JPH01150223A - Thin-film magnetic recording medium - Google Patents

Thin-film magnetic recording medium

Info

Publication number
JPH01150223A
JPH01150223A JP30900087A JP30900087A JPH01150223A JP H01150223 A JPH01150223 A JP H01150223A JP 30900087 A JP30900087 A JP 30900087A JP 30900087 A JP30900087 A JP 30900087A JP H01150223 A JPH01150223 A JP H01150223A
Authority
JP
Japan
Prior art keywords
layer
magnetic
film
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30900087A
Other languages
Japanese (ja)
Inventor
Yoshisuki Kitamoto
北本 善透
Hitoshi Nawa
名和 仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP30900087A priority Critical patent/JPH01150223A/en
Publication of JPH01150223A publication Critical patent/JPH01150223A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent generation of defects in a magnetic layer by the deterioration of said layer with age and to improve durability by covering a magnetic metallic film essentially consisting of Co with a nonmagnetic oxide film. CONSTITUTION:An Ni-P layer 21 and a Cr layer 22 which are an underlying layer 2 are formed on a substrate 1 consisting of aluminum, etc., and the mag netic layer consisting of CoNi, etc., is formed on these layers. The magnetic layer 3 is oxidized by heating for 5-60min. at 100-300 deg.C in the atm. or ade quate oxygen atmosphere after the formation of the magnetic layer 3 and is thereby converted to CaO and NiO, to form an oxide film 5a having excellent stability. As a result, the magnetic layer 3 is covered with the oxide film having the good stability and, therefore, the cause for the defect to change the characteristics by the deterioration with age is eliminated and the durability is improved.

Description

【発明の詳細な説明】 〔概要〕 薄膜型の磁気記録媒体の耐久性改善に関し、磁性層の耐
久性をより確実に向上可能とすることを目的とし、 非磁性の基板に、Coを主成分とする金属磁性膜が成膜
されている磁気記録媒体において、該金属磁性膜が、当
該金属磁性膜自体を酸化させ、あるいはCr(クローム
)を成膜し、このCr層を酸素雰囲気で加熱処理して形
成した非磁性の酸化膜で覆われているように構成する。
[Detailed Description of the Invention] [Summary] With regard to improving the durability of thin-film magnetic recording media, the purpose of this invention is to more reliably improve the durability of the magnetic layer. In a magnetic recording medium on which a metal magnetic film is formed, the metal magnetic film itself is oxidized, or Cr (chromium) is formed into a film, and this Cr layer is heat-treated in an oxygen atmosphere. The structure is such that it is covered with a nonmagnetic oxide film.

〔産業上の利用分野〕     ゛ 磁気ディスク装置における記録媒体である磁気記録媒体
には、非磁性の円板に磁性塗料を塗布してなる塗膜型と
、Co−NiやCo−Ptなどの磁性金属を成膜して成
る薄膜型と力鴎る。本発明は、後者の薄膜型の磁気記録
媒体の耐久性改善に関する。
[Industrial Application Fields] ゛Magnetic recording media, which are the recording media in magnetic disk devices, include a coated type, which is a non-magnetic disc coated with magnetic paint, and a coated type, which is a non-magnetic disk coated with magnetic paint, and a magnetic recording medium, which is a non-magnetic disk coated with magnetic paint. It is a thin film type made by depositing a metal film. The present invention relates to improving the durability of the latter thin film type magnetic recording medium.

〔従来の技術〕[Conventional technology]

第4図は従来の薄膜磁気記録媒体の全容を示す断面図で
ある。■は例えばアルミニウムなどのような非磁性体か
らなる基板(円板)であり、その上に下地層2、磁性層
3、保護膜4の順に積層されている。
FIG. 4 is a sectional view showing the entire structure of a conventional thin film magnetic recording medium. 2 is a substrate (disk) made of a non-magnetic material such as aluminum, on which a base layer 2, a magnetic layer 3, and a protective film 4 are laminated in this order.

第5図は従来の磁気記録媒体の断面構造を示す図であり
、磁性層3が酸化鉄(γ−FezOi)によって形成さ
れている。基板lばアルミニウムからなっており、その
表面を酸化させてアルマイl−1h03)層を形成する
ことで下地層2としている。磁性層3は、γ−Fe20
.をスパッタ或いは塗布することで形成される。保護膜
4は、カーボンや5i02をスパッタすることで形成さ
れる。
FIG. 5 is a diagram showing a cross-sectional structure of a conventional magnetic recording medium, in which the magnetic layer 3 is formed of iron oxide (γ-FezOi). The substrate 1 is made of aluminum, and the surface thereof is oxidized to form an aluminium 1-1h03) layer, which serves as the base layer 2. The magnetic layer 3 is made of γ-Fe20
.. It is formed by sputtering or coating. The protective film 4 is formed by sputtering carbon or 5i02.

磁性層3は酸化鉄(7Peg’s)から成り、すでに酸
化していて安定性が良いため、変質して欠陥の原因とな
るようなことは少ない。
The magnetic layer 3 is made of iron oxide (7Peg's) and is already oxidized and has good stability, so it is unlikely to change in quality and cause defects.

これに対し、第6図、第7図のように、磁性層3として
、Goを主成分とする金属磁性膜を用いる場合は、磁性
層3の安定性が悪いために、経年変化により磁性層3が
変質し、欠陥を引き起こし易い。
On the other hand, as shown in FIGS. 6 and 7, when a metal magnetic film containing Go as the main component is used as the magnetic layer 3, the stability of the magnetic layer 3 is poor, and the magnetic layer deteriorates over time. 3 is likely to change in quality and cause defects.

第6図は、AIから成る基板1の上に、N1−P層21
とCr層22から成る下地層2を形成し、その上にC0
Niから成る磁性層3を形成している。保護膜4は、C
r層41と0層42の2層構造になっている。
FIG. 6 shows an N1-P layer 21 on a substrate 1 made of AI.
A base layer 2 consisting of a Cr layer 22 is formed, and a C0
A magnetic layer 3 made of Ni is formed. The protective film 4 is made of C
It has a two-layer structure of an r layer 41 and an 0 layer 42.

第7図は、AIから成る基板1の上に、N1−P層21
とCr層22から成る下地層2を形成し、その上にC。
FIG. 7 shows an N1-P layer 21 on a substrate 1 made of AI.
A base layer 2 consisting of a Cr layer 22 and a Cr layer 22 is formed, and a Cr layer 22 is formed thereon.

NiCrから成る磁性層3、Cから成る保護膜4の順に
積層されている。
A magnetic layer 3 made of NiCr and a protective film 4 made of C are laminated in this order.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、Coを主成分とする金属膜を用いる磁気記
録媒体は、耐蝕性が劣るので、第5図のように酸化鉄を
用いた磁気記録媒体に比べて、経時変化を来たし易い。
As described above, a magnetic recording medium using a metal film containing Co as a main component has poor corrosion resistance and is therefore more susceptible to deterioration over time than a magnetic recording medium using iron oxide as shown in FIG.

そのため、SiO□などのような酸化膜で覆ったり、第
6図、第7図のように、CrやCなどのような耐蝕用保
護膜を成膜している。
Therefore, it is covered with an oxide film such as SiO□, or a corrosion-resistant protective film such as Cr or C is formed as shown in FIGS. 6 and 7.

あるいは、第6図のように、磁性膜3中にCrを添加し
て耐蝕性の向上を図っている。
Alternatively, as shown in FIG. 6, Cr is added to the magnetic film 3 to improve the corrosion resistance.

しかしながら、このような耐蝕性処理を行なっても、保
護膜4によって、磁性層3の酸化を確実に防止すること
はできず、磁性層3の経時変化は避けられない。そのた
め、根本的な解決にはならず、酸化鉄を用いた磁気記録
媒体に比べて、耐久性が劣る。
However, even with such anti-corrosion treatment, the protective film 4 cannot reliably prevent oxidation of the magnetic layer 3, and deterioration of the magnetic layer 3 over time is unavoidable. Therefore, it does not provide a fundamental solution, and the durability is inferior to magnetic recording media using iron oxide.

本発明の技術的課題は、従来の金属磁性膜を用いる薄膜
磁気記録媒体におけるこのような問題を解消し、金属磁
性膜の耐久性をより確実に向上可能とすることにある。
A technical object of the present invention is to eliminate such problems in conventional thin film magnetic recording media using metal magnetic films and to more reliably improve the durability of metal magnetic films.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による薄膜磁気記録媒体の基本原理を説
明する図である。lは非磁性の基板であり、その上に、
Coを主成分とする金属磁性膜3が成膜されている。基
板1と金属磁性膜3との間に、適当な材質の下地層を形
成してもよい。
FIG. 1 is a diagram explaining the basic principle of a thin film magnetic recording medium according to the present invention. l is a non-magnetic substrate, on which
A metal magnetic film 3 containing Co as a main component is formed. A base layer of an appropriate material may be formed between the substrate 1 and the metal magnetic film 3.

金属磁性膜3は、非磁性の酸化膜5で覆われている。The metal magnetic film 3 is covered with a nonmagnetic oxide film 5.

〔作用〕[Effect]

このように本発明では、安定性の悪い金属磁性膜3が、
酸化膜5で覆われている。この酸化膜5は、すでに酸化
していて、安定性が良いために、保護膜としての機能が
良く、その下の磁性層3の酸化が確実に防止される。そ
の結果、磁性層3の安定性が向上し、経時変化が抑制さ
れ、欠陥の発生率が低下する。
In this way, in the present invention, the metal magnetic film 3 with poor stability is
It is covered with an oxide film 5. Since this oxide film 5 has already been oxidized and has good stability, it functions well as a protective film and reliably prevents oxidation of the magnetic layer 3 thereunder. As a result, the stability of the magnetic layer 3 is improved, changes over time are suppressed, and the incidence of defects is reduced.

〔実施例〕〔Example〕

次に本発明による薄膜磁気記録媒体が実際上どのように
具体化されるかを実施例で説明する。第2図は本発明の
第1実施例を示す断面図である。
Next, how the thin film magnetic recording medium according to the present invention is actually implemented will be explained using examples. FIG. 2 is a sectional view showing a first embodiment of the present invention.

アルミニウムなどから成る基板1の上に、下地層2とし
てN1−P層21とCr層22が成膜されている。そし
てその上に、CoN iあるいはCoN iCrなどか
ら成る磁性層3が形成されている。磁性層3は、スパッ
タ法やメツキ法、蒸着などの手法で形成される。
An N1-P layer 21 and a Cr layer 22 are formed as a base layer 2 on a substrate 1 made of aluminum or the like. A magnetic layer 3 made of CoN i or CoN iCr is formed thereon. The magnetic layer 3 is formed by a method such as a sputtering method, a plating method, or a vapor deposition method.

この実施例では、CoNi等から成る磁性層3の表面を
酸化させることで、表面に酸化膜5aを形成している。
In this embodiment, the surface of the magnetic layer 3 made of CoNi or the like is oxidized to form an oxide film 5a on the surface.

すなわち、磁性層3の成膜後に、大気中で或いは適切な
酸素雰囲気下において、100〜300°Cで、5〜6
0m1n間加熱処理し、磁性層3の表面のみ酸化させる
。すると、Coo、NiOに変化し、安定性に優れた酸
化膜5aとなる。このとき、CoN i層3として数百
λ程度成膜し、その表面の数十人程度を強制的に酸化さ
せるのがよい。
That is, after forming the magnetic layer 3, it was heated for 5 to 6 hours at 100 to 300°C in the air or under an appropriate oxygen atmosphere.
Heat treatment is performed for 0 m1n to oxidize only the surface of the magnetic layer 3. Then, the oxide film 5a changes to Coo and NiO and has excellent stability. At this time, it is preferable to form a CoN i layer 3 of about several hundred λ and forcibly oxidize about several tens of layers on its surface.

あるいは、連続スパッタ装置において、Cr層22の上
に、CoN iあるいはCoNiCrなどを連続スパッ
タした後、0.05〜Q、1Torrの酸素分圧下にお
いて、100〜300°Cで5〜6抛in間加熱し、そ
の後C膜をスパッタにより成膜してもよい。
Alternatively, in a continuous sputtering device, after continuously sputtering CoNi or CoNiCr on the Cr layer 22, sputtering is performed at 100 to 300°C for 5 to 6 inches under an oxygen partial pressure of 0.05 to Q and 1 Torr. After heating, a C film may be formed by sputtering.

このようにして作成した酸化膜5aの上に、保護膜4と
してCを成膜する。
C is formed as a protective film 4 on the oxide film 5a thus created.

こうして作成された磁気記録媒体を、80°C180%
の高温多湿雰囲気で、100時間保持した後、従来の磁
気記録媒体と欠陥増加を比較した。その結、果、従来の
磁気記録媒体は欠陥増加が2〜10倍であったのに対し
、本発明の磁気記録媒体では、欠陥の増加は認められな
かった。
The magnetic recording medium thus created was heated at 80°C180%.
After being held for 100 hours in a high temperature and humid atmosphere, the increase in defects was compared with that of a conventional magnetic recording medium. As a result, while the conventional magnetic recording medium had a 2 to 10 times increase in defects, the magnetic recording medium of the present invention showed no increase in defects.

第3図は本発明の第2の実施例であり、アルミニウムな
どから成る基板1の上に、下地層2としてN1−P層2
1とCr層22が成膜されている。そしてその上に、C
oNiあるいはCoN icrなどから成る磁性層3を
形成している。磁性層3は、CoNi (Cr)をスパ
ッタ法やメツキ法、蒸着などの手法で形成される。
FIG. 3 shows a second embodiment of the present invention, in which an N1-P layer 2 is placed as a base layer 2 on a substrate 1 made of aluminum or the like.
1 and a Cr layer 22 are formed. And on top of that, C
A magnetic layer 3 made of oNi or CoNicr is formed. The magnetic layer 3 is formed of CoNi (Cr) by a sputtering method, a plating method, a vapor deposition method, or the like.

この実施例では、CoNi (Cr)から成る磁性層3
の表面に、耐蝕性金属としてCrを酸素雰囲気中で成膜
する。または、Crを成膜した後に、大気中であるいは
適切な酸素分圧下で強制的に酸化させることで、Cr、
03膜5bを形成する。すなわち、磁性層3の上にCr
を成膜した後、大気中において100〜300°Cで5
 min間程度、強制的に加熱し酸化させる。
In this embodiment, a magnetic layer 3 made of CoNi (Cr) is used.
A film of Cr as a corrosion-resistant metal is formed on the surface of the substrate in an oxygen atmosphere. Alternatively, after forming a Cr film, by forcibly oxidizing it in the atmosphere or under an appropriate oxygen partial pressure, Cr,
03 film 5b is formed. That is, Cr is formed on the magnetic layer 3.
After forming a film, it was heated at 100 to 300°C in the atmosphere for 5
Forcibly heat and oxidize for about 10 minutes.

このとき、磁性層3として数百人程度成膜し、その上に
数十人程度の酸化膜5bを形成するのが良い。
At this time, it is preferable to form the magnetic layer 3 by about several hundred layers, and then form the oxide film 5b by about several tens of layers thereon.

このようにして作成した酸化膜5bの上に、保護膜4と
してCを成膜する。
C is formed as a protective film 4 on the oxide film 5b thus created.

この実施例の磁気記録媒体を、80°C180%の高温
多湿雰囲気で、100時間保持した後、従来の磁気記録
媒体と欠陥増加を比較した。その結果、従来の磁気記録
媒体は欠陥増加が2〜10倍であったのに対し、本実施
例の磁気記録媒体では、欠陥の増加は認められなかった
After holding the magnetic recording medium of this example in a high temperature and high humidity atmosphere of 80°C and 180% for 100 hours, the increase in defects was compared with that of a conventional magnetic recording medium. As a result, while the conventional magnetic recording medium had a 2 to 10 times increase in defects, the magnetic recording medium of this example showed no increase in defects.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、すでに酸化していて安定
性にすぐれた酸化膜により、磁性層3が覆われているた
め、磁性層3が経時変化により特性変化し、欠陥の原因
となるような問題は解消される。
As described above, according to the present invention, since the magnetic layer 3 is covered with an oxide film that has already been oxidized and has excellent stability, the properties of the magnetic layer 3 change over time, causing defects. Such problems will be resolved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気記録媒体の基本原理を説
明する図、第2図は本発明の第1実施例を示す断面図、
第3図は本発明の第2実施例を示す断面図、第4図は薄
膜磁気記録媒体の全容を示す断面図、第5図は従来の酸
化鉄型磁気記録媒体を示す断面図、第6図、第゛7図は
従来の金属磁性膜型磁気記録媒体を示す断面図である。 図において、1は基板、2は下地層、3は磁性層、4は
保護膜、5.5a、5bは酸化膜をそれぞれ示す。 A象発日月の#水原浬 第1図 第1大施例 第2図 82友施例 第3図 第4図 第5図 第6図      第7図
FIG. 1 is a diagram explaining the basic principle of a thin film magnetic recording medium according to the present invention, FIG. 2 is a cross-sectional view showing a first embodiment of the present invention,
FIG. 3 is a sectional view showing a second embodiment of the present invention, FIG. 4 is a sectional view showing the entire thin film magnetic recording medium, FIG. 5 is a sectional view showing a conventional iron oxide magnetic recording medium, and FIG. FIG. 7 is a sectional view showing a conventional metal magnetic film type magnetic recording medium. In the figure, 1 is a substrate, 2 is an underlayer, 3 is a magnetic layer, 4 is a protective film, and 5.5a and 5b are oxide films, respectively. #Mizuwon of the sun and moon of A. Fig. 1. Large example. Fig. 2. 82 friend example. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7.

Claims (3)

【特許請求の範囲】[Claims] (1)非磁性の基板1に、Coを主成分とする金属磁性
膜3が成膜されている磁気記録媒体において、該金属磁
性膜3が、非磁性の酸化膜5で覆われていることを特徴
とする薄膜磁気記録媒体。
(1) In a magnetic recording medium in which a metal magnetic film 3 mainly composed of Co is formed on a nonmagnetic substrate 1, the metal magnetic film 3 is covered with a nonmagnetic oxide film 5. A thin film magnetic recording medium characterized by:
(2)前記の酸化膜5は、前記の金属磁性膜3の表面を
酸化させることで形成されたものであることを特徴とす
る特許請求の範囲第(1)項記載の薄膜磁気記録媒体。
(2) The thin film magnetic recording medium according to claim (1), wherein the oxide film 5 is formed by oxidizing the surface of the metal magnetic film 3.
(3)前記の酸化膜5は、前記の金属磁性膜3の上にC
rを成膜し、該Cr層を、酸素の存在する雰囲気で加熱
処理することで酸化させたものであることを特徴とする
特許請求の範囲第(1)項記載の薄膜磁気記録媒体。
(3) The oxide film 5 is formed of C on the metal magnetic film 3.
2. The thin film magnetic recording medium according to claim 1, wherein the Cr layer is oxidized by heat treatment in an atmosphere containing oxygen.
JP30900087A 1987-12-07 1987-12-07 Thin-film magnetic recording medium Pending JPH01150223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30900087A JPH01150223A (en) 1987-12-07 1987-12-07 Thin-film magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30900087A JPH01150223A (en) 1987-12-07 1987-12-07 Thin-film magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH01150223A true JPH01150223A (en) 1989-06-13

Family

ID=17987709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30900087A Pending JPH01150223A (en) 1987-12-07 1987-12-07 Thin-film magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH01150223A (en)

Similar Documents

Publication Publication Date Title
JPH0580804B2 (en)
JPH01150223A (en) Thin-film magnetic recording medium
JPH044649B2 (en)
JP2540479B2 (en) Magnetic memory
JPS61222021A (en) Magnetic recording medium
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JP2644994B2 (en) Disk-shaped magnetic recording medium
JPH02161612A (en) Magnetic disk medium
JPS61294635A (en) Magnetic recording medium
JPH06223366A (en) Magnetic recording medium
JPS59157837A (en) Magnetic recording medium
JPH09320031A (en) Magnetic recording medium
JPS6342021A (en) Magnetic recording medium
JP2857136B2 (en) Magnetic recording medium and method of manufacturing the same
JPS62141628A (en) Magnetic recording medium
JPS57117118A (en) Thin film magnetic head
JPS5982637A (en) Vertical magnetic recording medium
JP2004046948A (en) Method for manufacturing magnetic recording medium
JPS62226414A (en) Magnetic recording medium
JPS6182321A (en) Magnetic recording medium
JPS59112427A (en) Magnetic recording medium
JPS6314320A (en) Magnetic recording medium
JPS5826320A (en) Magnetic recording medium
JPS6035332A (en) Magnetic storage body
JPH10112019A (en) Magnetic recording medium and its production