of a single crystal member, Figure 2 is a diagram showing the groove depth curve obtained from the zone slicing test and the appropriate cutting direction of the processing tool, and Figure 3 is a diagram showing the single crystal member. It is a front view of the cutting device which cuts. 2: Single crystal member, 25: Processing tool.
Claims (1)
を切断する加工工具とを相対的に移動させながら
上記加工工具を上記単結晶部材に切込ませること
により上記単結晶部材を予定切断面に沿つて切断
する切断方法において、上記加工工具の切込方向
は、上記予定切断面と上記劈開面との交線に垂直
な法線方向に対し上記切断工具により上記単結晶
部材の切屑が排出される方向側に傾斜する方向に
設け、且つ、上記切込方向の上記法線方向からの
傾斜角は、上記加工工具による上記単結晶部材の
切断能率が極大となる角度に設けることを特徴と
する単結晶切断方法。 2 切込方向はゾーンスライシング試験により決
定することを特徴とする特許請求の範囲第1項記
載の単結晶切断方法。[Scope of Claims] 1. The single crystal member is cut by cutting the single crystal member with the processing tool while relatively moving a single crystal member having a cleavage plane and a processing tool for cutting the single crystal member. In the cutting method of cutting along a planned cutting plane, the cutting direction of the processing tool is such that the single crystal member is is provided in a direction that is inclined toward the direction in which chips are discharged, and the inclination angle of the cutting direction from the normal direction is set at an angle that maximizes the cutting efficiency of the single crystal member by the processing tool. A single crystal cutting method characterized by: 2. The single crystal cutting method according to claim 1, wherein the cutting direction is determined by a zone slicing test.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3264080A JPS56129114A (en) | 1980-03-17 | 1980-03-17 | Method of cutting monocrystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3264080A JPS56129114A (en) | 1980-03-17 | 1980-03-17 | Method of cutting monocrystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56129114A JPS56129114A (en) | 1981-10-09 |
JPH0115363B2 true JPH0115363B2 (en) | 1989-03-16 |
Family
ID=12364441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3264080A Granted JPS56129114A (en) | 1980-03-17 | 1980-03-17 | Method of cutting monocrystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56129114A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0761647B2 (en) * | 1985-06-11 | 1995-07-05 | 日立電線株式会社 | Slicing method of semiconductor crystal ingot |
JPH0635107B2 (en) * | 1987-12-26 | 1994-05-11 | 株式会社タカトリハイテック | Wire saw |
JP3397968B2 (en) * | 1996-03-29 | 2003-04-21 | 信越半導体株式会社 | Slicing method of semiconductor single crystal ingot |
DE10052154A1 (en) * | 2000-10-20 | 2002-05-08 | Freiberger Compound Mat Gmbh | Method and device for separating single crystals, adjusting device and test method for determining an orientation of a single crystal for such a method |
-
1980
- 1980-03-17 JP JP3264080A patent/JPS56129114A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56129114A (en) | 1981-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4054010A (en) | Apparatus for grinding edges of planar workpieces | |
JP3292835B2 (en) | Surface grinding method for thin work and its grinding device | |
TWI600496B (en) | Wafer chamfering processing method,wafer chamfering processing device and gringstone angle adjustment device | |
TWI614105B (en) | Systems and methods for ingot grinding | |
JPH10264143A (en) | Wire saw and cutting method for ingot | |
JP4406878B2 (en) | Single crystal ingot cauldron | |
JPH0115363B2 (en) | ||
JP6145548B1 (en) | Chamfering grinding method and chamfering grinding apparatus | |
KR102503533B1 (en) | Dresser board, dressing method | |
CN109414800B (en) | Cutting device | |
CN108555700A (en) | A kind of polishing process of silicon carbide wafer | |
JP3692703B2 (en) | Wire saw and ingot cutting method | |
JP7429080B1 (en) | Semiconductor crystal wafer manufacturing equipment and manufacturing method | |
GB2190862A (en) | Machining of workpieces made of brittle materials | |
JP2515105B2 (en) | Cutting method to cut ferrite with rotating diamond grindstone | |
JPH07136932A (en) | Truing method for super abrasive grain grinding wheel | |
JPH0231444A (en) | Dicer | |
JP2002222778A (en) | Manufacturing apparatus of semiconductor device and its manufacturing method | |
JPH068140A (en) | Circular arc shaping method for grinding wheel | |
JPS6297805A (en) | Dicing device | |
JP2000176832A (en) | Grinding method | |
SU1314400A1 (en) | Method of cutting monocrystal ingots | |
JPH02116457A (en) | Grinding method for brittle material | |
JPH04787B2 (en) | ||
JPH052278Y2 (en) |