JPH0114689B2 - - Google Patents

Info

Publication number
JPH0114689B2
JPH0114689B2 JP59191677A JP19167784A JPH0114689B2 JP H0114689 B2 JPH0114689 B2 JP H0114689B2 JP 59191677 A JP59191677 A JP 59191677A JP 19167784 A JP19167784 A JP 19167784A JP H0114689 B2 JPH0114689 B2 JP H0114689B2
Authority
JP
Japan
Prior art keywords
silicon film
laser beam
substrate
argon ion
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59191677A
Other languages
Japanese (ja)
Other versions
JPS6170714A (en
Inventor
Masakazu Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59191677A priority Critical patent/JPS6170714A/en
Publication of JPS6170714A publication Critical patent/JPS6170714A/en
Publication of JPH0114689B2 publication Critical patent/JPH0114689B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザビームを用いて絶縁体のシリコ
ン膜を再結晶化する方法に関するもので、LSIの
高速化や三次元化等に利用される。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method of recrystallizing an insulating silicon film using a laser beam, and is used for increasing the speed of LSI, making it three-dimensional, etc. .

〔従来技術とその問題点〕[Prior art and its problems]

絶縁体上のシリコン膜を再結晶化する手法の一
つとして、レーザビームを照射して非晶質又は多
結晶シリコン膜を一度溶融して再び固化するとい
ういわゆるレーザ再結晶化法が知られている。
As one of the methods for recrystallizing a silicon film on an insulator, the so-called laser recrystallization method is known, in which the amorphous or polycrystalline silicon film is irradiated with a laser beam to melt the amorphous or polycrystalline silicon film and then solidify it again. There is.

この場合、レーザとしては一般に連続発振のア
ルゴン(Ar)イオンレーザやネオジム・ヤグ
(Nd:YAG)レーザが用いられているが照射さ
れる試料構造との組み合わせにより一長一短があ
る。
In this case, a continuous wave argon (Ar) ion laser or a neodymium YAG (Nd:YAG) laser is generally used as the laser, but these have advantages and disadvantages depending on the combination with the sample structure to be irradiated.

4880Åの発振波長を有するアルゴンイオンレー
ザは、シリコン膜中によく吸収されるため、波長
のより長いネオジム・ヤグレーザ(発振波長
1.06μm)に比べて小さなレーザパワー密度でシ
リコン膜を再結晶化することができる。又、レー
ザパワーの安定度もネオジム・ヤグレーザよりも
良いという利点を有する。然しながら、アルゴン
イオンレーザはガスレーザであるため固体レーザ
であるネオジム・ヤグレーザに比べて電気エネル
ギーを光に変換する効率が小さく、又得られるレ
ーザパワーもずつと少ない。このため再結晶化に
おいて、ビーム径を大きくすることができず、ウ
エーハ全面を再結晶化するのに時間を要する。
The argon ion laser, which has an oscillation wavelength of 4880 Å, is well absorbed in the silicon film, so the neodymium YAG laser (oscillation wavelength
It is possible to recrystallize a silicon film with a lower laser power density than that of 1.06 μm). It also has the advantage of better stability of laser power than neodymium YAG laser. However, since the argon ion laser is a gas laser, the efficiency of converting electrical energy into light is lower than that of the neodymium YAG laser, which is a solid state laser, and the laser power obtained is also lower. Therefore, in recrystallization, the beam diameter cannot be increased, and it takes time to recrystallize the entire wafer.

これに対してネオジム・ヤグレーザは得られる
パワーや電気エネルギーを光に変換する効率が大
きいばかりでなく、ガラスフアイバーの中を通過
させることにより簡単にビーム径方向の強度分布
を平坦にでき、かつレーザビームを任意の所へ容
易に伝送することができるという利点を有する。
しかし、ネオジム・ヤグレーザビームに対するシ
リコン膜の吸収率が小さく、シリコン膜の再結晶
化に対してエネルギー的に効率が悪いという欠点
を有する。
On the other hand, neodymium YAG lasers not only have high efficiency in converting the power and electrical energy obtained into light, but also can easily flatten the intensity distribution in the beam radial direction by passing through a glass fiber. It has the advantage that the beam can be easily transmitted to any location.
However, the silicon film has a low absorption rate with respect to the neodymium YAG laser beam, and has the disadvantage of being inefficient in terms of energy for recrystallization of the silicon film.

さらにシリコン基板表面を熱酸化したものを
SOI形成用の基板として用いた場合には、シリコ
ン膜を透過したネオジム・ヤグレーザビームがシ
リコン基板内に侵入し、シリコン基板自体も局所
的に加熱され、このためシリコン基板にスリツプ
等の結晶欠陥や局所的な変形が生ずるという欠点
をももたらす。
Furthermore, the silicon substrate surface is thermally oxidized.
When used as a substrate for SOI formation, the neodymium YAG laser beam that has passed through the silicon film penetrates into the silicon substrate, and the silicon substrate itself is locally heated, causing crystal defects such as slips in the silicon substrate. This also brings about the disadvantage that local deformation occurs.

シリコンを基板として用いる場合には、基板表
面にあらかじめデバイスを形成しておくことがで
き、LSIの三次元化に有効である。従つてLSIの
三次元化を考えた場合には、アルゴンイオンレー
ザが有用である。しかし前述したようにアルゴン
イオンレーザは固体レーザに比べて出力が小さ
く、従つてシリコン膜を溶融するにはビーム径を
大きくできずウエーハ全面を再結晶化するのに長
時間を要する。基板全体を700℃ていど以上の高
温に加熱すればシリコン膜の光吸収係数は大きく
なるため低いパワー密度でもシリコン膜を溶融す
ることが可能となり大きなビーム径で再結晶化を
おこなうことができる。しかし基板全体を高温に
すると、三次元化の場合には既に形成されたデバ
イスを破壊したり特性を劣化させてしまうことか
ら再結晶化時の基板加熱温度を高くすることがで
きない。
When silicon is used as a substrate, devices can be formed on the surface of the substrate in advance, which is effective for making LSI three-dimensional. Therefore, when considering three-dimensional LSI, an argon ion laser is useful. However, as mentioned above, the output of the argon ion laser is lower than that of a solid-state laser, so the beam diameter cannot be increased to melt the silicon film, and it takes a long time to recrystallize the entire surface of the wafer. If the entire substrate is heated to a high temperature of 700°C or higher, the optical absorption coefficient of the silicon film will increase, making it possible to melt the silicon film even with low power density and recrystallization with a large beam diameter. However, if the entire substrate is heated to a high temperature, the substrate heating temperature during recrystallization cannot be increased because in the case of three-dimensionalization, devices that have already been formed will be destroyed or their characteristics will deteriorate.

〔発明の目的〕[Purpose of the invention]

本発明の目的はレーザビームで絶縁体上のシリ
コン膜を再結晶化する方法における従来のかかる
欠点を改善し、基板全体を高温で加熱することな
しに低いレーザパワー密度でもシリコン膜を再結
晶化することが可能な方法を提供することにあ
る。
The purpose of the present invention is to improve the conventional method of recrystallizing a silicon film on an insulator using a laser beam, and to recrystallize a silicon film even at a low laser power density without heating the entire substrate at a high temperature. Our goal is to provide a method that allows you to do so.

〔発明の概要〕[Summary of the invention]

本発明は絶縁体基板の製造に工夫を施し、かつ
連続発振アルゴンイオンレーザビームと連続発振
ネオジム・ヤグレーザビームの両方を同時に照射
することにより従来よりも大きなビーム径でシリ
コン膜を再結晶化することを可能とするものであ
る。
The present invention improves the manufacturing of the insulator substrate, and recrystallizes the silicon film with a beam diameter larger than conventional methods by simultaneously irradiating both a continuous wave argon ion laser beam and a continuous wave neodymium/yag laser beam. This is what makes it possible.

本発明の方法の一例を第2図に示す。シリコン
基板4上に形成された絶縁膜3,6の間にゲルマ
ニウム層5を設けた構造の基板を用いる。シリコ
ン膜2の再結晶化に際してアルゴンイオンレーザ
ビーム1とネオジム・ヤグレーザビーム7を同時
に重ねて照射する。ネオジム・ヤグレーザビーム
7はシリコン膜2にはあまり吸収されないがゲル
マニウム層5には殆んど吸収されてしまう。一方
アルゴンイオンレーザビーム1の大部分はシリコ
ン膜2に吸収される。即ちネオジム・ヤグレーザ
ビーム7は主にゲルマニウム層5を加熱し、アル
ゴンイオンレーザビーム1は主にシリコン膜2を
加熱する効果を有する。
An example of the method of the present invention is shown in FIG. A substrate having a structure in which a germanium layer 5 is provided between insulating films 3 and 6 formed on a silicon substrate 4 is used. When recrystallizing the silicon film 2, the argon ion laser beam 1 and the neodymium YAG laser beam 7 are irradiated simultaneously. The neodymium YAG laser beam 7 is not absorbed much by the silicon film 2, but is almost absorbed by the germanium layer 5. On the other hand, most of the argon ion laser beam 1 is absorbed by the silicon film 2. That is, the neodymium YAG laser beam 7 mainly has the effect of heating the germanium layer 5, and the argon ion laser beam 1 has the effect of mainly heating the silicon film 2.

従つて、これら2つのレーザビームを用いるこ
とにより、再結晶化すべきシリコン膜2および該
シリコン膜2とシリコン基板4との中間領域の加
熱状態をほぼ独立に制御することが可能となる。
Therefore, by using these two laser beams, it becomes possible to almost independently control the heating state of the silicon film 2 to be recrystallized and the intermediate region between the silicon film 2 and the silicon substrate 4.

ネオジム・ヤグレーザビーム7によつてゲルマ
ニウム層5が加熱されることによりシリコン膜2
も下方から加熱される。シリコン膜2の温度が高
くなるにつれ光吸収率も大きくなるためシリコン
膜2を溶融するために必要なアルゴンイオンレー
ザ1のパワー密度は従来(第1図)よりも小さく
てすみ、その分ビーム径を大きくすることができ
る。
As the germanium layer 5 is heated by the neodymium YAG laser beam 7, the silicon film 2 is heated.
is also heated from below. As the temperature of the silicon film 2 increases, the light absorption rate also increases, so the power density of the argon ion laser 1 required to melt the silicon film 2 is smaller than that of the conventional method (Fig. 1), and the beam diameter is reduced accordingly. can be made larger.

このように本発明はゲルマニウム層を含む新規
な基板構造を用い、かつアルゴンイオンレーザビ
ームとネオジム・ヤグレーザビームの2つを同時
に照射することを特徴としたもので従来の方法と
は異なつた再結晶化方法を提供するものである。
As described above, the present invention uses a novel substrate structure including a germanium layer and is characterized by simultaneous irradiation with two argon ion laser beams and a neodymium YAG laser beam, which is different from conventional methods. A crystallization method is provided.

〔実施例〕〔Example〕

第2図に示すような構造の基板作成についてま
ず説明する。シリコン基板表面の熱酸化とCVD
法により2μmの厚さの二酸化シリコン(SiO2
を形成し、絶縁膜3として用いた。
First, the preparation of a substrate having a structure as shown in FIG. 2 will be explained. Thermal oxidation and CVD of silicon substrate surface
Silicon dioxide (SiO 2 ) with a thickness of 2 μm by method
was formed and used as the insulating film 3.

次に、ゲルマン(GeH4)ガスの熱分解を用い
た減圧化学気相堆積法により430℃、1Torrの条
件で0.4μmの厚さのゲルマニウム層5を該絶縁膜
3上に堆積した。
Next, a germanium layer 5 with a thickness of 0.4 μm was deposited on the insulating film 3 at 430° C. and 1 Torr by a low-pressure chemical vapor deposition method using thermal decomposition of germane (GeH 4 ) gas.

次にスパツター法により0.2μmの厚さの二酸化
シリコンからなる絶縁膜6を該ゲルマニウム層5
上に堆積した。そしてさらに減圧化学気相堆積法
により700℃で0.7μmの厚さのポリシリコン膜2
を該絶縁膜6上に堆積した。
Next, an insulating film 6 made of silicon dioxide with a thickness of 0.2 μm is applied to the germanium layer 5 by a sputtering method.
deposited on top. Then, a polysilicon film 2 with a thickness of 0.7 μm was formed at 700°C by low-pressure chemical vapor deposition.
was deposited on the insulating film 6.

次に、このような構造の基板に対して連続発振
ネオジム・ヤグレーザビーム7と連続発振アルゴ
ンイオンレーザビーム1とを同時に照射してシリ
コン膜2の再結晶化をおこなつた。ネオジム・ヤ
グレーザビーム7の照射領域はアルゴンイオンレ
ーザビーム1の照射領域を完全に包含している。
ネオジム・ヤグレーザビーム7としてはレーザ発
振器からでてきたマルチモードのレーザビームを
コア径300μm、長さ10mの光フアイバー中を通
過させたものを用いた。光フアイバー中を通過さ
せた後にネオジム・ヤグレーザビームとアルゴン
イオンレーザビームとの光路を同一にした。
Next, the substrate having such a structure was simultaneously irradiated with a continuous wave neodymium YAG laser beam 7 and a continuous wave argon ion laser beam 1 to recrystallize the silicon film 2. The irradiation area of the neodymium YAG laser beam 7 completely encompasses the irradiation area of the argon ion laser beam 1.
As the neodymium YAG laser beam 7, a multimode laser beam emitted from a laser oscillator was passed through an optical fiber with a core diameter of 300 μm and a length of 10 m. After passing through the optical fiber, the neodymium Yag laser beam and the argon ion laser beam were made to have the same optical path.

基板全体を300℃程度に加熱し、2つのレーザ
ビームをシリコン膜2の面にほぼ垂直に入射さ
せ、基板を毎秒10mmの速度で移動させることによ
りシリコン膜2の再結晶化をおこなつた。
The silicon film 2 was recrystallized by heating the entire substrate to about 300° C., making two laser beams enter the surface of the silicon film 2 almost perpendicularly, and moving the substrate at a speed of 10 mm/sec.

その結果、従来の方法(第1図)に比べて1/3
程度のアルゴンイオンレーザパワーでシリコン膜
2を溶融することができ、かつシリコン基板4に
スリツプ等の欠陥や局所的な変形を生じさせるこ
となくシリコン膜2を再結晶化することができ
た。
As a result, compared to the conventional method (Figure 1), the
The silicon film 2 could be melted with a certain argon ion laser power, and the silicon film 2 could be recrystallized without causing defects such as slips or local deformation in the silicon substrate 4.

又、この方法によりシリコン膜2を溶融するた
めのアルゴンイオンレーザのビーム径を従来の
80μmから140μmに広げることができた。
In addition, by this method, the beam diameter of the argon ion laser for melting the silicon film 2 has been changed from the conventional one.
We were able to widen it from 80μm to 140μm.

〔発明の効果〕〔Effect of the invention〕

本発明を用いることにより基板全体を高温に加
熱しなくとも、再結晶化すべきシリコン膜の直下
をネオジム・ヤグレーザビームにより局所的に加
熱することができ、そのような高温状態のシリコ
ン膜をアルゴンイオンレーザビームで溶融するた
め従来よりも小さなパワー密度で、すなわち一度
に大面積を再結晶化することができる。
By using the present invention, it is possible to locally heat the area just below the silicon film to be recrystallized using a neodymium YAG laser beam without heating the entire substrate to a high temperature. Because it is melted with an ion laser beam, it is possible to recrystallize a large area at once with a lower power density than conventional methods.

またシリコン膜2の溶融状態をパワー変動の小
さなアルゴンイオンレーザビームで行なうためネ
オジム・ヤグレーザビームのみで再結晶化した場
合に比べて、再結晶化シリコン膜表面の平坦性
(表面凹凸が1/2ていどになる)、単結晶粒の大き
さ(2倍以上になる)の点で優れている。
In addition, since the silicon film 2 is melted using an argon ion laser beam with small power fluctuations, the surface flatness of the recrystallized silicon film (the surface irregularities are 1/2 It is superior in terms of single crystal grain size (more than double) and single crystal grain size (more than twice as large).

また本発明はシリコン基板表面にあらかじめデ
バイスを形成しておいても、このデバイスを破壊
することなくシリコン膜直下を局所的に加熱でき
るため積層デバイス用基板の製造に対しても有効
でありLSIの高速化や三次元化に多大の効果をも
たらすものである。
Furthermore, even if a device is formed on the surface of a silicon substrate in advance, the present invention can locally heat the area directly under the silicon film without destroying the device, so it is also effective for manufacturing substrates for laminated devices, and is effective for manufacturing LSI devices. This has great effects on speeding up and three-dimensionalization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法の一例を示すための断面
図。第2図は本発明の方法の一例を示すための断
面図。 1……アルゴンイオンレーザビーム、2……シ
リコン膜、3,6……絶縁膜、4……シリコン基
板、5……ゲルマニウム層、7……ネオジム・ヤ
グレーザビーム。
FIG. 1 is a sectional view showing an example of a conventional method. FIG. 2 is a sectional view showing an example of the method of the present invention. 1...Argon ion laser beam, 2...Silicon film, 3, 6...Insulating film, 4...Silicon substrate, 5...Germanium layer, 7...Neodymium YAG laser beam.

Claims (1)

【特許請求の範囲】[Claims] 1 レーザビーム照射により絶縁体上のシリコン
膜を再結晶化する方法において、再結晶化すべき
シリコン膜に接している絶縁膜の下方に少なくと
もゲルマニウム層を設けておき、連続発振ネオジ
ム・ヤグレーザビームと連続発振アルゴンイオン
レーザビームとを重ねて同時に照射して該シリコ
ン膜を再結晶化することを特徴とするシリコン膜
再結晶化方法。
1 In a method of recrystallizing a silicon film on an insulator by laser beam irradiation, at least a germanium layer is provided below the insulating film in contact with the silicon film to be recrystallized, and a continuous wave neodymium YAG laser beam is used. A method for recrystallizing a silicon film, comprising recrystallizing the silicon film by simultaneously irradiating the same with a continuous wave argon ion laser beam.
JP59191677A 1984-09-14 1984-09-14 Recrystallizing method of silicon film Granted JPS6170714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191677A JPS6170714A (en) 1984-09-14 1984-09-14 Recrystallizing method of silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191677A JPS6170714A (en) 1984-09-14 1984-09-14 Recrystallizing method of silicon film

Publications (2)

Publication Number Publication Date
JPS6170714A JPS6170714A (en) 1986-04-11
JPH0114689B2 true JPH0114689B2 (en) 1989-03-14

Family

ID=16278615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191677A Granted JPS6170714A (en) 1984-09-14 1984-09-14 Recrystallizing method of silicon film

Country Status (1)

Country Link
JP (1) JPS6170714A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2938116B1 (en) * 2008-11-04 2011-03-11 Aplinov METHOD AND DEVICE FOR HEATING A LAYER OF A PLATE BY PRIMING AND LUMINOUS FLUX

Also Published As

Publication number Publication date
JPS6170714A (en) 1986-04-11

Similar Documents

Publication Publication Date Title
US4751193A (en) Method of making SOI recrystallized layers by short spatially uniform light pulses
EP0127323B1 (en) A process for producing a single crystal semiconductor island on an insulator
JPH084067B2 (en) Method for manufacturing semiconductor device
JP3221149B2 (en) Heat treatment method for thin film
JP3252403B2 (en) Laser irradiation apparatus and method for forming silicon thin film
JPH027415A (en) Formation of soi thin film
JPH0114689B2 (en)
JPH07120802B2 (en) Method for manufacturing semiconductor device
JPS6170713A (en) Recrystallizing method of silicon film
JP2929660B2 (en) Method for manufacturing semiconductor device
JPH0779080B2 (en) Method for converting a polycrystalline or amorphous semiconductor material into a single crystal semiconductor material
JPS5833822A (en) Preparation of semiconductor substrate
JP2838155B2 (en) Method for manufacturing thin film transistor
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
JPH03284831A (en) Forming method for semiconductor thin-film
JPH0442358B2 (en)
JPS61266387A (en) Method for recrystallizing semiconductor thin film with laser
JPH10125614A (en) Laser irradiating device
JPS60229330A (en) Manufacture of semiconductor device
JPS59158514A (en) Manufacture of semiconductor device
JPH02181911A (en) Manufacture of semiconductor single-crystal thin film
JPS62219510A (en) Formation of single crystal island region
JPS60127722A (en) Manufacture of semiconductor device
JPS60254723A (en) Manufacture of semiconductor device
JPS5939023A (en) Manufacture of semiconductor thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term