JPH01146321A - Compound semiconductor substrate - Google Patents

Compound semiconductor substrate

Info

Publication number
JPH01146321A
JPH01146321A JP30618587A JP30618587A JPH01146321A JP H01146321 A JPH01146321 A JP H01146321A JP 30618587 A JP30618587 A JP 30618587A JP 30618587 A JP30618587 A JP 30618587A JP H01146321 A JPH01146321 A JP H01146321A
Authority
JP
Japan
Prior art keywords
layer
inp
substrate
layers
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30618587A
Other languages
Japanese (ja)
Other versions
JPH0834178B2 (en
Inventor
Akinori Seki
章憲 関
Fumihiro Atsunushi
厚主 文弘
Atsushi Kudo
淳 工藤
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62306185A priority Critical patent/JPH0834178B2/en
Priority to US07/193,400 priority patent/US5011550A/en
Priority to EP88304383A priority patent/EP0291346B1/en
Publication of JPH01146321A publication Critical patent/JPH01146321A/en
Publication of JPH0834178B2 publication Critical patent/JPH0834178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To control a crystal defect which is generated in case a III-V compound semiconductor layer is formed on a group IV metal semiconductor substrate, and to obtain an InP layer having little crystal defect and of higher quality by a method wherein a first InP layer and a layer formed by laminating alternately an InAsXP1-X thin layer and an InP thin layer are laminated on the Si substrate and a third InP layer is formed thereon. CONSTITUTION:A compound semiconductor laminated layer constituted by laminating at least three layers of a first semiconductor layer 2 consisting of InP, a second semi conductor layer 3 formed by laminating alternately an InAsXP1-X (0<x<1) thin layer 4 and an InP thin layer 5 and a third semiconductor layer 6 consisting of InP is formed on an Si substrate 1. For example, the substrate 1 cleansed in HF aqueous solution prior to a growth is used and a heat treatment is performed in a PH3+H2-containing atmosphere for 10 minutes or thereabouts at 1000 deg.C. Subsequently, after temperature is lowered down to 400-700 deg.C and the layer 2 is formed in a film thickness of 10-3000nm, the thin film alternate layer 3 formed by laminating the layers 4 and 5 having a film thickness of 2.5-100nm in 10-30 layers is formed as the second semiconductor layer at the temperature of 400-7000 deg.C. Moreover, the formation of the InP layer 6 of a layer thickness of 2-5mum is performed continuously.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、シリコン(Si)基板上に形成したインジウ
ム・リン(InP)の結晶欠陥の低減とそれに伴なう高
品質化を可能とする積層構造を有した化合物半導体基板
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention makes it possible to reduce crystal defects in indium phosphide (InP) formed on a silicon (Si) substrate and to improve the quality accordingly. The present invention relates to a compound semiconductor substrate having a layered structure.

〈従来の技術〉 近年、化合物半導体の薄膜結晶成長技術の発展は著しく
、半導体レーザー、太陽電池や2次元電子ガスを利用し
た超高速デバイスなど様々な特徴デバイスが作製されて
いる。しかしながら、これらのデバイスは基板に■−■
族化合物半導体基板を用いている為、非常に高価なもの
となり、非常にもろく破損しやすい。又、結晶成長の困
難さから大面積化を狙うことも困難である等の諸問題を
有している。そこで、安価で結晶性が良く、大面積の基
板が得られる■族生導体基板上にIII−V族化合物半
導体を形成する技術が注目され、特にSi基板上へのG
aAsの薄膜結晶成長技術に関する研究が盛んに行なわ
れるようになった。
<Prior Art> In recent years, thin film crystal growth technology for compound semiconductors has made remarkable progress, and various characteristic devices such as semiconductor lasers, solar cells, and ultrahigh-speed devices using two-dimensional electron gas have been manufactured. However, these devices have
Since it uses a group compound semiconductor substrate, it is very expensive, and it is very brittle and easily damaged. In addition, it has various problems such as difficulty in growing the crystal, making it difficult to increase the area. Therefore, the technology of forming a III-V compound semiconductor on a group III raw conductor substrate, which is inexpensive, has good crystallinity, and has a large area, is attracting attention.
Research on aAs thin film crystal growth technology has become active.

Si基板上にGaAs薄膜を成長させる従来技術として
は、GaAsを最初低温で薄く成長させ、更に昇温して
GaAsを厚く成長させる2段階成長法(特公昭6l−
70715)、Si基板とGaAsとの間にGe中間層
を用いる方法(IEEE ElectronDevic
e Lett、EDL−2,169(1981) )、
GaAs及びこれと格子定数の近い他のl[l−V族化
合物半導体とからなる交互層を中間層に用いる方法等が
提案され、FETや発光ダイオード、半導体レーザー等
が試作されている。又、最近では、更に良好なGaAs
薄膜を得る為にI nGaAsとGaAsの歪超格子層
を形成し、良好な特性が得られるようになってきた(A
ppl、 Phys、 Lett、 48(1986)
1223)。
A conventional technique for growing a GaAs thin film on a Si substrate is a two-step growth method (Japanese Patent Publication No. Sho 6l-1) in which GaAs is first grown thinly at a low temperature, and then the temperature is raised to grow it thickly.
70715), a method using a Ge intermediate layer between a Si substrate and GaAs (IEEE Electron Device
e Lett, EDL-2, 169 (1981)),
A method of using alternating layers of GaAs and other l[l-V group compound semiconductors with similar lattice constants as intermediate layers has been proposed, and FETs, light emitting diodes, semiconductor lasers, etc. have been prototyped. In addition, recently, even better GaAs
In order to obtain thin films, strained superlattice layers of InGaAs and GaAs have been formed, and good characteristics have been obtained (A
ppl, Phys, Lett, 48 (1986)
1223).

一方、GaAsに比べ電子のピーク速度が大きく、熱伝
導率も大きい■−v族化合物半導体にInPがあシ、G
aAsより高い周波数で動作し、かつより高出力のマイ
クロ波電力増幅素子が得られる可能性があるとして有望
視されている。
On the other hand, compared to GaAs, the peak velocity of electrons is higher and the thermal conductivity is higher.
It is considered to be promising as it may be possible to obtain a microwave power amplification element that operates at a higher frequency than aAs and has a higher output.

〈発明が解決しようとする問題点〉 InP基板はGaAsより一層高価であるとともに大口
径のものが得られず(現状2インチ形状)、市販の基板
の結晶品質としても欠陥密度が10’m−2程度のもの
しか得られていない。これらの欠点を克服するために、
InPについてもSi基板上に結晶成長させる研究が進
展しつつある。しかしながら数件の報告があるものの結
晶品質はまだ十分なものとは言えず、これをデバイスに
まで応用した例は少ない。SiとInPとの格子定数差
は8.L%と、SiとGaAsの格子定数差の約2倍程
度あること及びInPの解離圧が高いことから成長中に
Pの脱離が起き易く、表面モ7オロジーを悪化させると
いう問題があり、結晶品質向上を困難にしていた。特に
上記した数件の報告は、所謂2段階成長法により、In
PをSi基板上に直接成長させたものなどが含まれてい
るが、いずれも大きな格子不整や応力の影響を緩和する
ことが出来ず、結晶品質の低下があり、再現性よく成長
層を得ることは困難である。
<Problems to be solved by the invention> InP substrates are more expensive than GaAs, large-diameter ones cannot be obtained (currently 2-inch shapes), and the crystal quality of commercially available substrates has a defect density of 10'm- Only about 2 items were obtained. To overcome these shortcomings,
Research on crystal growth of InP on Si substrates is also progressing. However, although there have been several reports, the crystal quality is still not satisfactory, and there are few examples of its application to devices. The difference in lattice constant between Si and InP is 8. L% is approximately twice the difference in lattice constant between Si and GaAs, and the dissociation pressure of InP is high, so P is easily desorbed during growth and the surface morphology deteriorates. This made it difficult to improve crystal quality. In particular, the several reports mentioned above show that In
These methods include those in which P is grown directly on a Si substrate, but none of these methods can alleviate the effects of large lattice misalignments and stress, resulting in a decrease in crystal quality, and it is difficult to obtain a grown layer with good reproducibility. That is difficult.

この問題に対し、本発明者等はJ、J、A、 P。Regarding this problem, the present inventors J, J, A, P.

Lett、26(1987JL1587に示したように
、GaAs中間層を用いることにより、4インチSi基
板上に良質のInP層が再現性よく全面にわたり育成で
きる技術を開発している。しかしながら、このようにし
て得られたInPエピタキシャル層に於いても結晶欠陥
密度(エツチングビット密度;EPD)で1〜2 X 
10’ cm−2と不充分な特性しか得られておらず、
デバイスへの実用化に於いては更に良好な結晶の育成つ
まり高品質化(欠陥低減)が必要とされる0 本発明は、上記の点に鑑みて創案されたものであり、■
族生導体基板(特にSi等)上にInPのような格子不
整の大きなIII−V族化合物半導体を形成した場合に
発生する結晶欠陥を制御し、結晶欠陥の少ない、より高
品質なInP層を提供することを目的としており、これ
を可能とする化合物半導体基板を提案するものである。
Lett, 26 (1987 JL1587), by using a GaAs intermediate layer, we have developed a technology that allows a high-quality InP layer to be grown over the entire surface with good reproducibility on a 4-inch Si substrate.However, in this way, The obtained InP epitaxial layer also has a crystal defect density (etching bit density; EPD) of 1 to 2
Only insufficient characteristics were obtained at 10' cm-2,
For practical application to devices, even better crystal growth, that is, higher quality (defect reduction) is required. The present invention was created in view of the above points.
By controlling the crystal defects that occur when a III-V compound semiconductor with large lattice misalignment, such as InP, is formed on a semiconductor substrate (particularly Si, etc.), we can create a higher quality InP layer with fewer crystal defects. We propose a compound semiconductor substrate that makes this possible.

く問題点を解決する手段及び作用〉 上記の目的を達成するため、本発明の化合物半導体基板
は、Si基板上に第1のInP層及びI nAsxP 
1−x (0< x < 1 )薄層とInP薄層を交
互に積層してなる交互層を基板側から順に積層し、更に
その上に目的とする第2のInP層を形成した構造とな
したものである。
Means and operation for solving the above problems> In order to achieve the above object, the compound semiconductor substrate of the present invention has a first InP layer and an InAsxP layer on a Si substrate.
A structure in which alternating layers of 1-x (0 < x < 1) thin layers and InP thin layers are laminated in order from the substrate side, and a desired second InP layer is further formed thereon. This is what was done.

これは従来技術である歪超格子層のInP層への応用技
術となり、母体となる第1のInP層に応力を加えるこ
とによシ、このInP層中の結晶欠陥を曲げたり、終端
させることによりこのInP表面に貫通、露出する結晶
欠陥の低減を行ない、より高品質なInP層の形成を行
なうものである。
This is a technology applied to the InP layer of the strained superlattice layer, which is a conventional technology, and by applying stress to the first InP layer, which is the base material, crystal defects in the InP layer can be bent or terminated. This reduces crystal defects penetrating and exposing the InP surface, thereby forming a higher quality InP layer.

InPに比べ大きな格子定数を有した工nASxP1−
X(X二0.01〜0.20 )を用いることは、Si
 (あるいはGaAs)Cd8.dにaA3<dBnp
、)との格子不整により第1のInP層に発生した圧縮
応力に対し、反対の引張応力をこのInPに加えること
になり、このInP結晶中の内部応力の低減にも有効で
あることが予想される。又、これに対し、■nXGa1
−XAsも考えられるが、第1のInP層上へのInG
aAs成長時に於いてP抜けに係わるInP界面の乱れ
等がInP結晶の高品質化を抑制することも考えられ、
以上の理由よりI nA s xP 、−X/InP交
互層が本目的に有効であることが期待される。
Engineering nASxP1- with a larger lattice constant than InP
Using X (X20.01~0.20) means that Si
(or GaAs)Cd8. d to aA3<dBnp
In contrast to the compressive stress generated in the first InP layer due to the lattice mismatch with be done. In addition, on the other hand, ■nXGa1
-XAs is also considered, but InG on the first InP layer
It is also possible that disturbances at the InP interface related to P elimination during aAs growth inhibit the high quality of InP crystals.
For the above reasons, it is expected that I nA s xP , -X/InP alternating layers are effective for this purpose.

上記の説明の通シ、交互層を構成する■−■族化合物混
晶としてはI n A s x P 1  xが有効で
あるが、このような交互層を形成する場合には、交互層
間に於ける格子不整により、更に新たな結晶欠陥が発生
し、必らずしも高品質化が行なわれない場合があり、交
互層の形成には各種形成条件(成長温度、X値、交互層
の層厚、暦数、成長速度環々少の適正化が必要である。
As per the above explanation, I n A s x P 1 x is effective as the ■-■ group compound mixed crystal constituting the alternating layers, but when forming such alternating layers, Due to lattice misalignment, new crystal defects may occur, and high quality may not necessarily be achieved. Various formation conditions (growth temperature, X value, alternating layer It is necessary to optimize the layer thickness, number of cycles, and growth rate.

混晶比Xについてはx=0.1程度、あるいはそれ以下
が好ましく、また交互層の各層の膜厚としては100A
程度以下になすのが好ましく、10〜20A8度とする
のが好適でちゃ、また層数としては30層程度以下にす
るのが好ましく、10〜20層程度と程度のが好適であ
る。
The mixed crystal ratio X is preferably about 0.1 or less, and the thickness of each layer of the alternating layers is 100A.
The number of layers is preferably about 30 or less, preferably about 10 to 20 layers.

又、上記のような構造を有した化合物半導体基板の育成
時あるいは育成後に於いて、育成温度より100〜25
0℃程度高い温度に於いて熱処理を施すことにより、よ
り結晶欠陥の少ない高品質なInP層を有した化合物半
導体基板の形成が可能となる。
In addition, during or after the growth of a compound semiconductor substrate having the above structure, the temperature is 100 to 25° below the growth temperature.
By performing heat treatment at a temperature approximately 0° C. higher, it is possible to form a compound semiconductor substrate having a high quality InP layer with fewer crystal defects.

〈実施例〉 以下、図面を参照しながら、本発明に係る実施例を詳細
に説明する。
<Example> Hereinafter, an example according to the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例に係わる化合物半導体基板の
構造断面を示す図である。
FIG. 1 is a diagram showing a structural cross section of a compound semiconductor substrate according to an embodiment of the present invention.

第1図に於いて1は■族生導体基板であるSi基板、2
は第1の半導体層であるInP層、3は第2の半導体層
としての薄膜交互層であり、I nAsXP 1−x層
4とInP層5を交互に積層することにより構成してい
る。6は目的とする第3の半導体層のInP層で、これ
らによシ、化合物半導体基板を構成している。
In Fig. 1, 1 is a Si substrate, which is a group II raw conductor substrate, and 2
3 is an InP layer as a first semiconductor layer, and 3 is an alternating thin film layer as a second semiconductor layer, which is constructed by alternately stacking InAsXP 1-x layers 4 and InP layers 5. Reference numeral 6 denotes an InP layer which is a third semiconductor layer, which together constitute a compound semiconductor substrate.

上記第1図に示す構造?実現する一方法として、減圧M
OCVD法を用いた0ここでは、反応管内圧は100〜
25Torrに減圧して用いるが、大気圧に於いても形
成は可能である。
The structure shown in Figure 1 above? One way to achieve this is by reducing the pressure M
0 using the OCVD method, the reaction tube internal pressure is 100~
Although it is used at a reduced pressure of 25 Torr, it is also possible to form it at atmospheric pressure.

下地基板1は成長に先立ちHF水溶液中で洗浄された4
インチ形状のSi基板を用い、1000℃にて10分程
度、PH3+H2雰囲気にて熱処理を行なう。続いて4
00〜700℃に降温し、第1の半導体層であるInP
層をlO〜3000nmの膜厚にて形成後、400〜7
00℃にて第2の半導体層として夫々2.5〜100 
nrn膜厚を有したI n A s x P 1 ++
 x層4とInP層5を交互に10〜30層積層した薄
膜交互層3を形成した。更に連続して目的とする層厚2
〜5μmのInP層6の形成を行った。
The underlying substrate 1 was cleaned in an HF aqueous solution prior to growth 4
Using an inch-shaped Si substrate, heat treatment is performed at 1000° C. for about 10 minutes in a PH3+H2 atmosphere. followed by 4
The temperature is lowered to 00 to 700°C, and the first semiconductor layer, InP
After forming a layer with a thickness of lO~3000nm, 400~7
2.5 to 100 as the second semiconductor layer at 00°C.
I n A s x P 1 ++ with nrn film thickness
A thin film alternating layer 3 was formed by laminating 10 to 30 x layers 4 and InP layers 5 alternately. Furthermore, the desired layer thickness 2
An InP layer 6 of ~5 μm was formed.

ここで用いた原料ガスは、InP層(2,3及び6)形
成時にはトリメチルインジウム(TMI)とホスフィ7
 (PH3)を用い、更にInAsXPl−x層4につ
いてはTMI 、アルシン(AsH3) 及DPH3を
用いた。夫々の供給量は、InP層(2゜3及び6)形
成時は、TMIを5.6X10−5(モル分率)、PH
3とTMIの供給比で70〜1000二て行った。又、
InAs  P   に於いては、上X   1−X 記と同% T M I供給量及びPH3とTMI供給比
を夫々5.6X10”−5(モル分率)及び70〜10
00と設定し、A s H3供給量としては必要とする
X値(混晶比)が得られるようA s H3とPH3の
供給比を設定した。以上の原料ガスをH2にて稀釈する
ことにより反応管内総流量は15t/minとした。
The raw material gases used here were trimethylindium (TMI) and phosphide 7 when forming the InP layers (2, 3 and 6).
(PH3), and for the InAsXPl-x layer 4, TMI, arsine (AsH3) and DPH3 were used. When forming the InP layers (2°3 and 6), the respective supply amounts were 5.6 x 10-5 (mole fraction) for TMI and 5.6 x 10-5 (mole fraction) for PH.
The feed ratio of TMI and TMI was 70 to 1000. or,
In InAs P, the same % TMI supply amount and PH3 and TMI supply ratio as above
00, and the supply ratio of As H3 and PH3 was set so that the required X value (mixed crystal ratio) could be obtained as the As H3 supply amount. By diluting the above raw material gas with H2, the total flow rate in the reaction tube was set to 15 t/min.

第2図は本発明の他の実施例の化合物半導体基板の構造
断面を示す図であシ、第1図と同一部分は同一符号で示
している。
FIG. 2 is a diagram showing a structural cross section of a compound semiconductor substrate according to another embodiment of the present invention, and the same parts as in FIG. 1 are indicated by the same symbols.

第2図において、lは■族生導体基板であるSi基板、
7はSi基板上に形成した中間層としてのGaAs層で
あ゛す、低温形成GaAs層8及びGaAs層9の2層
構造となしている。2は第1の半導体層としてのInP
層であり、低温形成InP層10及びInP層11の2
層構造となしている。3は第2の半導体層としての薄膜
交互層全体を示しており、この薄膜交互層3はInAs
XPl−x(0<x<1 )層4及びInP層5を交互
に複数層積層して構成している。更にこの薄膜交互層3
の上に目的とする第3の半導体層としてのInP層を積
層することにより、本発明の一実施例としての化合物半
導体基板を構成している。
In FIG. 2, l is a Si substrate which is a group III raw conductor substrate;
Reference numeral 7 denotes a GaAs layer as an intermediate layer formed on a Si substrate, and has a two-layer structure of a low-temperature formed GaAs layer 8 and a GaAs layer 9. 2 is InP as the first semiconductor layer
2 of the low-temperature formed InP layer 10 and InP layer 11.
It has a layered structure. 3 shows the entire alternating thin film layer as the second semiconductor layer, and this alternating thin film layer 3 is made of InAs.
A plurality of XPl-x (0<x<1) layers 4 and InP layers 5 are alternately stacked. Furthermore, this thin film alternating layer 3
A compound semiconductor substrate as an embodiment of the present invention is constructed by laminating an InP layer as a third semiconductor layer on the substrate.

上記第2図に示す構造を実現する一方法として減圧MO
CVD法を用いた。ここでは、反応管内圧は100〜2
5Torrに減圧して用いているが、大気圧に於いても
形成が可能である。
One way to realize the structure shown in Figure 2 above is by using reduced pressure MO.
CVD method was used. Here, the reaction tube internal pressure is 100~2
Although the pressure is reduced to 5 Torr, it can be formed at atmospheric pressure as well.

下地基板1としては、結晶成長に先立ちHF水溶液中で
洗浄された4インチ形状のSi基板を用い、1000℃
にてlO分程度A S H3+H2雰囲気にて熱処理を
行なう。続いて400℃に降温し、低温形成GaAs中
間層8を10〜20 nmの層厚にて形成した後、60
0℃まで昇温し、GaAs中間層9を20〜looon
mの層厚にて形成した。引き続き、400℃に降温し、
低温形成InP層10を10〜20 nm層厚にて形成
した後、600℃まで昇温し、InP層11を10〜3
00Onm層厚にて形成した。更にこの温度に保持し、
夫々2.5〜l OOnm膜厚を有したI n A s
 x P 1−x層4とInP層5を交互に10〜30
層積層し、薄膜交互層3を形成した。更に連続して目的
とする層厚2〜5μmのInP層6の形成を行った。
As the base substrate 1, a 4-inch Si substrate was used that had been cleaned in an HF aqueous solution prior to crystal growth, and was heated at 1000°C.
Heat treatment is performed in an A S H3+H2 atmosphere for about 10 minutes. Subsequently, the temperature was lowered to 400°C, and a low-temperature formed GaAs intermediate layer 8 was formed with a layer thickness of 10 to 20 nm.
Raise the temperature to 0°C and heat the GaAs intermediate layer 9 to 20~looon.
It was formed with a layer thickness of m. The temperature continued to drop to 400℃,
After forming the InP layer 10 with a thickness of 10 to 20 nm at a low temperature, the temperature is raised to 600°C, and the InP layer 11 is formed with a thickness of 10 to 30 nm.
It was formed with a layer thickness of 00 Onm. Furthermore, maintain this temperature,
I n A s with a film thickness of 2.5 to 1 OO nm, respectively.
x P 1-x layer 4 and InP layer 5 alternately 10 to 30
The layers were laminated to form alternating thin film layers 3. Furthermore, an InP layer 6 having a desired layer thickness of 2 to 5 μm was continuously formed.

ここで用いた原料ガスの供給条件としては、GaAs層
(8及び9)の形成時には、トリエチルガリウム(TE
G)とアルシン(AsHa)を用い、又InP層(4,
5,6,10及び11)形成時にはトリメチルインジウ
ム(TMI )とホスフィン(PH3)を用い、更にI
 nAs XP 1−xについては、TMIとA s 
H3とPH3を用いた。夫々の供給量は、GaAs層(
8及び9)形成時にはTEGは2.5X10  (モル
分率へA s H3とTEGの供給比は100.InP
層4,5.6.10及び11)形成時には、TMIは5
.6X10’(モル分率)であり、PH3とTMIの供
給比で70〜2ooにて行っている。又、■nAsXP
1−xに於いては、上記と同様TMI供給量及びPH3
とTMI供給比を夫々5.6X10−5 (モル分率)
及び70〜200と設定し、A s H3供給量として
は、必要とするX値(混晶比)が得られるようにA s
 H3とPH3の供給比を設定した。以上の原料ガスを
H2にて稀釈することにより、反応管内総流量は15t
/minとした。
The raw material gas supply conditions used here were such that when forming the GaAs layers (8 and 9), triethyl gallium (TE
G) and arsine (AsHa), and also an InP layer (4,
When forming 5, 6, 10 and 11), trimethylindium (TMI) and phosphine (PH3) were used, and I
For nAs XP 1-x, TMI and As
H3 and PH3 were used. The supply amount of each is the same as that of the GaAs layer (
8 and 9) During formation, TEG is 2.5X10 (to molar fraction As H3 and TEG supply ratio is 100.InP
When forming layers 4, 5, 6, 10 and 11), the TMI is 5
.. 6X10' (mole fraction), and the supply ratio of PH3 and TMI is 70 to 2oo. Also, ■nAsXP
In 1-x, the TMI supply amount and PH3 are the same as above.
and TMI supply ratio respectively 5.6X10-5 (mole fraction)
and 70 to 200, and the A s H3 supply amount is set so that the required X value (mixed crystal ratio) can be obtained.
The supply ratio of H3 and PH3 was set. By diluting the above raw material gas with H2, the total flow rate in the reaction tube was 15t.
/min.

結果として、本実施例に於ける全条件に於いて、4イン
チSi基板全面に亘9、鏡面な(平坦性の良好な)In
P層が得られ、その層厚分布としては、±8%以下とい
う良好な均一性を有したInP層が得られた。又、光学
顕微鏡による観察より、約12μm層厚のInP層に於
いてもクラックの発生は認められない。このことは、I
nP層の残留応力が少ないことに対応するものであり、
比較的厚い層厚を必要とするデバイス(例えばLED等
)を形成する場合にも非常に有用である。更に、HBr
+H3P04(臭化水素+リン酸)溶液によるエツチン
グパターン形状により、シングルドメインのInP単結
晶層が4インチSi基板全面に於いて得られていること
を確認した。又、上記エツチングにより発生したビット
は結晶欠陥に対応するものであり、その単位面積当りの
密度は1×107個・口 と、■nAsXP1−X層4
とInP層5からなる薄膜交互層3を介さない場合(0
,5〜2X108蘭・cm)に比べ、低減されておシ、
交互層3を挿入することにより、より高品質なInP層
6が得られていることを確認した。
As a result, under all conditions in this example, mirror-finished (good flatness) In
A P layer was obtained, and an InP layer having good uniformity of layer thickness distribution of ±8% or less was obtained. Further, observation using an optical microscope shows that no cracks are observed even in the InP layer with a thickness of approximately 12 μm. This means that I
This corresponds to the fact that the residual stress in the nP layer is small.
It is also very useful when forming devices that require relatively large layer thicknesses, such as LEDs. Furthermore, HBr
It was confirmed that a single domain InP single crystal layer was obtained over the entire surface of the 4-inch Si substrate based on the etching pattern shape using +H3P04 (hydrogen bromide + phosphoric acid) solution. In addition, the bits generated by the above etching correspond to crystal defects, and the density per unit area is 1 x 107 bits.
In the case where there is no intervening thin film alternating layer 3 consisting of and InP layer 5 (0
,5~2X108 orchid cm), it is reduced,
It was confirmed that by inserting the alternating layers 3, a higher quality InP layer 6 was obtained.

又、代表的な積層構造としては525μm膜厚の5i(
100)基板1あるいは3 off  toward<
110>基板を用い、成長に先立ち1000℃で0.0
15TorrのPH3を含むH2雰囲気下にて10m1
n間熱処理を行ない、続いて、その基板1上に低温形成
GaAs層(中間層)8を10OA、400℃にて形成
した後、600℃まで昇温し、GaAs層9を100O
A形成した。更に400℃にてバッフ7層として低温形
成InP層lOを20OA形成後、600℃にてInP
層11を2μm形成した。続いて600℃にて薄膜交互
層3として、100Aの膜厚のI nA S O,1P
 0.9層と10OAの膜厚のInP層5を交互に5層
ずつ合わせて合計10層(a膜厚2000A)を形成し
た。更に、目的とするInP層6を600℃の温度にて
2〜4μm膜厚で形成し、化合物半導体積層構造?得た
。本試料に於いても欠陥密度は−IX1071固/、 
と良質なInP層が得られた。
In addition, a typical laminated structure is 5i (525 μm thick)
100) Substrate 1 or 3 off toward<
0.0 at 1000°C prior to growth using a 110> substrate.
10m1 under H2 atmosphere containing 15Torr of PH3
A heat treatment is performed for 100°C, and then a low-temperature formed GaAs layer (intermediate layer) 8 is formed on the substrate 1 at 10OA and 400°C, and then the temperature is raised to 600°C, and the GaAs layer 9 is
A was formed. Furthermore, after forming 20OA of low-temperature InP layer lO as 7 buffer layers at 400°C, InP layer was formed at 600°C.
The layer 11 was formed to have a thickness of 2 μm. Subsequently, I nA SO,1P with a film thickness of 100A was formed as a thin film alternating layer 3 at 600°C.
A total of 10 layers (a film thickness of 2000 Å) were formed by alternately combining 5 InP layers 5 each having a thickness of 0.9 and 10 OA. Furthermore, the desired InP layer 6 is formed at a temperature of 600° C. to a thickness of 2 to 4 μm to form a compound semiconductor stacked structure? Obtained. In this sample as well, the defect density is -IX1071 solid/,
A high quality InP layer was obtained.

このように本実施例により、前述の結晶欠陥の低減によ
り、より高品質なInP層を有した化合物半導体基板が
4インチSi基板上に形成することが可能となった。
In this way, according to this example, a compound semiconductor substrate having a higher quality InP layer can be formed on a 4-inch Si substrate by reducing the crystal defects described above.

尚、本実施例は、化合物半導体基板の形成に於ける一例
であり、形成条件の一層の適正化や、成長後に成長温度
以上の昇温状態に於て熱処理を施すなどの方法により、
更に結晶欠陥の低い、高品質なInP層を有した化合物
半導体基板が得られる。
This example is an example of the formation of a compound semiconductor substrate, and by further optimizing the formation conditions and performing heat treatment at a temperature higher than the growth temperature after growth,
Furthermore, a compound semiconductor substrate having a high quality InP layer with low crystal defects can be obtained.

〈発明の効果〉 以上のように本発明はSi基板上に格子不整の大きいI
nPを形成する場合に発生する欠陥を、I n A s
 x P 1− xとInPからなる薄膜又互層を利用
した新しい化合物半導体積層構造を用いることによシ、
低減するようになしたものであり、その結果、より高品
質なInP層を有した化合物半導体基板が安価で得られ
るようになり、しかもその大口径化もげ能となる。又、
比較的剛性の秀れたSi基板を用いていることより、ハ
ンドリング性も良く、取シ扱いが容易となる。
<Effects of the Invention> As described above, the present invention provides an I
The defects that occur when forming nP are called I n A s
By using a new compound semiconductor stacked structure using thin films or alternating layers of x P 1- x and InP,
As a result, a compound semiconductor substrate having a higher quality InP layer can be obtained at a lower cost, and its deformation capacity can be increased by increasing the diameter. or,
Since the Si substrate is used, which has relatively high rigidity, it has good handling properties and is easy to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る一実施例の構造を模式的に示す断
面図、第2図は本発明に係わる他の実施例の構造を模式
的に示す断面図である。 1・・・Si基板、2・・・第1の半導体層(InP層
9.3・・・第2の半導体層(薄膜交互層)、4・・・
InAsXPl−x層、5・・・InP層、6・・・第
3の半導体層(InP層)、7−GaAs層(中間J−
)、8・・・低温形成GaAs層(中間層)、9−Ga
As(中間層)、10・・・低温形成InP層、11・
・・InP層。
FIG. 1 is a cross-sectional view schematically showing the structure of one embodiment of the present invention, and FIG. 2 is a cross-sectional view schematically showing the structure of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Si substrate, 2...1st semiconductor layer (InP layer 9.3...2nd semiconductor layer (alternating thin film layer), 4...
InAsXPl-x layer, 5...InP layer, 6... third semiconductor layer (InP layer), 7-GaAs layer (intermediate J-
), 8... Low temperature formed GaAs layer (intermediate layer), 9-Ga
As (intermediate layer), 10... Low temperature formed InP layer, 11.
...InP layer.

Claims (1)

【特許請求の範囲】 1、シリコン(Si)基板上に、 InPからなる第1の半導体層、 InAs_xP_1_−_x(0<x<1)薄層とIn
P薄層とを交互に積層してなる第2の半導体層、 InPからなる第3の半導体層 の少なくとも3層を積層した化合物半導体積層を形成し
てなることを特徴とする化合物半導体基板。 2、前記化合物半導体積層は、前記Si基板と前記In
Pからなる第1の半導体層との間に中間層としてGaA
s層を有してなることを特徴とする特許請求の範囲第1
項記載の化合物半導体基板。 3、前記第2の半導体層を構成するInAs_xP_1
_−_x層及びInP層は、各々約100nm以下の膜
厚を有し、かつ交互に約30層以下の層数にて積層した
構造となしたことを特徴とする特許請求の範囲第1項記
載の化合物半導体基板。
[Claims] 1. On a silicon (Si) substrate, a first semiconductor layer made of InP, an InAs_xP_1_-_x (0<x<1) thin layer and an InP
1. A compound semiconductor substrate characterized in that a compound semiconductor laminated layer is formed by laminating at least three layers: a second semiconductor layer formed by alternately laminating P thin layers, and a third semiconductor layer made of InP. 2. The compound semiconductor stack includes the Si substrate and the In
GaA is used as an intermediate layer between the first semiconductor layer made of P and the first semiconductor layer made of P.
Claim 1 characterized in that it has an s layer.
The compound semiconductor substrate described in Section 1. 3. InAs_xP_1 constituting the second semiconductor layer
Claim 1, characterized in that the ____x layer and the InP layer each have a thickness of about 100 nm or less, and are alternately laminated in a number of about 30 or less layers. The compound semiconductor substrate described.
JP62306185A 1987-05-13 1987-12-03 Compound semiconductor substrate Expired - Fee Related JPH0834178B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62306185A JPH0834178B2 (en) 1987-12-03 1987-12-03 Compound semiconductor substrate
US07/193,400 US5011550A (en) 1987-05-13 1988-05-12 Laminated structure of compound semiconductors
EP88304383A EP0291346B1 (en) 1987-05-13 1988-05-13 A laminated structure of compound semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62306185A JPH0834178B2 (en) 1987-12-03 1987-12-03 Compound semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH01146321A true JPH01146321A (en) 1989-06-08
JPH0834178B2 JPH0834178B2 (en) 1996-03-29

Family

ID=17954046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62306185A Expired - Fee Related JPH0834178B2 (en) 1987-05-13 1987-12-03 Compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH0834178B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL PHYS LETT=1986 *
JAPANESE JOURNAL OF APPLIED PHYSICS=1987 *

Also Published As

Publication number Publication date
JPH0834178B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
US9799737B2 (en) Method for forming group III/V conformal layers on silicon substrates
JP2669368B2 (en) Method for manufacturing compound semiconductor laminated structure on Si substrate
JP4991828B2 (en) Method for manufacturing gallium nitride compound semiconductor
US5011550A (en) Laminated structure of compound semiconductors
KR20100090767A (en) Semiconductor substrate, method for producing semiconductor substrate, and electronic device
JP4883931B2 (en) Manufacturing method of semiconductor laminated substrate
JP2010225870A (en) Semiconductor element
JPH0760791B2 (en) Compound semiconductor substrate
KR20040016724A (en) Nitride semiconductor and fabrication method for thereof
JPH09255496A (en) Method for growing gallium nitride crystal
JP2000150388A (en) Iii nitride semiconductor thin film and manufacture thereof
JPH01146321A (en) Compound semiconductor substrate
JPH0760790B2 (en) Compound semiconductor substrate
JP3681540B2 (en) Semiconductor manufacturing method, semiconductor device manufacturing method, and semiconductor substrate manufacturing method
JP2880984B2 (en) Compound semiconductor substrate
CN218351490U (en) Silicon-based epitaxial wafer and semiconductor device
CN101901760A (en) MOCVD growing method of polar c-plane GaN based on c-plane SiC substrate
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP3169064B2 (en) Fabrication method of semiconductor three-dimensional quantum structure
KR100520744B1 (en) The method of vertical stacking of self assembled quantum dots using temperature alternating in spacer layer growth step
JPH02156522A (en) Manufacture of semiconductor device
JP2003046199A (en) Method for manufacturing ii-vi group device using porous film and its structure
JPS621224A (en) Semiconductor element structure
JP4862749B2 (en) Method for fabricating III-V compound semiconductor optical device
TWI387999B (en) Compound semiconductor epitaxial wafer and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees