JPH01144564A - Polyaniline electrode - Google Patents

Polyaniline electrode

Info

Publication number
JPH01144564A
JPH01144564A JP62301589A JP30158987A JPH01144564A JP H01144564 A JPH01144564 A JP H01144564A JP 62301589 A JP62301589 A JP 62301589A JP 30158987 A JP30158987 A JP 30158987A JP H01144564 A JPH01144564 A JP H01144564A
Authority
JP
Japan
Prior art keywords
polyaniline
electrode
dimethylformamide
electrolytic
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62301589A
Other languages
Japanese (ja)
Other versions
JP2654038B2 (en
Inventor
Toshiyuki Kahata
利幸 加幡
Okitoshi Kimura
興利 木村
Toshiyuki Osawa
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62301589A priority Critical patent/JP2654038B2/en
Publication of JPH01144564A publication Critical patent/JPH01144564A/en
Application granted granted Critical
Publication of JP2654038B2 publication Critical patent/JP2654038B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the durability, mechanical strength and reliability by using high-polymerization degree polyaniline with the specific content or below of the constituent solved in dimethylformamide as an electrolytic active material. CONSTITUTION:Aniline and its derivative are electrolyzed and oxidized by the electrolytic polymerization method in an acidic aqueous solution to manufacture a polyaniline electrode. A high-polymerization degree polyaniline electrode with the content of the constituent solved in dimethylformamide at 15wt.% or below, preferably 10wt.%, is obtained by properly selecting the concentration of aniline and acid, type of acid and electrolyzing method. An electrode with high reliability and no performance reduction after the repeated charge and discharge is thereby obtained.

Description

【発明の詳細な説明】 [技術分野] 本発明はエレクトロクロミック素子、センサー、電池等
に有用なポリアニリン電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a polyaniline electrode useful for electrochromic devices, sensors, batteries, etc.

[従来技術] ポリアセチレン、ポリピロール、ポリアニリンなどの導
電性高分子材料は、金属材料に比べ軽量であり、また、
アニオンあるいはカチオンをドープすることにより高い
電気伝導度を示し、電気化学的に活性であることからエ
レクトロクロミック素子、各種センサー、電池などの電
極への応用が検討されている。中でもポリアニリンは電
位及び電荷保持性に優れ、また、スイッチング特性に優
れることなどから注目されている。しかしながらポリア
ニリンを用いた電極には解決されなければならない問題
がある。即ち、一般にポリアニリンを用いた電極は水性
溶媒あるいは非水溶媒中で使われるが、このポリアニリ
ン電極をこれら溶媒中で使用を繰り返すうちに、活物質
ポリアニリンが溶媒、特に有機溶媒中に溶出してしまい
、電極特性の劣下、及び溶出によるポリアニリンの機械
的劣下及びそれに伴う電極からのポリアニリンの脱離が
生じるために信頼性の低い電極であった。この問題を解
決する手段としては、例えば特開昭62− [1281
7にジメチルホルムアミドに不溶部からなるポリアニリ
ンを二次電池に用いた例があるが、この場合ポリアニリ
ンをジメチルホルムアミドで処理し、可溶ポリアニリン
部を除去した後、不溶ポリアニリンを使用するために、
処理後のポリアニリン膜は機械的強度が低下してしまい
、そのままポリアニリンを電極に用いることができず、
処理後のポリアニリンを採取し再度成型して電極に応用
しなければならない。
[Prior art] Conductive polymer materials such as polyacetylene, polypyrrole, and polyaniline are lighter than metal materials, and
When doped with anions or cations, it exhibits high electrical conductivity and is electrochemically active, so its application to electrodes for electrochromic devices, various sensors, batteries, etc. is being considered. Among them, polyaniline is attracting attention because of its excellent potential and charge retention, as well as its excellent switching characteristics. However, electrodes using polyaniline have problems that must be resolved. That is, electrodes using polyaniline are generally used in aqueous or non-aqueous solvents, but as the polyaniline electrode is repeatedly used in these solvents, the active material polyaniline may be eluted into the solvent, especially an organic solvent. However, the reliability of the electrode was low due to deterioration of the electrode properties, mechanical deterioration of the polyaniline due to elution, and the accompanying detachment of the polyaniline from the electrode. As a means to solve this problem, for example, JP-A-62-[1281
In No. 7, there is an example in which polyaniline consisting of a portion insoluble in dimethylformamide is used in a secondary battery, but in this case, polyaniline is treated with dimethylformamide to remove the soluble polyaniline portion, and then in order to use the insoluble polyaniline,
After treatment, the mechanical strength of the polyaniline film decreases, making it impossible to use polyaniline as an electrode.
After treatment, the polyaniline must be collected and molded again to be applied to electrodes.

[目 的コ 本発明は、こうした事情に鑑み、充放電を繰返しても、
性能が低下せず、しかも機械的強度にも優れた信頼性の
高いポリアニリン電極を提供することを目的とするもの
である。
[Purpose] In view of these circumstances, the present invention has been developed to ensure that even after repeated charging and discharging,
The purpose of this invention is to provide a highly reliable polyaniline electrode that does not deteriorate in performance and has excellent mechanical strength.

[構 成] 本発明者は、上記課題を解決するため従来より研究を重
ねてきたが、ジメチルホへルムアミドに対する溶解度が
ある特定値以下の高重合のポリアニリンを・活物質とし
て用いることが有効であることを見出し、本発明に至っ
た。
[Structure] The present inventor has conducted extensive research in order to solve the above problems, and has found that it is effective to use highly polymerized polyaniline, whose solubility in dimethylformamide is below a certain value, as an active material. This discovery led to the present invention.

すなわち、本発明はジメチルホルムアミドに溶解する成
分の含有量が15重量%以下である高重合度ポリアニリ
ンを電極活物質に用いることを特徴とするポリアニリン
電極である。
That is, the present invention is a polyaniline electrode characterized in that a highly polymerized polyaniline having a content of components soluble in dimethylformamide of 15% by weight or less is used as an electrode active material.

本発明に用いられるポリアニリン電極は電解重合法によ
り製造される。電解重合法は一般には例えば、J、EI
cctrochcm、Soc、 、Vol、130.N
o、7゜150(i 〜 1509(1983)、 E
Iectroehem、ACta、。
The polyaniline electrode used in the present invention is manufactured by an electrolytic polymerization method. Electrolytic polymerization methods are generally used, for example, J, EI
cctrochcm, Soc, , Vol. 130. N
o, 7°150 (i ~ 1509 (1983), E
Iectroehem, ACta,.

Vol、27.No、1.81〜65(1982)、 
J、CheIIl、Soc、。
Vol, 27. No. 1.81-65 (1982),
J, CheIIl, Soc.

Chem、Commun、、 1199〜(1984)
などに示されているが、単量体と電解質とを溶媒に溶解
した液を所定の電解槽に入れ、電極を浸漬し、陽極酸化
あるいは陰極還元による電解重合反応を起こさせること
によって電極表面に膜状に重合体を得ることができる。
Chem, Commun, 1199-(1984)
In this method, a monomer and an electrolyte dissolved in a solvent are placed in a specified electrolytic bath, the electrodes are immersed, and an electrolytic polymerization reaction is caused by anodic oxidation or cathodic reduction to form a surface of the electrode. The polymer can be obtained in the form of a film.

一般に電解重合によるポリアニリンの製造は酸性水溶液
中でアニリンを電解酸化することにより得られるが、本
発明者らは種々検討を重ねた結果、アニリン及び酸の濃
度、酸の種類、電解方法により製造されるポリアニリン
のモルフォロジー、有機溶媒への溶解性、電極特性が大
きく左右されることを見出した。そして中でも特に有機
溶媒、特にジメチルホルムアミドへの溶解性の小さいポ
リアニリンを製造し、これを使用することにより信頼性
、耐久性が高く、また電極特性の優れたポリアニリン電
極を提供することができることを見出した。有機溶媒に
不溶なポリアニリンの性能が優れる理由としては、前述
した様にポリアニリンの固定が良好なばかりでなく、有
機溶媒に不溶なポリアニリンは高分子量ポリアニリンで
あると考えられるのでポリアニリン分子内での電子の移
動が良好で及び分子の安定性が向上するために性能が優
れるものと考えられる。本発明のポリアニリンのジメチ
ルホルムアミドへの溶解成分は、前述したように15重
瓜%、好ましくは10重瓜%以下である。
Generally, polyaniline is produced by electrolytic polymerization by electrolytically oxidizing aniline in an acidic aqueous solution, but as a result of various studies, the present inventors found that polyaniline can be produced by the concentration of aniline and acid, the type of acid, and the electrolytic method. We found that the morphology of polyaniline, its solubility in organic solvents, and electrode properties are greatly influenced by the properties of polyaniline. They discovered that by producing polyaniline, which has a low solubility in organic solvents, especially dimethylformamide, and using this, it was possible to provide polyaniline electrodes with high reliability, durability, and excellent electrode properties. Ta. The reason why polyaniline that is insoluble in organic solvents has excellent performance is not only because polyaniline is well fixed as described above, but also because polyaniline that is insoluble in organic solvents is considered to be a high molecular weight polyaniline, so the electrons within the polyaniline molecule are It is thought that the performance is excellent because of the good migration of molecules and the improved stability of the molecules. As mentioned above, the dissolved component of the polyaniline of the present invention in dimethylformamide is 15% by weight, preferably 10% by weight or less.

溶解成分が15ff(m%を越える場合には、従来技術
に示すような性能及び信頼性の低下が生じる。
If the dissolved component exceeds 15ff (m%), performance and reliability will deteriorate as shown in the prior art.

ポリアニリンは、製造後、アンモニア水等のアルカリに
より処理したりすることにより有機溶媒への溶解性は増
大するなどポリアニリンはその処理方法により溶解性は
変化する。
The solubility of polyaniline changes depending on the treatment method, such as increasing the solubility of polyaniline in organic solvents by treating it with an alkali such as aqueous ammonia after production.

本発明でいうポリアニリン溶解成分とは、製造されたポ
リアニリンを酸性水溶液中で電気化学的に脱ドープ後、
十分に水洗後、真空乾燥したポリアニリンからこのポリ
アニリンloo+gに対し、51のジメチルホルムアミ
ドに25℃48時間浸漬後、不溶性ポリアニリンをアセ
トニトリルで洗浄後、真空乾燥した後のポリアニリンの
重量の減少をもって測定する。
In the present invention, the polyaniline dissolved component refers to the polyaniline produced after electrochemically dedoping it in an acidic aqueous solution.
After thorough water washing, the polyaniline loo+g is immersed in dimethylformamide at 25°C for 48 hours, the insoluble polyaniline is washed with acetonitrile, and the weight of the polyaniline is measured by vacuum drying.

さて、本発明である有機溶媒、に不溶なポリアニリン電
極を得る電解重合法について説明する。
Now, the electrolytic polymerization method of the present invention for obtaining a polyaniline electrode insoluble in organic solvents will be explained.

本発明で用いられる単量体としてはアニリン及びその誘
導体が用いられる。その使用量としては0.001〜5
IIlol/ 51好ましくは0.01〜2mol/交
である。
Aniline and its derivatives are used as the monomers used in the present invention. The amount used is 0.001~5
IIlol/51 is preferably 0.01 to 2 mol/cross.

本発明のポリアニリン電極の製造には酸が不可欠である
。使用する酸としてはHCl。
An acid is essential to the production of the polyaniline electrode of the present invention. The acid used is HCl.

HClO4、HBF4、CF35O3H。HClO4, HBF4, CF35O3H.

CF3COOH,H2SO4、H2SO4、パラトルエ
ンスルホン酸、HBF4などの酸を例示することができ
るが、中でも特にHCl。
Examples include acids such as CF3COOH, H2SO4, H2SO4, para-toluenesulfonic acid, and HBF4, but especially HCl.

H2504が好適である。酸の使用量としては酸濃度で
0.51Qol/11以上、好ましくは1〜6Illo
l/Qであり、特に好ましくは2.5mol/ Q 〜
5mo1151のときポリアニリンの生成速度は速く、
かつ均一で電極との密着性が良好な本発明のポリアニリ
ン電極を製造することができる。溶媒としては水が好適
に用いられる。
H2504 is preferred. The amount of acid used is 0.51 Qol/11 or more in terms of acid concentration, preferably 1 to 6 Illo.
l/Q, particularly preferably 2.5 mol/Q ~
When 5mo1151, the production rate of polyaniline is fast,
Moreover, the polyaniline electrode of the present invention can be produced which is uniform and has good adhesion to the electrode. Water is preferably used as the solvent.

電解重合方法としては定電流電解重合法、定電位電解重
合法、定電圧電解重合法及び電位掃引電解重合法のいず
れの方法も可能であるが、量産性の面からは定電流電解
重合法が有利である。
As the electrolytic polymerization method, any of the following methods is possible: constant current electrolytic polymerization, constant potential electrolytic polymerization, constant voltage electrolytic polymerization, and potential sweep electrolytic polymerization, but from the standpoint of mass production, constant current electrolytic polymerization is preferred. It's advantageous.

定電流法の場合、用いる電解電流密度を0.1mA/C
[lI2〜1000 mA/cn+’ 、好ましくは0
.05mAlcII12〜1010l1lAICとくに
好ましくは0.lnA/cII12〜5IIIAICI
02とする。定電位法の場合、陽極電位を飽和カロメル
比較電極に対して0.8〜2.5v好ましくは 0.7
〜1.8Vとする。
In the case of constant current method, the electrolytic current density used is 0.1 mA/C
[lI2~1000 mA/cn+', preferably 0
.. 05mAlcII12-1010l1lAIC particularly preferably 0. lnA/cII12-5IIIAICI
02. In the case of potentiostatic method, the anode potential is set to 0.8 to 2.5 V against a saturated calomel reference electrode, preferably 0.7
~1.8V.

電解重合法によりポリアニリンを製造した場合、ポリア
ニリンは電解電極上に均一に製造されることから電解電
極として予め所定の形状に加工したものを使用すれば、
ポリアニリンの製造とともにポリアニリン電極の製造が
行われることになり、経済的に有利である。
When polyaniline is produced by the electrolytic polymerization method, polyaniline is produced uniformly on the electrolytic electrode, so if an electrolytic electrode that has been processed into a predetermined shape is used,
This method is economically advantageous because polyaniline electrodes are manufactured together with polyaniline.

電解用電極としてはA u s P t SN isス
テンレス鋼、A1等金属及び合金、SnO2、In2O
3等の金属酸化物、炭素、及びポリピロール等の導電性
高分子、これらの複合電極などを挙げることができるが
、製造されるポリアニリン電極の経済性、軽量性の点を
考慮するとAl又はA1合金が最も好適に用いられる。
As electrodes for electrolysis, A us P t SN is stainless steel, metals and alloys such as A1, SnO2, In2O
Examples include metal oxides such as No. 3 metal oxides, carbon, conductive polymers such as polypyrrole, and composite electrodes of these materials, but considering the economical efficiency and light weight of the polyaniline electrode to be manufactured, Al or A1 alloys are preferable. is most preferably used.

一般にアルミニウムは表面に電気的に不活性で安定な酸
化被膜を形成しており、そのまま電解用電極に使用する
のは不適当であるが、酸化被膜層を除去あるいは酸化被
膜を数十Å以下にすることにより好適に電解用電極に使
用することができる。酸化被膜を取り除く方法としては
機械的エツチング、電解エツチング、酸処理などがある
が、特に電解エツチングによれば酸化被膜の除去がアル
ミニウム表面全体に均一に行うことができ、またアルミ
ニウム表面にミクロな凹凸を形成することができる。こ
のように電解エツチングされたエツトアルミニウムを電
解重合用電極に用いて電解重合を行った場合、重合体は
エツチドアルミニウム表面のミクロな凹凸を被覆するよ
うに製造されるためアルミニウムと重合体との機械的及
び電気的密着性の高い複合体を製造することができる。
In general, aluminum forms an electrically inert and stable oxide film on its surface, and it is unsuitable to use it as an electrode for electrolysis, but the oxide film layer can be removed or the oxide film can be reduced to less than a few tens of angstroms. By doing so, it can be suitably used as an electrode for electrolysis. Methods for removing the oxide film include mechanical etching, electrolytic etching, and acid treatment, but electrolytic etching in particular can remove the oxide film uniformly over the entire aluminum surface, and also removes microscopic irregularities on the aluminum surface. can be formed. When electrolytically etched aluminum is used as an electrode for electrolytic polymerization, the polymer is produced so as to cover the microscopic irregularities on the etched aluminum surface. Composites with high mechanical and electrical adhesion can be produced.

また本発明者らは出願しているP 82−092791
ように電極に穿孔を設けることにより、よりポリアニリ
ンの密着性は向上する。本発明に用いる電解用電極の厚
さとしては0.01mm〜G、5■、好ましくは0.0
15mn+〜0.2)であるとき、薄型、軽量のポリア
ニリン電極を製造することができる。
The present inventors have also applied for P82-092791.
By providing perforations in the electrode, the adhesion of polyaniline is further improved. The thickness of the electrode for electrolysis used in the present invention is 0.01 mm to 5 mm, preferably 0.0
15 m+ to 0.2), a thin and lightweight polyaniline electrode can be manufactured.

以下本発明の電極を応用した場合、最も効果の大きいポ
リアニリン電池を例にとり、実施例を挙げ、本発明をさ
らに説明する。
Hereinafter, the present invention will be further explained with reference to Examples, taking as an example a polyaniline battery, which is most effective when the electrode of the present invention is applied.

実施例1 厚さ30μ曙1面積4C112のコンデンサ用エツチド
アルミ箔に400μmの穿孔を200個/゛cIl12
の割合であけたものを作用極として0.3Mアニリン、
3M  H2SO4171水溶液を0.8vvsSCE
定電位で電解重合した後、作用極を水洗、真空乾燥した
後、この電極を作用極として0.1M  H2SO4水
溶液中で−0,4VvsS CEで脱ドープ処理を行っ
た。水洗、真空乾燥し、活物質量40agのポリアニリ
ン電極を2個製造した。一方のポリアニリン電極をジメ
チルホルムアミド601に25℃48時間浸漬した。こ
のポリアニリン電極を真空乾燥後のポリアニリン減少量
は0.4n+gでありジメチルホルムアミドへの溶解成
分は1.0%であった。次にもう一方のポリアニリン電
極を正極Liを負極として3M  LiBF+をプロピ
レンカーボネート 7に対しジメトキシエタン3の割合
の溶媒に溶解させたものを電解液として1ilA/cm
 ’で充放電を繰返し電池性能を試験した。
Example 1 200 400 μm perforations were made in etched aluminum foil for a capacitor with a thickness of 30 μm and an area of 4C112.
0.3M aniline is used as the working electrode.
0.8vvsSCE of 3M H2SO4171 aqueous solution
After electrolytic polymerization at a constant potential, the working electrode was washed with water and dried in vacuum, followed by dedoping treatment at -0.4 V vs S CE in a 0.1 M H2SO4 aqueous solution using this electrode as a working electrode. Two polyaniline electrodes having an active material amount of 40 ag were manufactured by washing with water and vacuum drying. One polyaniline electrode was immersed in dimethylformamide 601 at 25° C. for 48 hours. After drying this polyaniline electrode under vacuum, the amount of polyaniline reduced was 0.4 n+g, and the amount of dissolved components in dimethylformamide was 1.0%. Next, use the other polyaniline electrode as the positive electrode, Li as the negative electrode, and 3M LiBF+ dissolved in a solvent with a ratio of 7 parts propylene carbonate to 3 parts dimethoxyethane as an electrolyte at 1 ilA/cm.
'The battery performance was tested by repeating charging and discharging.

実施例2 3IIIAlcII12の定電流で電解重合を行う以外
は実施例1と同じ方法でポリアニリン電極を製造し、実
施例1と同じようにジメチルホルムアミドへの溶解成分
量を測定したところ3.9%であった。
Example 2 A polyaniline electrode was manufactured in the same manner as in Example 1 except that electrolytic polymerization was carried out at a constant current of 3IIIAlcII12, and the amount of components dissolved in dimethylformamide was measured in the same manner as in Example 1. It was found to be 3.9%. there were.

次に実施例1と同じ方法で電池性能を試験した。Next, battery performance was tested in the same manner as in Example 1.

実施例3 厚さ30μ曙、面積4cm 2のニッケルホイルを電解
エツチング法により処理し、表面を粗面化したものに4
00μmの穿孔を200個/cm2の割合であけたもの
を作用極として、0.3Mアニリン、3MHClを水に
溶解させた−ものを重合液とする以外は実施例1と同じ
方法でポリアニリン電極を製造した。実施例1と同じよ
うにジメチルホルムアミドへの溶解成分量を測定したと
ころ 5.1%であった。次に実施例1と同じ方法で電
池性能を試験した。
Example 3 A nickel foil with a thickness of 30 μm and an area of 4 cm 2 was treated by electrolytic etching to roughen the surface.
A polyaniline electrode was prepared in the same manner as in Example 1, except that a working electrode with 0.00 μm perforations at a rate of 200 holes/cm2 was used as the polymerization solution, and a solution containing 0.3M aniline and 3M HCl dissolved in water was used as the polymerization solution. Manufactured. The amount of components dissolved in dimethylformamide was measured in the same manner as in Example 1 and found to be 5.1%. Next, battery performance was tested in the same manner as in Example 1.

実施例4 0.3Mアニリン、 1.5M  H2SO4を水に溶
解させたものを重合液として1,2V vs S CE
定電位で電解重合を行う以外は、実施例3と同じ方法で
、ポリアニリン電極を製造した。
Example 4 1.2V vs S CE using 0.3M aniline and 1.5M H2SO4 dissolved in water as polymerization liquid
A polyaniline electrode was manufactured in the same manner as in Example 3, except that electrolytic polymerization was performed at a constant potential.

実施例1と同じようにジメチルホルムアミドへの溶解成
分をAll定したところ39.8%であった。
The total amount of components dissolved in dimethylformamide was determined in the same manner as in Example 1, and was found to be 39.8%.

次に実施例1と同じ方法で電池性能を試験した。Next, battery performance was tested in the same manner as in Example 1.

比較例1 5MHClの代りに3MHClO4を用いる以外は実施
例3と同じ方法でポリアニリン電極を製造した。実施例
1と同じようにジメチルホルムアミドへの溶解成分量を
測定したところ17.3%であった。次に実施例1と同
じ方法で電池性能を試験した。
Comparative Example 1 A polyaniline electrode was manufactured in the same manner as in Example 3 except that 3M HClO4 was used instead of 5M HCl. The amount of components dissolved in dimethylformamide was measured in the same manner as in Example 1 and found to be 17.3%. Next, battery performance was tested in the same manner as in Example 1.

[効 果] 以上説明したように、本発明のポリアニリン電極は、充
放電の繰返しによっても性能の低下をきたすことがない
等、電極として信頼性の高いものである。
[Effects] As explained above, the polyaniline electrode of the present invention is highly reliable as an electrode, with no deterioration in performance even after repeated charging and discharging.

Claims (1)

【特許請求の範囲】[Claims]  ジメチルホルムアミドに溶解する成分の含有量が15
重量%以下である高重合度ポリアニリンを電極活物質に
用いることを特徴とするポリアニリン電極。
The content of components soluble in dimethylformamide is 15
A polyaniline electrode characterized in that a polyaniline with a high polymerization degree of less than % by weight is used as an electrode active material.
JP62301589A 1987-12-01 1987-12-01 Polyaniline electrode Expired - Fee Related JP2654038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62301589A JP2654038B2 (en) 1987-12-01 1987-12-01 Polyaniline electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62301589A JP2654038B2 (en) 1987-12-01 1987-12-01 Polyaniline electrode

Publications (2)

Publication Number Publication Date
JPH01144564A true JPH01144564A (en) 1989-06-06
JP2654038B2 JP2654038B2 (en) 1997-09-17

Family

ID=17898770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62301589A Expired - Fee Related JP2654038B2 (en) 1987-12-01 1987-12-01 Polyaniline electrode

Country Status (1)

Country Link
JP (1) JP2654038B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221964A (en) * 1984-04-18 1985-11-06 Bridgestone Corp Secondary battery
JPS61245468A (en) * 1985-04-23 1986-10-31 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221964A (en) * 1984-04-18 1985-11-06 Bridgestone Corp Secondary battery
JPS61245468A (en) * 1985-04-23 1986-10-31 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte storage battery

Also Published As

Publication number Publication date
JP2654038B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
Rubinstein Electrochemistry of Polyphenylene Films Deposited Anodically on Platinum or Glassy Carbon Electrodes in HF‐Benzene System
US4728399A (en) Preparation of laminates of metals and electrically conductive polymers
JPS62185894A (en) Method for applying conductive layer to carbon fiber, yarn or flat structure
JPS61218643A (en) Composite forming material from porous material and conductive polymer
US5189770A (en) Method of making solid electrolyte capacitor
Cheraghi et al. Chemical and electrochemical deposition of conducting polyaniline on lead
KR102160630B1 (en) Supercapacitors coated with polyaniline layer on nanoporous gold
CN111416096A (en) Graphene oxide/polyaniline/manganese dioxide composite electrode, preparation method thereof and application thereof in seawater battery
Koga et al. Electrically conductive composite of polyaniline-aramid and its application as a cathode material for secondary battery
JPH01144564A (en) Polyaniline electrode
Ye et al. Electrochemical preparation of a polyparaphenylene film and a polyparaphenylene/polyacrylamine functional film
JPH01157060A (en) Polyaniline electrode
JP2654038C (en)
JP4083297B2 (en) Method for producing polymer electrode
JPS62149724A (en) Production of polyaniline
JPH05325631A (en) Solid electrolyte
JPS63152867A (en) Polyaniline
Filkusová et al. Preparation of polypyrrole by direct electrochemical oxidation of pyrrole on paraffin impregnated graphite electrode
JPS61190871A (en) Battery
JP2001257133A (en) Conductive polymer composite electrode and electrochemical capacitor
JPH0362456A (en) Battery
CN116364838A (en) Multifunctional ferroelectric polymer protective coating, metal zinc electrode and zinc ion battery
CN116426987A (en) Aluminum foil and preparation method and application thereof
JP2716132B2 (en) Polyaniline battery
JPS63230737A (en) Polyaniline and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees