JPH01153536A - Superconducting material and production thereof - Google Patents

Superconducting material and production thereof

Info

Publication number
JPH01153536A
JPH01153536A JP62310111A JP31011187A JPH01153536A JP H01153536 A JPH01153536 A JP H01153536A JP 62310111 A JP62310111 A JP 62310111A JP 31011187 A JP31011187 A JP 31011187A JP H01153536 A JPH01153536 A JP H01153536A
Authority
JP
Japan
Prior art keywords
metal
superconducting material
group
metals
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62310111A
Other languages
Japanese (ja)
Inventor
Nobuyasu Ezawa
江沢 信泰
Shigeo Shioda
重雄 塩田
Susumu Shimizu
進 清水
Toshiya Yamamoto
俊哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP62310111A priority Critical patent/JPH01153536A/en
Publication of JPH01153536A publication Critical patent/JPH01153536A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a superconducting material useful in the field of superconductivity, having stability and productivity in a large amount, by grinding of oxides of La, Ba, Cu, etc., blending so as to make a specific composition, heating, pressurizing and molding. CONSTITUTION:Oxides of metals having a composition shown by the formula (A is one or more metals selected from a group consisting of Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Yb; B is one or more metals selected from the group consisting of Ba, Sr and Ca; C is one or more selected from the group consisting of Cu, Pd and Rh, not including Cu alone) are ground and blended in the composition ratio of the metals of the component A:B:C of 1:2:3 to give a mixture. The mixture is further dispersed highly, heated, pressurized and molded in a desired shape to yield a superconducting material having the composition shown by the formula.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、安定性に富み、優れた大量生産性を有する超
電導材料及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a superconducting material that is highly stable and has excellent mass productivity, and a method for manufacturing the same.

(従来技術とその問題点) 水銀に超電導現象が観察されて以来、超電導の有用性は
十分認識されていたが、超電真材料に関する価値ある発
見がされず、近年まで超電導現象にはさほどの関心は払
われなかった。
(Prior art and its problems) Ever since the superconducting phenomenon was observed in mercury, the usefulness of superconductivity has been fully recognized, but no valuable discoveries regarding superconducting materials have been made, and until recently, superconducting phenomena have remained largely unknown. No interest was paid.

しかしながら1986年に数種の金属酸化物つまりセラ
ミックスにおいて超電導現象が観察されて以来急速に超
電導現象に関する関心が高まり、かつ該現象に関する研
究開発が飛躍的に進展している。更に該セラミックスの
構成元素を検討することにより該セラミックスの超電導
温度が従来の液体ヘリウム温度から液体窒素温度まで上
昇し、更に最近では室温における超電導材料も発表され
ている。
However, since superconductivity was observed in several types of metal oxides, ie, ceramics, in 1986, interest in superconductivity has rapidly increased, and research and development regarding this phenomenon has progressed dramatically. Furthermore, by studying the constituent elements of the ceramics, the superconducting temperature of the ceramics has been raised from the conventional liquid helium temperature to the liquid nitrogen temperature, and more recently, superconducting materials at room temperature have also been announced.

従来のA−B−Cu−0型超電導材料(ここでAはYX
LaXPr、Nd、Sm、Gd、Tb。
Conventional A-B-Cu-0 type superconducting material (where A is YX
LaXPr, Nd, Sm, Gd, Tb.

Dy、Ho、Er及びYbから成る群から選択される1
又は2種以上の金属であり、BはBa、Sr及びCaか
ら成る群から選択される1又は2種以上の金属である)
は、水(大気中の蒸気)と化学反応を起こし不安定であ
る、該材料中の酸素量の制御(温度や酸素圧による)が
困難で大量生産に不適である、銅酸化物はアルミナやシ
リカなどのセラミックスと化合し易く該超電導材料と接
触する物質に制限がある、及び熱膨張による応力を緩和
することができず膨脂率のマツチングする物質の選定が
困難である、等の欠点を有している。
1 selected from the group consisting of Dy, Ho, Er and Yb
or two or more metals, and B is one or two or more metals selected from the group consisting of Ba, Sr, and Ca)
Copper oxide is unstable due to a chemical reaction with water (steam in the atmosphere), and it is difficult to control the amount of oxygen in the material (through temperature and oxygen pressure), making it unsuitable for mass production. There are disadvantages such as there are restrictions on the substances that can easily combine with ceramics such as silica and come into contact with the superconducting material, and it is difficult to select a substance that matches the swelling ratio because it cannot alleviate the stress caused by thermal expansion. have.

これらの欠点は主として従来の超電導材料中の酸素が動
き易く該酸素がどの元素にも安定して結合していないこ
とに起因している。
These drawbacks are mainly due to the fact that oxygen in conventional superconducting materials is mobile and is not stably bonded to any element.

(発明の目的) 本発明は、電気材料の飛躍的革新を可能とする超電導材
料の実用化に向ける上記欠点を解消し、特に安定で大量
生産性のある超電導材料を提供することを目的とする。
(Objective of the Invention) The purpose of the present invention is to eliminate the above-mentioned drawbacks and to provide a superconducting material that is particularly stable and can be mass-produced. .

(問題点を解決するための手段) 本発明は、第1に一般式AB2 C3Ox  (ここで
AはY、La、Pr、Nd、Sm、Gd、Tb。
(Means for Solving the Problems) The present invention is based on the general formula AB2 C3Ox (where A is Y, La, Pr, Nd, Sm, Gd, Tb).

Dy% HO% Er及びYbから成る群から選択され
る1又は2種以上の金属であり、BはBa、Sr及びC
aから成る群から選択される1又は2種以上の金属であ
り、CはCu % P d及びRhから成る群から選択
される1又は2種以上の金属でありCu単独であるもの
を含まない)で表される組成を有する超電導材料であり
、第2に該超電導材料を製造する際に、各金属A、B及
びCの酸化物を粉砕し、該粉末を強く混合して高度に分
散させ加熱及び加圧して所定形状に成形することから成
る超電導材料の製造方法であり、第3に同じく上記超電
導材料を製造する際に、各金属A、B及びCから成る合
金を製造し、該合金を酸化することにより所定形状に成
形することから成る超電導材料の製造方法である。
Dy% HO% One or more metals selected from the group consisting of Er and Yb, B is Ba, Sr and C
one or more metals selected from the group consisting of a, and C is one or more metals selected from the group consisting of Cu % P d and Rh, and does not include Cu alone ), and secondly, when manufacturing the superconducting material, oxides of each metal A, B, and C are ground, and the powders are strongly mixed to be highly dispersed. This is a method for manufacturing a superconducting material which consists of heating and pressurizing and forming it into a predetermined shape. Thirdly, when manufacturing the above-mentioned superconducting material, an alloy consisting of each metal A, B, and C is manufactured, and the alloy is This is a method of manufacturing a superconducting material, which comprises forming it into a predetermined shape by oxidizing it.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の基本的な着想は、超電導材料中に不安定な酸素
を吸収して貯蔵し又外界へ排出することのできるパラジ
ウム及び/又はロジウムを含有させることにより、従来
の超電導材料において問題となっている該材料中の銅酸
化物中の酸素を安定化し、これにより安定で大量生産可
能な超電導材料を提供しようとする点にある。
The basic idea of the present invention is to incorporate palladium and/or rhodium into the superconducting material, which can absorb unstable oxygen, store it, and release it to the outside world, thereby eliminating problems in conventional superconducting materials. The purpose of this invention is to stabilize the oxygen in the copper oxide in the material, thereby providing a stable superconducting material that can be mass-produced.

本発明の超電導材料は、一般式ABZ C308で表さ
れる複合酸化物の高分散組成物から成っている。金属A
及びBは、従来超電導材料構成元素として知られている
金属であり、Aはイツトリウム(Y)、ランタン(La
)、プラセオジム(Pr)、ネオジム(Nd)、サマリ
ウム(Sm)、ガドリウム(Gd)、テルビウム(Tb
)、ジスプロシウム(Dy)、ホルミウム(Ho)、エ
ルビウム(Er)及びイッテルビウム(Yb)から成る
希土類金属のうちの1種又は2種以上であり、Bはバリ
ウム(Ba)、スカンジウム(Sr)及びカルシウム(
Ca)のうちの1種又は2種以上である。
The superconducting material of the present invention is made of a highly dispersed composite oxide composition represented by the general formula ABZ C308. Metal A
and B are metals conventionally known as constituent elements of superconducting materials, and A is yttrium (Y), lanthanum (La
), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb)
), dysprosium (Dy), holmium (Ho), erbium (Er), and ytterbium (Yb), and B is barium (Ba), scandium (Sr), and calcium. (
One or more types of Ca).

又本発明の特徴的な構成元素である前記金属Cは、銅(
Cu)、パラジウム(Pd)及びロジウム(Rh)から
成る群から選択される1又は2種以上の金属であり、上
述の通りパラジウム及び/又はロジウムにより銅酸化物
等の酸素を取り込み安定化させることを目的とするため
、該金属CはCu単独であるものを含まない。
Further, the metal C, which is a characteristic constituent element of the present invention, is copper (
One or more metals selected from the group consisting of Cu), palladium (Pd), and rhodium (Rh), and as mentioned above, palladium and/or rhodium captures oxygen such as copper oxide and stabilizes it. For this reason, the metal C does not include Cu alone.

これらの各金属は正確にA:B:C=1:2:3の組成
比とすることにより超電導性が現れる。
Each of these metals exhibits superconductivity when the composition ratio is accurately set to A:B:C=1:2:3.

該超電導材料を製造するためには、従来法つまり金属A
の酸化物、金属Bの酸化物及び金属Cの酸化物をそれぞ
れ粉砕してこれらの粉末を十分混合して該混合物を適宜
成形し、かつ必要に応じて高温における焼結を行って所
定強度を有する超電導材料を製造する方法をそのまま適
用すればよいが、この他に金属A、B及びCの合金を製
造し、該合金を加熱して前記金属Aの酸化物、前記金属
Bの酸化物及び前記金属Cの酸化物の混合物とするよう
にしてもよい。
In order to produce the superconducting material, conventional methods, namely metal A
The oxide of metal B, the oxide of metal B, and the oxide of metal C are respectively ground, these powders are thoroughly mixed, and the mixture is appropriately shaped, and if necessary, sintered at high temperature to obtain a predetermined strength. Alternatively, an alloy of metals A, B, and C may be manufactured, and the alloy may be heated to form an oxide of metal A, an oxide of metal B, and an oxide of metal B. A mixture of oxides of the metal C may be used.

超電導材料は構成成分が十分に混合されていないと超電
導現象を示さず、粉砕した各酸化物を混合する従来法に
よると各酸化物を十分に分散させることは非常に困難で
あるか、非常に多くの処理時間を要している。しかし前
記合金法によると該合金製造時に既に各金属が十分に混
合分散されているため、該合金を酸化するだけで十分に
分散されたセラミックスである超電導材料を製造するこ
とができる。
Superconducting materials do not exhibit superconductivity unless their constituent components are thoroughly mixed, and using the conventional method of mixing pulverized oxides, it is extremely difficult or extremely difficult to sufficiently disperse each oxide. It takes a lot of processing time. However, according to the alloy method, since each metal is already sufficiently mixed and dispersed during the production of the alloy, it is possible to produce a superconducting material, which is a sufficiently dispersed ceramic, simply by oxidizing the alloy.

本発明では銅酸化物、銅を使用しない場合には前記金属
AやBの酸化物中の酸素が、前記超電導材料中のパラジ
ウム及び/又はロジウム又はその酸化物中に取り込まれ
不安定な酸素を消滅させることにより、材料中の酸素量
の制御を容易にして大量生産を可能にし、かつ該材料と
接触する物質の種類やマツチング性に関する制限を完全
になくすか、大きく緩和することができる。
In the present invention, when copper oxide or copper is not used, oxygen in the oxides of metals A and B is incorporated into palladium and/or rhodium or their oxides in the superconducting material, and unstable oxygen is generated. By eliminating oxygen, it becomes easier to control the amount of oxygen in the material, enabling mass production, and it is possible to completely eliminate or greatly relax restrictions on the types of substances that come into contact with the material and on matching properties.

前記酸素の取り込みは、パラジウムの場合にはその卓越
したガス貯蔵能力により不安定な酸素を吸収して自身が
若干膨脂することにより行われる。
In the case of palladium, the oxygen is taken in by absorbing unstable oxygen due to its excellent gas storage ability and causing the palladium itself to expand slightly.

この他に原子価を変化させることにより例えば酸化パラ
ジウム(n)PdO□を酸化パラジウム(rV)PdO
4に変換することにより前記酸素をこれらのパラジウム
化合物中に取り込むことも寄与すると考えられる。又ロ
ジウムの場合は後者の原子価変換が大きく寄与するもの
と考えられ、これにより前記した本発明の特徴を具現す
ることができる。
In addition, by changing the valence, for example, palladium oxide (n)PdO□ can be changed to palladium oxide (rV)PdO.
Incorporation of the oxygen into these palladium compounds by conversion to 4 is also believed to contribute. In the case of rhodium, the latter valence conversion is thought to make a large contribution, and thereby the above-described features of the present invention can be realized.

(実施例) 以下に本発明の実施例を記載するが、該実施例は本発明
を限定するものではない。
(Example) Examples of the present invention will be described below, but the examples do not limit the present invention.

爽胤皿上 乳鉢中で乳棒を使用して微細に粉砕した金属Aの酸化物
、金属Bの酸化物及び金属Cの酸化物を表1に示す割合
で、播潰機を使用して十分に混合粉砕した後、950℃
で10時間、9気圧の酸素雰囲気中で加熱した後、徐冷
し直径5mm、長さ2cmの棒状の超電導材料を製造し
た。なお、前記金属A、金属B及び金属Cは全て原子比
で1:2:3となるようにした。
The oxide of metal A, the oxide of metal B, and the oxide of metal C were finely ground using a pestle in a mortar on a soybean dish in the proportions shown in Table 1, and were thoroughly ground using a crusher. After mixing and pulverizing, 950℃
After heating in an oxygen atmosphere of 9 atm for 10 hours, the material was slowly cooled to produce a rod-shaped superconducting material with a diameter of 5 mm and a length of 2 cm. Note that the metal A, metal B, and metal C were all arranged in an atomic ratio of 1:2:3.

次いで得られた材料の抵抗値を四端子法にて測定したと
ころ、窒素沸点(77K)において全て零であった。
The resistance values of the obtained material were then measured using a four-terminal method, and all were found to be zero at the nitrogen boiling point (77K).

(以下余白) 直m 表    1 金属A、金属B及び金属Cを真空もしくは不活性雰囲気
中で加熱溶融して合金化し、表2に示す融点を有する合
金を得た。前記金属A、金属B及び金属Cの酸化物は全
て原子比で1:2:3となるようにした。
(The following is a blank space) Table 1 Metal A, metal B, and metal C were alloyed by heating and melting in a vacuum or an inert atmosphere to obtain alloys having melting points shown in Table 2. The oxides of metal A, metal B, and metal C were all arranged in an atomic ratio of 1:2:3.

その後これらの合金をそれぞれ900℃、9気圧の酸素
雰囲気中で8時間〜96時間酸化処理を行い、その断面
を電子プローブマイクロアナリシスで観察したところ、
各金属酸化物は微細な粒子として互いに良好に分散して
いた。
These alloys were then oxidized for 8 to 96 hours at 900°C and 9 atmospheres of oxygen, and their cross sections were observed using electron probe microanalysis.
Each metal oxide was well dispersed in the form of fine particles.

この酸化された材料の抵抗値の測定を行ったところ、窒
素沸点(77K)で全て零であった。
When the resistance values of this oxidized material were measured, they were all zero at the nitrogen boiling point (77K).

(以下余白) 表    2 (発明の効果) 本発明は、従来の超電導材料を構成する金属酸化物に貴
金属酸化物であるパラジウム及び/又はロジウムの酸化
物を分散させて成る超電導材料である。
(The following is a blank space) Table 2 (Effects of the Invention) The present invention is a superconducting material made by dispersing oxides of palladium and/or rhodium, which are noble metal oxides, in metal oxides constituting conventional superconducting materials.

従って該組成物は、添加された複数原子価を取り得る貴
金属が自己の原子価を増加することによりあるいは該金
属酸化物の有するガス貯蔵性により、銅酸化物等が有す
る不安定な酸素を吸収して得られる超電導材料に固有の
不安定性を排除し、安定で大量生産性のある材料を提供
することができる。
Therefore, the composition absorbs the unstable oxygen contained in the copper oxide etc. by increasing the valence of the added noble metal which can take on multiple valences or by the gas storage property of the metal oxide. It is possible to eliminate the instability inherent in superconducting materials obtained by oxidation, and to provide materials that are stable and can be mass-produced.

又本発明の超電導材料の製造方法として、前記超電導材
料を構成する各金属の合金を予め作製し、該合金を酸化
してセラミックスとすることにより、非常に高度に分散
された良好な超電導活性を示す材料を得ることができる
。又従来の超電導材料は任意形状に成形し難いという欠
点を有しているが、上記方法を使用すると合金の状態で
所定形状にしておくと、該合金を酸化することにより該
合金と同形状の超電導材料を得ることができるため、加
工性の面での超電導材料の有用性が格段に向上する。
Further, as a method for manufacturing the superconducting material of the present invention, an alloy of each metal constituting the superconducting material is prepared in advance, and the alloy is oxidized to form a ceramic, thereby achieving very highly dispersed and good superconducting activity. The materials shown can be obtained. Furthermore, conventional superconducting materials have the disadvantage of being difficult to form into arbitrary shapes, but using the above method, if the alloy is formed into a predetermined shape, the alloy can be oxidized to form the same shape as the alloy. Since a superconducting material can be obtained, the usefulness of the superconducting material in terms of processability is greatly improved.

Claims (3)

【特許請求の範囲】[Claims] (1)一般式AB_2C_3O_x(ここでAはY、L
a、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er
及びYbから成る群から選択されるl又は2種以上の金
属であり、BはBa、Sr及びCaから成る群から選択
される1又は2種以上の金属であり、CはCu、Pd及
びRhから成る群から選択される1又は2種以上の金属
でありCu単独であるものを含まない)で表される組成
を有する超電導材料。
(1) General formula AB_2C_3O_x (where A is Y, L
a, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er
and Yb, B is one or more metals selected from the group consisting of Ba, Sr, and Ca, and C is Cu, Pd, and Rh. A superconducting material having a composition represented by one or more metals selected from the group consisting of (excluding Cu alone).
(2)一般式AB_2C_3O_x(ここでAはY、L
a、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er
及びYbから成る群から選択される1又は2種以上の金
属であり、BはBa、Sr及びCaから成る群から選択
される1又は2種以上の金属であり、CはCu、Pd及
びRhから成る群から選択される1又は2種以上の金属
でありCu単独であるものを含まない)で表される組成
を有する超電導材料の製造方法において、各金属A、B
及びCの酸化物を粉砕し、該粉末を強く混合して高度に
分散させ加熱及び加圧して所定形状に成形することから
成ることを特徴とする方法。
(2) General formula AB_2C_3O_x (where A is Y, L
a, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er
and Yb, B is one or more metals selected from the group consisting of Ba, Sr, and Ca, and C is Cu, Pd, and Rh. In the method for producing a superconducting material having a composition represented by one or more metals selected from the group consisting of (excluding Cu alone), each metal A, B
A method characterized in that it consists of pulverizing an oxide of and C, strongly mixing the powder to highly disperse it, and molding it into a predetermined shape by heating and pressurizing.
(3)一般式AB_2C_3O_x(ここでAはY、L
a、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Er
及びYbから成る群から選択される1又は2種以上の金
属であり、BはBa、Sr及びCaから成る群から選択
される1又は2種以上の金属であり、CはCu、Pd及
びRhから成る群から選択される1又は2種以上の金属
でありCu単独であるものを含まない)で表される組成
を有する超電導材料の製造方法において、各金属A、B
及びCから成る合金を製造し、該合金を酸化することに
より所定形状に成形することから成ることを特徴とする
方法。
(3) General formula AB_2C_3O_x (where A is Y, L
a, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er
and Yb, B is one or more metals selected from the group consisting of Ba, Sr, and Ca, and C is Cu, Pd, and Rh. In the method for producing a superconducting material having a composition represented by one or more metals selected from the group consisting of (excluding Cu alone), each metal A, B
and C, and forming the alloy into a predetermined shape by oxidizing it.
JP62310111A 1987-12-08 1987-12-08 Superconducting material and production thereof Pending JPH01153536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310111A JPH01153536A (en) 1987-12-08 1987-12-08 Superconducting material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310111A JPH01153536A (en) 1987-12-08 1987-12-08 Superconducting material and production thereof

Publications (1)

Publication Number Publication Date
JPH01153536A true JPH01153536A (en) 1989-06-15

Family

ID=18001309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310111A Pending JPH01153536A (en) 1987-12-08 1987-12-08 Superconducting material and production thereof

Country Status (1)

Country Link
JP (1) JPH01153536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006128A1 (en) * 1989-10-16 1991-05-02 American Superconductor Corporation Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991006128A1 (en) * 1989-10-16 1991-05-02 American Superconductor Corporation Process for making electrical connections to high temperature superconductors using a metallic precursor and the product made thereby

Similar Documents

Publication Publication Date Title
JPH01153536A (en) Superconducting material and production thereof
JPH01164731A (en) Superconducting material and its production
JPH01164730A (en) Superconducting material and its production
JPH01167236A (en) Superconducting material and production thereof
JPH01153535A (en) Superconducting material and production thereof
JP2004507433A (en) Method for producing a ceramic body of silver niobium tantalate
JPH01275433A (en) Multiple oxide superconducting material and production thereof
JPH0784341B2 (en) Method for producing oxide-based superconducting compact
JPH02192418A (en) Oxide superconductor
JPH0248459A (en) Production of compound oxide superconductor
JPH01278458A (en) Production of superconductor
JPH01278468A (en) Production of superconductor
JPH0292819A (en) Oxide superconductor
JPH01188458A (en) Production of superconducting ceramic
JPH01278464A (en) Production of superconductor
JPH01278467A (en) Production of superconductor
JPH01224223A (en) Preparation of raw material powder of readily sintering high temperature superconducting ceramic
JPH01100018A (en) Preparation of high-temperature superconducting ceramic raw powder
JPH01278460A (en) Production of superconductor
JPH02207422A (en) Manufacture of oxide superconducting wire rod
JPS63295471A (en) Production of oxide superconducting material
JPH042611A (en) Production of superconductor
JPH02196058A (en) Production of superconductor
JPH0459654A (en) Oxide superconductor
JPH01100826A (en) Manufacture of oxide superconductor