JPH01152767A - Manufacture of thin-film solar cell - Google Patents

Manufacture of thin-film solar cell

Info

Publication number
JPH01152767A
JPH01152767A JP62312739A JP31273987A JPH01152767A JP H01152767 A JPH01152767 A JP H01152767A JP 62312739 A JP62312739 A JP 62312739A JP 31273987 A JP31273987 A JP 31273987A JP H01152767 A JPH01152767 A JP H01152767A
Authority
JP
Japan
Prior art keywords
clay
substrate
complex
patterning
metal mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62312739A
Other languages
Japanese (ja)
Inventor
Michio Osawa
道雄 大沢
Yasuhiro Saito
康博 斉藤
Akira Hanabusa
花房 彰
Koshiro Mori
森 幸四郎
Masaharu Ono
大野 雅晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62312739A priority Critical patent/JPH01152767A/en
Publication of JPH01152767A publication Critical patent/JPH01152767A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To eliminate the need for a metallic mask, and to reduce even the cost of a pattern material by drawing and applying a pasty complex such as clay onto substrate directly and patterning the complex through a lift-off. CONSTITUTION:A pasty complex 3 such as clay is applied onto a substrate 1 according to a desired pattern in place of the usage of a metallic mask, a thin-film is formed onto the complex 3, and the pasty complex 3 such as clay is removed, thus acquiring the desired pattern of a thin-film through a lift-off. Consequently, the accuracy of patterning is determined by line width capable of being applied by the directly drawing pasty complex such as clay, thus largely improving the accuracy. A large-area substrate incapable through a metallic mask method is also patterned easily. Patterning is conducted by the pasty complex such as clay and water, thus also reducing running cost.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、粘土等のペースト状複合物を用いて、薄膜を
リフトオフパターンニングすることを特徴とした薄膜太
陽電池の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thin film solar cell, characterized in that the thin film is subjected to lift-off patterning using a paste-like composite such as clay.

従来の技術 従来この種の太陽電池のパターンニング方法は第6図、
第7図に示すようであった。すなわち第6図においてメ
タルマスク了を基板1に密着させ、製膜装置、例えば真
空蒸着装置に入れる。第7図において透明電極層4を製
膜後、メタルマスク7を基板1から離すと基板1上にメ
タルマスク7の窓のパターン通りに透明電極層4のパタ
ーン8が形成される。図では示していないが、このこと
を順次繰り返し、アモルファスシリコンのP、I。
Prior art The conventional patterning method for this type of solar cell is shown in Fig. 6.
It was as shown in Figure 7. That is, in FIG. 6, the metal mask is brought into close contact with the substrate 1 and placed in a film forming apparatus, for example, a vacuum evaporation apparatus. In FIG. 7, after forming the transparent electrode layer 4, when the metal mask 7 is separated from the substrate 1, a pattern 8 of the transparent electrode layer 4 is formed on the substrate 1 in accordance with the window pattern of the metal mask 7. Although not shown in the figure, this process is repeated sequentially to form P and I layers of amorphous silicon.

N層、金属電極層を形成すれば、太陽電池ができ、同時
にパターンの工夫で基板1上に形成した太陽電池間の直
列結線が出来る。
By forming the N layer and the metal electrode layer, a solar cell is completed, and at the same time, by designing a pattern, it is possible to connect the solar cells formed on the substrate 1 in series.

さらに太陽電池の形成と直列結線は図面では示していな
いが、フォトリソグラフィを用いたパターンユング法の
手法でも行なわれていた。
Furthermore, although not shown in the drawings, the formation of solar cells and series connection were also carried out using pattern Jung method using photolithography.

発明が解決しようとする問題点 このような従来の溝成ではメタルマスクを使用するため
に、パターン線巾グの為のパp−−ym巾が、メタルマ
スクの桟を作成できる範囲に限定される問題点があった
。よってメタルマスクの厚み以下のパターン線巾を形成
することは実現困難であった。また透明電極層蒸着、ア
モルファスシリコン層堆積等の熱をかけて製膜する方法
においては、メタルマスクの熱ひずみによりメタルマス
クの桟が基板から浮いてしまい、蒸着物が核内側に回り
込み、基板上にメタルマスクのパターンが正しく転写で
きない問題点があった。さらにメタルマスクを使用する
際て、メタルマスクの桟を正しく直線に保持できる大き
さに制限がらり、基板サイズを大きく出来ないという問
題点があった。また各品種毎、各製膜種類毎に、メタル
マスクをそれぞれ用意する必要があるため、コストアッ
プの要因となっていた。またフォトリングラフィでパタ
ーンニングする方法は、パターンニング精度ハ優れるも
のの、低コスト化を目指す太陽電池にはイニシャルコス
ト′、ランニングコストトモ高イトいう問題点があった
Problems to be Solved by the Invention Since a metal mask is used in such conventional groove formation, the width of the p--ym for pattern line width is limited to a range that allows the creation of metal mask crosspieces. There were some problems. Therefore, it has been difficult to form a pattern line width that is less than the thickness of the metal mask. In addition, in methods that apply heat to form films, such as transparent electrode layer deposition and amorphous silicon layer deposition, thermal distortion of the metal mask causes the metal mask bars to lift off the substrate, causing the deposits to wrap around inside the core and cause the metal mask to form on the substrate. There was a problem that the metal mask pattern could not be transferred correctly. Furthermore, when using a metal mask, there is a limit to the size of the metal mask that allows the crosspieces to be held correctly in a straight line, making it impossible to increase the substrate size. Furthermore, it is necessary to prepare a metal mask for each product type and each type of film formation, which is a factor in increasing costs. Furthermore, although the method of patterning using photolithography has excellent patterning accuracy, it has the problem of high initial costs and high running costs for solar cells that aim to reduce costs.

本発明はこのような問題点を解決するもので、メタルマ
スクの代わりに、粘土等のペースト状複合物を直接基板
上に描画塗布して、リフトオフによるパターンニングを
行なうものである。
The present invention solves these problems, and instead of using a metal mask, a paste-like composite such as clay is drawn and coated directly onto a substrate, and patterning is performed by lift-off.

問題点を解決するための手段 これらの問題を解決するために本発明は、メタルマスク
を使用する代わりに、基板上に粘土等のペースト状複合
物を所望のパターン通りに塗布する。その上に薄膜を形
成した後、粘土等のペースト状複合物を除去することに
より、リフトオフによシ薄膜の所望のパターンを得よう
とするものである。
Means for Solving the Problems In order to solve these problems, the present invention, instead of using a metal mask, applies a paste-like compound such as clay onto a substrate in a desired pattern. After forming a thin film thereon, the paste-like composite such as clay is removed to obtain a desired pattern of the thin film by lift-off.

作  用 この構成により、パターンニングの精度は直接描画する
粘土等のペースト状複合物で塗布できる線巾で決ってく
る。その線巾は、粘土等のペースト状複合物の種類にも
よるが、最小Om05tg+〜0.3gmの線巾で描画
することが出来、メタルマスク使用の線巾精度0.3f
f〜0.5 mm (実用上11n以上)に比べ大幅に
向上する。また粘土等のペースト状複合物は、基板に密
着するので、パターンのぼけは作られない。メタルマス
クを使用した場合パターンニングの大きさの限界が、せ
いぜい16α角程度だったのが、本発明ではその描画限
界は、描画装置のXYステージの大きさで決ることにな
る。さらにメタルマスクが不要のため、各種製膜ごとに
必要だったメタルマスク作成式は不要になり、その作成
期間も短縮できる。また、フォFレジスト等の薬品を使
用せず、粘土等のペースト状複合物と水でパターンニン
グを行なうため、パターンニング材料費も安価である。
Operation With this configuration, the accuracy of patterning is determined by the line width that can be applied with a paste-like compound such as clay that is directly drawn. Although the line width depends on the type of paste-like compound such as clay, it is possible to draw with a minimum line width of Om05tg+~0.3gm, and the line width accuracy using a metal mask is 0.3f.
This is significantly improved compared to f~0.5 mm (11n or more in practice). Furthermore, since the paste-like composite material such as clay adheres closely to the substrate, the pattern does not become blurred. When a metal mask is used, the limit of the patterning size is about 16α angle at most, but in the present invention, the drawing limit is determined by the size of the XY stage of the drawing device. Furthermore, since a metal mask is not required, the metal mask creation process that was required for each type of film formation is no longer necessary, and the manufacturing period can be shortened. Further, since patterning is performed using a paste-like composite such as clay and water without using chemicals such as photo-Fresist, the cost of patterning materials is also low.

実施例 以下本発明の一実施例を添付図面を用いて説明する。第
1図は基板1を示し、第2図においてXYステージによ
って移動しながら任意の位置でノズル2から粘土等のペ
ースト状複合物3、例えばアルミナ、モンモリロナイト
等とを水中で混合しゲル状にしたものを押し出し、基板
1上に所望のパターンに帯状に塗布する。このときの描
画速度は線巾■もよるが、およそ線巾60ミクロン、厚
さ20ミクロンで毎秒3ax〜1oαで描画が出来る。
EXAMPLE An example of the present invention will be described below with reference to the accompanying drawings. Fig. 1 shows a substrate 1, and in Fig. 2, a paste-like compound 3 such as clay, etc., such as alumina, montmorillonite, etc., is mixed in water and made into a gel from a nozzle 2 at an arbitrary position while moving by an XY stage. The material is extruded and applied in a band shape onto the substrate 1 in a desired pattern. Although the drawing speed at this time depends on the line width, it is possible to draw at a rate of 3ax to 1oα per second for a line width of about 60 microns and a thickness of 20 microns.

このようにして、基板に粘土等のペースト状複合物を塗
布した後、乾燥機中で160℃1H乾燥させ、ゲル中に
含まれる水分を除去する。モンモリロナイトは結晶水を
ふくむが、120℃で層間水が放出される。結晶水は、
690℃まで放出されないので、アモルファスシリコン
太陽電池のように比較的低温度で(1so℃〜sso℃
)形成される各種薄膜においては、180’C程度で乾
燥しておけば粘土等のペースト状複合物に含まれる水分
の影響はない。また図では示していないが、直接基板に
粘土等のペースト状複合物を塗布することによって、メ
タルマスクが基板から熱等によυ離れて蒸着物がメタル
マスクの内側に入り込んで基板につくマスクぼけも完全
て解消された。第3図において、乾燥後、透明電極層4
を形成するために、真空蒸着装置中に入れ、透明電極層
4を電子ビーム蒸着によシ形成する。透明電極層4は基
板1および粘土等のペースト状複合物3上に一様につく
。第4図により、透明電極層4形成後、基板1を水中に
入れ、高圧水、ブラシ等で洗浄すると、粘土等のペース
ト状複合物3(アルミナ、モンモリロナイトの混合物)
は再びゲル化して、水中に分散する。このことによって
、粘土等のベースト状複合物3上に形成された、透明電
極層4も同時に剥離され透明電極層4のリフトオフによ
るパターン8が完成する。第5図の断面図において、図
では繰り返してないが、アモルファスシリコン層6.金
属電極層6を同じ手順でパターンニングし、形成した。
After applying a paste-like composite material such as clay to the substrate in this way, it is dried in a dryer at 160° C. for 1 hour to remove water contained in the gel. Montmorillonite contains water of crystallization, but interlayer water is released at 120°C. Crystal water is
Since it is not emitted up to 690℃, it can be used at relatively low temperatures (1so℃~sso℃) like amorphous silicon solar cells.
) The various thin films formed will not be affected by moisture contained in paste-like composites such as clay if they are dried at about 180'C. Also, although not shown in the figure, by applying a paste-like compound such as clay directly to the substrate, the metal mask is separated from the substrate by heat etc., and the vapor deposits enter the inside of the metal mask and stick to the substrate. The blur was completely eliminated. In FIG. 3, after drying, the transparent electrode layer 4
In order to form a transparent electrode layer 4, the transparent electrode layer 4 is formed by electron beam evaporation. The transparent electrode layer 4 is uniformly deposited on the substrate 1 and the paste-like composite material 3 such as clay. As shown in FIG. 4, after forming the transparent electrode layer 4, the substrate 1 is placed in water and washed with high-pressure water, a brush, etc., resulting in a paste-like composite 3 such as clay (a mixture of alumina and montmorillonite).
will gel again and be dispersed in water. As a result, the transparent electrode layer 4 formed on the base-like composite 3 such as clay is also peeled off at the same time, and the pattern 8 is completed by lift-off of the transparent electrode layer 4. In the cross-sectional view of FIG. 5, although not repeated in the figure, an amorphous silicon layer 6. The metal electrode layer 6 was patterned and formed using the same procedure.

これは通常の太陽電池の直列結線図である。This is a typical series connection diagram of solar cells.

発明の効果 以上のように本発明によれば、メタルマスクを使用した
場合に比べ、最小線巾が小さくなり膜間の配線に要する
面積がすくなくてすむ。配線部は光電変換に寄与しない
ため、メタルマスクを使用した方法では、最小線巾が大
きいため光電変換の無効面積は光電変換デバイス中のお
よそ20%以上を占めるが、本発明においてパターンニ
ング形成された光電変換デバイスでは10%程度である
Effects of the Invention As described above, according to the present invention, the minimum line width is smaller than when a metal mask is used, and the area required for inter-film wiring can be reduced. Since the wiring part does not contribute to photoelectric conversion, in the method using a metal mask, the minimum line width is large and the ineffective area for photoelectric conversion accounts for approximately 20% or more of the photoelectric conversion device. However, in the present invention, patterning is performed. For photoelectric conversion devices, it is about 10%.

この改善によって、配線による無効面積がへり、太陽電
池の発電効率は同一面積において10%程度改善向上さ
れることになった。またマスクの熱ひずみによるマスク
ぼけもなくなった。また品種の切り替も容易にでき、メ
タルマスク法で不可能な大面積基板のパターンニングも
容易である。さらに粘土等のペースト状複合物と水でパ
ターンニングをおこなうため、フンニングコストも安価
である。なおこのパターンニング方法ハ、ロールツウ 
ロールで各種薄膜を連続して堆積するときのパターンニ
ング方法としても使用できる。
With this improvement, the ineffective area due to wiring is reduced, and the power generation efficiency of the solar cell is improved by about 10% in the same area. Also, mask blur due to thermal distortion of the mask is no longer present. In addition, it is easy to change the product type, and it is also easy to pattern large-area substrates, which is impossible with the metal mask method. Furthermore, since patterning is performed using a paste-like composite material such as clay and water, the cleaning cost is also low. This patterning method is roll-to-roll.
It can also be used as a patterning method when sequentially depositing various thin films with a roll.

以上のごとく本発明は太陽電池の形成工程上および工業
化の点から利点の多いものである。
As described above, the present invention has many advantages in terms of the solar cell formation process and industrialization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の太陽電池の製造法の一実施例における
基板の斜視図、第2図は本発明の太陽電池の製造法の一
実施例における工程順の図で基板に粘土等のペースト状
複合物を塗布している斜視図、第3図は本発明の太陽電
池の製造法の一実施例における工程順の図で基板に粘土
等のペースト状複合物を塗布乾燥後、基板表面に透明電
極層を堆積している斜視図、第4図は本発明の太陽電池
の製造法の一実施例における工程順の図で基板に透明電
極を堆積後、基板を洗浄し、粘土等のペースト状複合物
およびその上の透明電極層を剥離した斜視図、第6図は
本発明の太陽電池の製造法の一実施例における工程順の
断面図で基板に透明電極層、アモルスアスシリコン層、
金属電極層を順次パターンニングして堆積した図、第6
図は従来のメタルマスクを使用したパターンニング方法
で基板とメタルマスクを重ねた斜視図、第7図は従来の
メタルマスクを使用したパターンニング方法で基板に透
明電極層を形成した後メタルマスクを外した斜視図であ
る。 1・・・・・・基板、2・・・・・・ノズル、3・・・
・・・粘土等のペースト状複合物、4・・・・・・透明
電極層、6・・・・・・アモルファスシリコン層、6・
・・・・・金属電極層、7・・・・・・メタルマスク、
8・・・・・・パターン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/ 
−m−基  板 3− 粘上享功ペースト状複合惣 第1図 ! 第 2 図 1− 基  状 第6図
Fig. 1 is a perspective view of a substrate in an embodiment of the solar cell manufacturing method of the present invention, and Fig. 2 is a diagram showing the process order in an embodiment of the solar cell manufacturing method of the present invention, in which paste of clay or the like is applied to the substrate. Fig. 3 is a perspective view of applying a paste-like composite such as clay, and Fig. 3 is a diagram showing the process order in an embodiment of the solar cell manufacturing method of the present invention.After coating a paste-like composite such as clay on a substrate and drying, FIG. 4 is a perspective view showing the process of depositing a transparent electrode layer, and FIG. FIG. 6 is a perspective view showing a peeled-off transparent electrode layer on a transparent electrode layer on a substrate, and FIG. ,
Figure 6 showing sequential patterning and deposition of metal electrode layers.
The figure is a perspective view of a substrate and a metal mask overlaid using a conventional patterning method using a metal mask. Figure 7 shows a transparent electrode layer formed on a substrate using a conventional patterning method using a metal mask, and then a metal mask is applied. It is a removed perspective view. 1... Board, 2... Nozzle, 3...
... Paste composite such as clay, 4 ... Transparent electrode layer, 6 ... Amorphous silicon layer, 6.
...metal electrode layer, 7...metal mask,
8... Pattern. Name of agent: Patent attorney Toshio Nakao and 1 other person/
-m-Substrate 3- Adhesive paste-like composite composition Figure 1! Figure 2 Figure 1 - Basic figure 6

Claims (1)

【特許請求の範囲】[Claims]  基板上に粘土等のペースト状複合物を吐出して直接描
画後、前記基板上に薄膜を形成したのち前記粘土等のペ
ースト状複合物を除去することにより、前記薄膜の所望
部分をリフトオフパターンニングすることを特徴とする
薄膜太陽電池の製造法。
After direct drawing by discharging a paste-like compound such as clay onto a substrate, a thin film is formed on the substrate, and then the paste-like compound such as clay is removed to perform lift-off patterning on a desired portion of the thin film. A method for manufacturing a thin film solar cell characterized by:
JP62312739A 1987-12-10 1987-12-10 Manufacture of thin-film solar cell Pending JPH01152767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312739A JPH01152767A (en) 1987-12-10 1987-12-10 Manufacture of thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312739A JPH01152767A (en) 1987-12-10 1987-12-10 Manufacture of thin-film solar cell

Publications (1)

Publication Number Publication Date
JPH01152767A true JPH01152767A (en) 1989-06-15

Family

ID=18032836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312739A Pending JPH01152767A (en) 1987-12-10 1987-12-10 Manufacture of thin-film solar cell

Country Status (1)

Country Link
JP (1) JPH01152767A (en)

Similar Documents

Publication Publication Date Title
JPS62129846A (en) Method and apparatus for coating photoresist
JPH01152767A (en) Manufacture of thin-film solar cell
JPH07100868B2 (en) Method for producing a completely or partially coated gold layer
KR920001902B1 (en) Method for producing thermo-transfer film
JPS60131521A (en) Manufacture of liquid-crystal display element
JP2735239B2 (en) Manufacturing method of liquid crystal display device
JP2007188686A (en) Method for activating electron emission surface of field emission type display device
JP4151138B2 (en) Method for forming colored coating
JPS5566113A (en) Manufacture of elastic surface wave device
JPS5838926A (en) Manufacture of transparent resin substrate of liquid crystal display device
JPH01217915A (en) Manufacture of semiconductor device
JPS63119238A (en) Etching
JPS63142821A (en) Manufacture of semiconductor device
JPS61126537A (en) Production of liquid crystal panel
JPS6339664B2 (en)
JPH02266329A (en) Production of liquid crystal display body
JPH08274006A (en) Resist developing method
JPS6031260A (en) Manufacture of hybrid integrated circuit
JPS6318330A (en) Pattern formation of liquid crystal element
JPH07147220A (en) Method of drying coating film
JPS6350073A (en) Manufacture of thin film solar battery
JPS60153125A (en) Formation of film of semiconductor device
JPS62199781A (en) Method for coating resist film
JPH03234034A (en) Manufacture of semiconductor device
JPS61279033A (en) Filming method for color cathode-ray tube