JPH01144570A - Solid electrolyte type fuel cell - Google Patents

Solid electrolyte type fuel cell

Info

Publication number
JPH01144570A
JPH01144570A JP62302740A JP30274087A JPH01144570A JP H01144570 A JPH01144570 A JP H01144570A JP 62302740 A JP62302740 A JP 62302740A JP 30274087 A JP30274087 A JP 30274087A JP H01144570 A JPH01144570 A JP H01144570A
Authority
JP
Japan
Prior art keywords
fuel
flat plate
air
cell
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62302740A
Other languages
Japanese (ja)
Inventor
Masatoshi Kudome
正敏 久留
Eishiro Sasagawa
英四郎 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62302740A priority Critical patent/JPH01144570A/en
Publication of JPH01144570A publication Critical patent/JPH01144570A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce the effect of the camber of a structure material due to heat by arranging multiple laminated bodies each constituted of a rectangular flat plate-shaped fuel electrode, a solid electrolyte and an air electrode in the lateral direction and airtightly connecting the fuel electrodes and the air electrodes of the adjacent laminated bodies with interconnectors. CONSTITUTION:Multiple laminated bodies each stacked with three layers of a rectangular flat plate-shaped fuel electrode 2, a solid electrolyte 3 and an air electrode 4 respectively are arranged in line in the lateral direction on a porous substrate 1, the fuel electrodes 2 and the air electrodes 4 of the adjacent laminated bodies are airtightly connected in series by interconnectors 5 to constitute a flat plate type cell 6. The flat plate type cells 6 are arranged in parallel as modules, fuel flows along one face of each flat plate type cell 6, air flows along the other face, thus even if some camber is generated on the flat plate type cell 6, its effect can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は固体電解質型燃料電池の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in solid oxide fuel cells.

[従来の技術] 固体電解質型燃料電池は、作動温度が約1000℃と高
温であるため、その構成材料はセラミックスが主である
。そのため、各構成材料の熱膨張係数差により構造材に
割れが生じやすい。これを緩和するため、従来の固体電
解質型燃料電池のセル形状はもっばら円筒形に構成され
ている。しかし、円筒形の固体電解質型燃料電池では、
セルの出力密度(体積当りの電気出力)が低いという問
題がある。これは、円筒形の場合、セル有効作動面が円
筒表面のみであり、セルを集合させてモジュールとした
ときにデッドスペースが多くなるためである。
[Prior Art] Solid electrolyte fuel cells operate at a high temperature of about 1000° C., so their constituent materials are mainly ceramics. Therefore, cracks are likely to occur in the structural material due to differences in the coefficients of thermal expansion of the constituent materials. In order to alleviate this problem, the cell shape of conventional solid oxide fuel cells is mostly cylindrical. However, in a cylindrical solid oxide fuel cell,
There is a problem that the power density (electrical output per volume) of the cell is low. This is because in the case of a cylindrical shape, the only effective cell operating surface is the cylindrical surface, and when cells are assembled into a module, there will be a large amount of dead space.

[発明が解決しようとする問題点] そこで、最近はリン酸型や溶融炭酸塩型の燃料電池と同
様に、平板形セル構造やモノリシック形(ハニカム形、
フルゲート形)セル構造の固体電解質燃料電池が注目を
集め始めている。
[Problems to be solved by the invention] Therefore, in recent years, similar to phosphoric acid type and molten carbonate type fuel cells, flat cell structures, monolithic types (honeycomb types,
Solid electrolyte fuel cells with a full-gate (full-gate) cell structure are beginning to attract attention.

しかし、平板形セル構造では、平板セルにそりが生じや
すいが、セラミックスを主とするもろい構造材を強力な
外力で押え付けて固定するわけにはいかないため、スタ
ック化して集電することが困難であるという問題がある
。また、モノリシック形セル構造では、構造が複雑なた
め熱応力が発生し、構造材に割れが生じやすいという問
題がある。このため、いずれの構造も実用化には大きな
障害がある。
However, with the flat cell structure, warpage tends to occur in the flat cells, but the fragile structural material, which is mainly made of ceramics, cannot be held down and fixed with strong external force, making it difficult to stack them and collect current. There is a problem that. In addition, the monolithic cell structure has a problem in that thermal stress is generated due to the complicated structure, and the structural material is likely to crack. For this reason, there are major obstacles to putting either structure into practical use.

本発明は平板形セル構造の製造の容易さと高出力密度と
いう利点を生かしながら、熱による構造材のそりの影響
を極力少なくすることができる固体電解質型燃料電池を
提供することを目的とする。
An object of the present invention is to provide a solid oxide fuel cell that can minimize the effects of warping of structural materials due to heat while taking advantage of the ease of manufacturing and high output density of a flat cell structure.

[問題点を解決するための手段] 本発明の固体電解質型燃料電池は、それぞれ矩形平板状
に形成した燃料極、固体電解質、空気極の3層を重ね合
せてなる積層体を複数個横方向に列状に配置し、隣接す
る積層体の燃料極と空気極とをインタコネクタで気密に
直列接続したことを特徴とするものである。
[Means for Solving the Problems] The solid oxide fuel cell of the present invention comprises a plurality of laminates formed by stacking three layers of a fuel electrode, a solid electrolyte, and an air electrode, each formed in a rectangular flat plate shape, in a horizontal direction. The fuel electrodes and air electrodes of adjacent laminates are arranged in a row, and the fuel electrodes and air electrodes of adjacent laminates are airtightly connected in series by interconnectors.

[作用] このような固体電解質型燃料電池によれば、多数の列状
(ストライブ状)セルが直列接続された大面積で高い出
力密度を有する平板形セルを複数平行に並べてモジュー
ル化し、その間を燃料又は空気が流れるようにしている
ので、平板形セルに多少そりが生じても問題が少ない。
[Function] According to such a solid oxide fuel cell, a plurality of flat cells having a large area and high output density are arranged in parallel to form a module, and a large number of strip cells are connected in series. Since fuel or air is allowed to flow through the cell, there is little problem even if the flat cell is slightly warped.

また、マニホールドに面する比較的低温の部分を利用し
て低抵抗で平板形セル間の電気的接続をとることができ
、電力損失を低減することができる。
Further, by utilizing the relatively low-temperature portion facing the manifold, electrical connection between flat cells can be established with low resistance, and power loss can be reduced.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に係る固体電解質型燃料電池モジュール
を構成する平板形セルを示す断面図、第2図は第1図の
平面図である。第1図及び第2図において、多孔質基板
1上に、それぞれ矩形平板状の燃料極2、電解質3及び
空気極4の3つの層を重ねあわせてなる積層体が複数個
横方向に列状(ストライブ状)に配置され、隣接する積
層体の燃料極2と空気極4とがインタコネクタ5により
気密に直列接続されて平板形セル6が構成されている。
FIG. 1 is a sectional view showing a flat cell forming a solid oxide fuel cell module according to the present invention, and FIG. 2 is a plan view of FIG. 1. 1 and 2, on a porous substrate 1, a plurality of laminates formed by stacking three layers of a fuel electrode 2, an electrolyte 3, and an air electrode 4, each in the shape of a rectangular flat plate, are arranged in rows in the horizontal direction. The fuel electrodes 2 and air electrodes 4 of adjacent stacked bodies are arranged in a stripe shape and are airtightly connected in series by an interconnector 5 to form a flat cell 6.

こうした平板形セル6が平行に並べられてモジュール化
され、各平板形セル6の一方の面に沿って燃料が流され
、他方の面に沿って空気が流される。なお、燃料極2と
空気極4とを逆の配置にしてもよい。また、燃料及び空
気を流す領域は第1図図示の場合と逆にしてもよい。
These flat cells 6 are arranged in parallel to form a module, and fuel flows along one side of each flat cell 6, and air flows along the other side. Note that the fuel electrode 2 and the air electrode 4 may be arranged in reverse. Further, the areas through which fuel and air flow may be reversed from those shown in FIG.

上記多孔質基板1は例えばC8Z (カルシア安定化ジ
ルコニア)からなる。上記燃料極2は例えばN itN
 i/ZrO2サーメットからなり、膜厚数十〜10〇
−程度である。上記固体電解質3は例えばYSZ(イツ
トリア安定化ジルコニア)からなり、膜厚50〜100
〇−程度である。上記空気極4は例えばLaC00gや
LaMn0iからなり、膜厚50〜1000.程度であ
る。このような平板形セル6は、マスキングもしくはレ
ーザエツチングと、溶射法、スラリー法、CVD法、P
VD法等の適切な方法による成膜とを組合わせて各層を
形成するか、又はグリーンシート状の各構成材料を適切
にカットして並べ、プレス・焼結することにより製造す
ることができる。
The porous substrate 1 is made of, for example, C8Z (calcia stabilized zirconia). The fuel electrode 2 is, for example, N itN
It is made of i/ZrO2 cermet and has a film thickness of several tens to 100 mm. The solid electrolyte 3 is made of, for example, YSZ (yttoria stabilized zirconia), and has a film thickness of 50 to 100 mm.
It is about 〇-. The air electrode 4 is made of, for example, LaC00g or LaMn0i, and has a film thickness of 50 to 1000. That's about it. Such a flat cell 6 can be produced by masking or laser etching, thermal spraying, slurry, CVD, P
It can be manufactured by forming each layer by combining film formation by an appropriate method such as a VD method, or by appropriately cutting each constituent material in the form of a green sheet, arranging them, pressing and sintering them.

このような平板形セル6をモジュール化した状態を第3
図及び第4図を参照して更に詳細に説明する。第3図に
示すように、モジュール外箱7に複数の平板形セル6が
所定間隔を隔てて平行に並べられて固定されている。各
平板形セル6の間には燃料通過孔8と空気通過孔9とが
互いに直交する方向に設けられている。上記モジュール
外箱7の4つの側面には、それぞれ燃料極マニホールド
10、燃料極排ガスマニホールド11、空気極マニホー
ルド12、空気極排ガスマニホールド13が取付けられ
、図中矢印で示すように燃料及び空気が流される。また
、第4図に示すように、各平板形セル6の端部には、イ
ンタコネクタ5と接続されたリード部14が形成され、
その上に気密膜15が形成されている。そして、リード
部14どうしは、第3図に示すように、モジュール外箱
7のマニホールドと接する面で接続子16によって接続
されている。
The state in which such a flat cell 6 is made into a module is shown in the third example.
This will be explained in more detail with reference to the figures and FIG. As shown in FIG. 3, a plurality of flat cells 6 are fixed to the module outer box 7 in a manner that they are arranged in parallel at predetermined intervals. Fuel passage holes 8 and air passage holes 9 are provided between each flat cell 6 in directions orthogonal to each other. A fuel electrode manifold 10, a fuel electrode exhaust gas manifold 11, an air electrode manifold 12, and an air electrode exhaust gas manifold 13 are attached to the four sides of the module outer box 7, respectively, so that fuel and air can flow as shown by the arrows in the figure. It will be done. Further, as shown in FIG. 4, a lead portion 14 connected to the interconnector 5 is formed at the end of each flat cell 6.
An airtight film 15 is formed thereon. The lead parts 14 are connected to each other by a connector 16 at the surface of the module outer box 7 that contacts the manifold, as shown in FIG.

なお、第3図は直交型タイプであるが、マニホールド構
造を変更することにより、並流又は向流タイプのモジュ
ールとすることもできる。
Although FIG. 3 shows an orthogonal type module, by changing the manifold structure, it can also be made into a parallel flow or countercurrent type module.

このような固体電解質型燃料電池によれば、1枚の基板
1上に多数のストライブ状セルが直列接続された大面積
で高い出力密度を有する平板形セル6を複数平行に並べ
てモジュール化し、その間を燃料又は空気が流れるよう
にしているので、平板形セル6に多少そりが生じても問
題が少ない。
According to such a solid oxide fuel cell, a plurality of flat cells 6 having a large area and high output density are arranged in parallel on a single substrate 1 to form a module, in which a large number of strip cells are connected in series. Since fuel or air is allowed to flow between them, there is little problem even if the flat cell 6 warps to some extent.

また、平板形セル6の端部にリード部14を設け、マニ
ホールドに面する比較的低温の部分を利用して平板形セ
ル611の電気的接続をとっており、接続子16を構成
する金屑は低温では抵抗が低いので、電力損失を低減す
ることができる。また、こうした外部での電気的な接続
手法により、各平板形セルの信頼性、電力損失、電気バ
ランスを加味したうえで平板形セルどうしの直列・並列
接続を行うことが可能である。
Further, a lead part 14 is provided at the end of the flat cell 6, and the electrical connection of the flat cell 611 is made using the relatively low temperature part facing the manifold. Since the resistance is low at low temperatures, power loss can be reduced. Further, by using such an external electrical connection method, it is possible to connect flat cells in series or in parallel, taking into consideration the reliability, power loss, and electrical balance of each flat cell.

なお、本発明における固体電解質型燃料電池の構造は第
1図に示すものに限らず、例えば第5図又は第6図に示
すものでもよい。
The structure of the solid oxide fuel cell according to the present invention is not limited to that shown in FIG. 1, but may be, for example, shown in FIG. 5 or 6.

第5図は、第1図と同一の構造を有する平板形セル6と
、この・平板形セル6とは燃料極2と空気極4との配置
を逆にした平板形セル11とを交互に並べたものである
。このような固体電解質型燃料電池によれば、第1図の
場合と異なり、いずれの平板形セルでも基板1に対して
積層体が同じ方向に存在するため、各平板形セルの熱膨
張やそりなどの変形がほぼ同一方向となり、モジュール
化したときのマニホールドによるシール対策等で有利と
なる。
FIG. 5 shows a flat cell 6 having the same structure as in FIG. 1 and a flat cell 11 in which the fuel electrode 2 and air electrode 4 are arranged in reverse. It is arranged. According to such a solid oxide fuel cell, unlike the case shown in FIG. 1, the laminates exist in the same direction with respect to the substrate 1 in all flat cells, so thermal expansion and warpage of each flat cell can be avoided. The deformations such as these are almost in the same direction, which is advantageous for sealing with manifolds when modularized.

第6図は、基本構造が波形である平板形セル18を用い
たものである。このような固体電解質型燃料電池によれ
ば、有効面積を増して、モジュールの出力密度を更に増
加させることができる。
FIG. 6 uses a flat cell 18 whose basic structure is a waveform. According to such a solid oxide fuel cell, the effective area can be increased and the output density of the module can be further increased.

更に、多孔質基板1を用いることなく、燃料極、固体電
解質、空気極の3WIを重ね合せた積層体及び隣接する
積層体の燃料極と空気極とを気密に直列接続するインタ
コネクタからなる平板形セルを用いれば、平板形セルの
厚さが大幅に減少して高出力密度で軽烏のモジュールと
なり、かつ多孔質基板に要するコストを削減できるとと
もに、電極及び電解質の熱膨張を阻害することもなくな
り熱応力を緩和できる。
Furthermore, without using the porous substrate 1, a flat plate consisting of a laminate in which 3WIs of a fuel electrode, a solid electrolyte, and an air electrode are stacked together, and an interconnector that airtightly connects the fuel electrode and air electrode of adjacent laminates in series. By using a flat cell, the thickness of a flat cell can be significantly reduced, resulting in a lightweight module with high power density, and the cost required for a porous substrate can be reduced, as well as inhibiting thermal expansion of electrodes and electrolyte. thermal stress can be alleviated.

[発明の効果] 以上詳述したように本発明の固体電解質型燃料電池によ
れば、平板形セル構造の製造の容易さと高出力密度とい
う利点を生かしながら、熱による構造材のそりの影響を
極力少なくすることができる。
[Effects of the Invention] As detailed above, according to the solid oxide fuel cell of the present invention, while taking advantage of the ease of manufacturing and high output density of the flat cell structure, it is possible to suppress the effects of warping of structural materials due to heat. It can be reduced as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における固体電解質型燃料電池
モジュールを構成する平板形セルの断面図、第2図は同
平板形セルの平面図、第3図は同平板形セルを用いた固
体電解質型燃料電池モジュールの分解斜視図、第4図は
同平板形セルの端部を示す斜視図、第5図は本発明の他
の実施例における固体電解質型燃料電池モジュールを構
成する平板形セルの断面図、第6図は本発明の更に他の
実施例における固体電解質型燃料電池モジュールを構成
する平板形セルの断面図である。 1・・・多孔質基板、2・・・燃料極、3・・・固体電
解質、4・・・空気極、5・・・インタコネクタ、6.
17.18・・・平板形セル、7・・・モジュール外箱
、8・・・燃料通過孔、9・・・空気通過孔、10・・
・燃料極マニホールド、11・・・燃料極排ガスマニホ
ールド、12・・・空気極マニホールド、13・・・空
気極排ガスマニホールド、14・・・リード部、15・
・・気密膜、16・・・接続子。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第4図
Figure 1 is a cross-sectional view of a flat cell that constitutes a solid oxide fuel cell module in an embodiment of the present invention, Figure 2 is a plan view of the flat cell, and Figure 3 is a solid state cell using the flat cell. FIG. 4 is an exploded perspective view of an electrolyte fuel cell module, FIG. 4 is a perspective view showing an end of the flat cell, and FIG. 5 is a flat cell constituting a solid oxide fuel cell module in another embodiment of the present invention. FIG. 6 is a cross-sectional view of a flat cell forming a solid oxide fuel cell module in still another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Porous substrate, 2... Fuel electrode, 3... Solid electrolyte, 4... Air electrode, 5... Interconnector, 6.
17.18...Flat cell, 7...Module outer box, 8...Fuel passage hole, 9...Air passage hole, 10...
- Fuel electrode manifold, 11... Fuel electrode exhaust gas manifold, 12... Air electrode manifold, 13... Air electrode exhaust gas manifold, 14... Lead part, 15.
...Airtight membrane, 16...connector. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] それぞれ矩形平板状に形成した燃料極、固体電解質、空
気極の3層を重ね合せてなる積層体を複数個横方向に列
状に配置し、隣接する積層体の燃料極と空気極とをイン
タコネクタで気密に直列接続したことを特徴とする固体
電解質型燃料電池。
A plurality of laminates each consisting of three layers of a fuel electrode, a solid electrolyte, and an air electrode, each formed in a rectangular flat plate shape, are arranged in a row in the horizontal direction, and the fuel electrodes and air electrodes of adjacent laminates are interconnected. Solid electrolyte fuel cells are characterized by being airtightly connected in series using connectors.
JP62302740A 1987-11-30 1987-11-30 Solid electrolyte type fuel cell Pending JPH01144570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302740A JPH01144570A (en) 1987-11-30 1987-11-30 Solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302740A JPH01144570A (en) 1987-11-30 1987-11-30 Solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH01144570A true JPH01144570A (en) 1989-06-06

Family

ID=17912583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302740A Pending JPH01144570A (en) 1987-11-30 1987-11-30 Solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH01144570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507977A1 (en) * 1991-04-12 1992-10-14 ABBPATENT GmbH Fuel cell assembly
JP2003051319A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Cell plate for solid electrolyte type fuel cell and power generation unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507977A1 (en) * 1991-04-12 1992-10-14 ABBPATENT GmbH Fuel cell assembly
JP2003051319A (en) * 2001-08-06 2003-02-21 Nissan Motor Co Ltd Cell plate for solid electrolyte type fuel cell and power generation unit

Similar Documents

Publication Publication Date Title
US4476196A (en) Solid oxide fuel cell having monolithic cross flow core and manifolding
JP3102809B2 (en) Hollow thin plate solid electrolyte fuel cell
US20090004531A1 (en) Fuel cell stack having multiple parallel fuel cells
JPH05159790A (en) Solid electrolyte fuel cell
US5372895A (en) Solid oxide fuel cell and method for manufacturing the same
JP2730817B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH01144570A (en) Solid electrolyte type fuel cell
JPH06349512A (en) Fuel cell
JPH06325779A (en) Stack for solid electrolytic fuel cell and its manufacture
JPH05129033A (en) Solid electrolytic fuel cell
JP2980921B2 (en) Flat solid electrolyte fuel cell
JP3102806B2 (en) Hollow solid electrolyte fuel cell
JPH05275096A (en) Close board for solid electrolytic fuel cell, and solid electrolytic fuel cell using same and manufacture thereof
JPH10312818A (en) Solid electrolyte type fuel cell
JPS63166159A (en) Solid electrolyte fuel cell
TWI766637B (en) Planar solid electrolyte oxygen separator
JPH06349511A (en) Fuel cell
JP3282866B2 (en) Cell for solid oxide fuel cell and method for producing the same
JPH0982336A (en) Hollow flat board-shaped electrode substrate and manufacture thereof
JPH02197055A (en) Cell structure of fuel cell
JPH0541224A (en) Solid electrolyte type fuel cell
JPH0462757A (en) Solid electrolyte type fuel cell
JPH0670161U (en) Flat plate solid oxide fuel cell
JPH056774A (en) Solid electrolyte type fuel cell
JPH0562694A (en) Solid electrolyte type fuel cell