JPS61245468A - Nonaqueous electrolyte storage battery - Google Patents

Nonaqueous electrolyte storage battery

Info

Publication number
JPS61245468A
JPS61245468A JP60087092A JP8709285A JPS61245468A JP S61245468 A JPS61245468 A JP S61245468A JP 60087092 A JP60087092 A JP 60087092A JP 8709285 A JP8709285 A JP 8709285A JP S61245468 A JPS61245468 A JP S61245468A
Authority
JP
Japan
Prior art keywords
polyaniline
positive electrode
storage battery
polymer
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60087092A
Other languages
Japanese (ja)
Inventor
Katsuaki Okabayashi
岡林 克明
Fumio Goto
文夫 後藤
Katsuji Abe
阿部 勝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP60087092A priority Critical patent/JPS61245468A/en
Publication of JPS61245468A publication Critical patent/JPS61245468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To prevent droppage of polyaniline thus to enable stable repetition of charge/discharge by forming the macromolecular complex body of positive electrode with complex material of polyaniline and polypyrrol compound for coating said polyaniline. CONSTITUTION:Polyaniline electrolyte 2 is conditioned into an electrolytic tank 1 containing water dissolved with unit quantity aniline and perchloric acid as the supporting electrolyte then a carbon paper positive electrode 31 and two sheets of negative electrodes 32 are immersed to perform electrolysis thus to deposit collected needle polymer or polyaniline onto the surface of electrode 31. Then an electrode where polyaniline is deposited as the positive electrode and carbon paper negative electrodes are immersed into polypyrrol electrolyte where pyrrol unit material and lithium perchlorate as the supporting electrolyte are dissolved into propylene carbonate as the polarity organic solvent thereafter D.C. constant current is fed to deposit polypyrrol onto polyaniline. When employing such macromolecular complex material as the positive electrode, droppage of polyaniline under operation is eliminated resulting in stable repetition of charge/discharge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリアニリン等の導電性高分子を使用した正
極体を有し、繰υ返し充放電における安定性の高い蓄電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a storage battery having a positive electrode body using a conductive polymer such as polyaniline and having high stability during repeated charging and discharging.

〔従来の技術〕[Conventional technology]

最近、導電性高分子膜を!極体とする高分子化合物蓄電
池が提案されている。これは、ポリアセチレンやその誘
導体であるポリピロール等の共役π(バイ)結合を有す
る導電性高分子の膜を電框体として、これを電解質溶液
中に浸漬することによって、蓄電池を形成するものであ
る。
Recently, conductive polymer membrane! A polymer compound storage battery with a polar body has been proposed. In this method, a storage battery is formed by using a conductive polymer film with conjugated π (bi) bonds, such as polyacetylene or its derivative polypyrrole, as an electric box and immersing it in an electrolyte solution. .

例えば、ポリアセチレン膜をそれぞれ正極体。For example, use a polyacetylene film as the positive electrode.

負極体として用いる蓄電池においては、過塩素酸リチウ
ムからなる電解質溶液中にこれらの電極体を浸漬するこ
とによシ、下記の化学反応式〔A〕。
In a storage battery used as a negative electrode body, by immersing these electrode bodies in an electrolyte solution consisting of lithium perchlorate, the following chemical reaction formula [A] can be achieved.

CB)に示す反応が生じ、過塩素酸イオンのアニオンま
たはリチウムイオンのカチオンが電気化学的な酸化・還
元に1なって、上記ポリアセチレン膜にドープ/アンド
ープされると考えられる。
It is thought that the reaction shown in CB) occurs, and the anions of perchlorate ions or cations of lithium ions become 1 through electrochemical oxidation and reduction, and are doped/undoped into the polyacetylene film.

(ただし、上式において、(OH)n&1ポリアセチレ
ン、 ago7は過塩素酸イオンm Li+はリチウム
イオン、e−は電子を表わす。) 上記式(A)、 CB)とも可逆的に起こ90式(A)
の反応を正極反応9式CB)の反応を負極反応とする蓄
電池が形成され1両式とも反応が右に移動することによ
シ充電、左に移動することにより放電を行うことができ
る。
(However, in the above formula, (OH)n&1 polyacetylene, ago7 represents a perchlorate ion, m Li+ represents a lithium ion, and e- represents an electron.) Both the above formulas (A) and CB) occur reversibly, and the formula 90 (A )
A storage battery is formed in which the reaction of equation 9 (CB) is the positive electrode reaction and the reaction of equation 9 (CB) is the negative electrode reaction.In both cases, charging can be performed by moving the reaction to the right, and discharging can be performed by moving the reaction to the left.

このような高分子化合物蓄電池は、比重が小さく、膜状
に形成されるという高分子化合物自体の利点を生かして
、電極重量が低減され、電池のエネルギー密度やパワー
密度を大きくすることができ、その完成が待たれている
Such polymer compound storage batteries take advantage of the advantages of the polymer compound itself, which has a low specific gravity and is formed in a membrane shape, and can reduce the weight of the electrodes and increase the energy density and power density of the battery. Its completion is awaited.

この蓄電池の正極体に利用できる導電性高分子には、ポ
リアセチレン、ポリチオフェン、ポリビローμ、ホリパ
5フェニレン、ポリアニリン等の多くのものが知られて
いる。これら各高分子の充放[(アニオンのドープ/ア
ンドープ)に対する安定性は高分子単位重量当りの充放
電電気量に依存する。
Many conductive polymers that can be used for the positive electrode body of this storage battery are known, such as polyacetylene, polythiophene, polyvirau μ, Horipa 5-phenylene, and polyaniline. The stability of each of these polymers against charging and discharging [(doping/undoping of anions) depends on the amount of electricity charged and discharged per unit weight of the polymer.

即ち、高分子単位重量当シの充放電電気量が大きい場合
には、充放電のサイクル寿命は短かく。
That is, when the amount of charge and discharge electricity per unit weight of the polymer is large, the cycle life of charge and discharge is short.

逆に充放電電気量が小さい場合にはサイクル寿命は長い
。しかし、各ポリマー間においてこれらの関係は一定で
はなく、使用する高分子によって異なる。
Conversely, if the amount of electricity charged and discharged is small, the cycle life is long. However, these relationships are not constant among each polymer and vary depending on the polymer used.

例えば、ポリアセチレンの場合、 0.05 Ah/I
10電気量を充電し、完全放*1行うサイケ/L’を繰
り返した場合、そのサイクル寿命は45サイクル程度で
あり、ポリチオフーンでは0.05 Ah/(/の電気
量で約90サイクル、ポリピロールでハ0.064A 
h/lの電気量で約300サイクル、ポリバフフェ=V
ンでu O,05Ah/7の電気量で約40サイクル、
ポリアニリンでは0.15Ah/7の電気量で約300
サイクルである。
For example, in the case of polyacetylene, 0.05 Ah/I
If Psyche/L' is repeated with 10 charges and a complete discharge*1, the cycle life is about 45 cycles, while polythiophon has about 90 cycles with 0.05 Ah/(/), and polypyrrole has about 90 cycles with 0.05 Ah/(/). Ha0.064A
Approximately 300 cycles with an amount of electricity of h/l, polybuffe=V
Approximately 40 cycles with an amount of electricity of uO, 05Ah/7,
For polyaniline, the electricity amount of 0.15Ah/7 is approximately 300
It's a cycle.

このように導電性高分子の中でもポリアニリンは安定に
充放電する電気量が比較的大きく、蓄電池の正極体とし
て利用するのに最も大きな可能性を有している。
As described above, among conductive polymers, polyaniline has a relatively large amount of electricity that can be stably charged and discharged, and has the greatest potential for use as a positive electrode body of a storage battery.

ポリアニリンは2通常、アニリンモノマー(○−MHz
 ) t−含む酸性水溶液中で電解酸化することにより
陽極上に容易に重合される。この様にして得た重合体は
針状の析出物でsb大きな表面積を持っている。従って
このような重合体を蓄電池の正極体とした場合充放電に
伴うドーパントアニオンの出入が円滑であるという利点
を有する。
Polyaniline is usually composed of aniline monomer (○-MHz
) It is easily polymerized on the anode by electrolytic oxidation in an acidic aqueous solution containing t-. The polymer thus obtained has needle-shaped precipitates with a large surface area. Therefore, when such a polymer is used as a positive electrode body of a storage battery, it has the advantage that dopant anions can smoothly move in and out during charging and discharging.

しかしながら、逆に針状の重合体でるるため分子間の結
合力が極めて弱く1重合体の一部が電極から容易に脱離
すると共に、充放電時の抵抗過電圧が大きい欠点がある
However, on the contrary, since it is a needle-shaped polymer, the bonding force between molecules is extremely weak, and a part of one polymer easily detaches from the electrode, and it also has the disadvantage that resistance overvoltage during charging and discharging is large.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記の正極体として使用される導電性高分子
の欠点を改善して、抵抗過電圧を小さくした正極体を有
し、しかも繰り返し充放電における安定性の高い蓄電池
を提供しようとするものである。
The present invention aims to improve the drawbacks of the conductive polymer used as the positive electrode body, to provide a storage battery that has a positive electrode body with reduced resistance overvoltage and is highly stable during repeated charging and discharging. It is.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の非水電解液蓄電池は、極性有機溶媒中に支持電
解質を含有する非水電解質溶液と、該非水電解質溶液を
備蓄する容器と、該非水電解質溶液中に少なくともその
一部を浸漬した負極体及び正極体とからなる蓄電池であ
って、上記正極体は集電用導電体及び該集電用導電体に
密着した高分子複合体とから成り、該高分子複合体はポ
リアニリンと該ポリアニリンに被覆または結着したポリ
ピロール系化合物また線ポリチオフェン系化合物の一方
または双方から成る重合体とから成ることを特徴とする
ものである。
The nonaqueous electrolyte storage battery of the present invention comprises a nonaqueous electrolyte solution containing a supporting electrolyte in a polar organic solvent, a container for storing the nonaqueous electrolyte solution, and a negative electrode at least partially immersed in the nonaqueous electrolyte solution. and a positive electrode body, the positive electrode body comprising a current collecting conductor and a polymer composite in close contact with the current collecting conductor, the polymer composite comprising polyaniline and the polyaniline. It is characterized by consisting of a polymer consisting of one or both of a polypyrrole compound and a linear polythiophene compound coated or bound together.

以下0本発明をよシ詳細に説明する。The present invention will be explained in detail below.

本発明における非水電解液蓄電池は、原理的に支持電解
質を含む極性有機溶媒からなる非水電解質溶液と、イ功
蓄増に)9その溶液を備蓄する容器と、該溶液に浸漬し
た正・負極体とからなるものである。本発明においては
、上記正極体は、集電用導電体とそれに密着した高分子
複合体とから成る。該高分子複合体は、ポリアニリンと
それに被覆または結着した重合体とから成り、該ポリア
ニリンに被覆または結着した重体体は、ポリピロール系
化合物またはポリチオフェン系化合物の一方または双方
である。
The nonaqueous electrolyte storage battery of the present invention basically consists of a nonaqueous electrolyte solution made of a polar organic solvent containing a supporting electrolyte, a container for storing the solution, and a positive electrode immersed in the solution. It consists of a negative electrode body. In the present invention, the positive electrode body is composed of a current collecting conductor and a polymer composite in close contact with the current collecting conductor. The polymer composite consists of polyaniline and a polymer coated or bonded to it, and the polymer coated or bonded to the polyaniline is one or both of a polypyrrole compound and a polythiophene compound.

上記高分子複合体は、共役R(パイ)結合により導電性
を有する高分子であり1本発明の蓄電池の正極体に使用
された場合、支持電解質と酸化・還元反応、すなわち支
持電解質のアニオンがドープ/アンドープして、充放電
の役割を果すものである。高分子複合体は支持電解質の
アニオンがドープ/アンドープしやすく9局部的な集中
が起こらず充放電のクーロン効率が高くなるように、そ
の形状は表面積が大きい多孔体とする。該高分子複合体
は、針状重合物であるポリアニリンの針状体にポリピロ
ール系化合物またはポリチオフーン系化合物の一方ま九
は双方から成る重合体が被覆あるいは結着した状態であ
り、繊維状の連続体となっている。このように、該重合
体がホリア=iJンを被覆あるいは結着していることに
よυ、内部抵抗が小さく、ポリアニリンの脱離が少ない
。それ故、該高分子複合体は充放電に対する安定性は良
好である。
The above polymer composite is a polymer that has conductivity due to conjugated R (pi) bonds, and when used in the positive electrode body of the storage battery of the present invention, it undergoes an oxidation/reduction reaction with the supporting electrolyte, that is, an anion of the supporting electrolyte. It is doped/undoped and plays the role of charging and discharging. The shape of the polymer composite is a porous body with a large surface area so that the anions of the supporting electrolyte can be easily doped/undoped without local concentration and the coulombic efficiency of charging and discharging is high. The polymer composite is a state in which a needle-like body of polyaniline, which is a needle-like polymer, is coated with or bound to one or both of a polypyrrole compound or a polythiophone compound, and is made of a continuous fibrous material. It has become a body. In this way, since the polymer covers or binds phoria, the internal resistance is low and polyaniline is less likely to be desorbed. Therefore, the polymer composite has good stability against charging and discharging.

また、集電用導電体と密着しているのは、上記高分子複
合体中のポリアニリンのみでもよく、ポリアニリンに被
覆または結着する重合体のみでもよい。更に上記重合体
とポリアニリンの両者が集電用導電体に密着していても
よい。
In addition, what is in close contact with the current collecting conductor may be only the polyaniline in the polymer composite, or may be only the polymer that coats or binds to the polyaniline. Furthermore, both the polymer and polyaniline may be in close contact with the current collecting conductor.

該ボリアニjJンに被覆または結着した重合体は。The polymer coated or bonded to the Boryanine is.

ポリピロール系化合物またはポリチオフーン系化合物の
一方または双方である。
One or both of a polypyrrole compound and a polythiophon compound.

上記ポリピロール系化合物としては、ポリビロー/L’
、              ’      ポリ−
N−アルキルビロール、ポリN−アリールビロールが挙
げられ、!iた上記ポリチオフーン系化合物としては、
ポリチオフェン、ポリ−3−アルキルビロ−ルが挙げら
れる。本発明においては、これらのうちの1種でもよく
、あるいは2種以上のものの混合重合体または共重合体
にして用いてもよい。
As the above-mentioned polypyrrole compound, polyvirow/L'
, 'Poly-
N-alkylvirol, polyN-arylvirol, and! The above-mentioned polythiophone compounds include:
Examples include polythiophene and poly-3-alkylvirol. In the present invention, one of these may be used, or a mixed polymer or copolymer of two or more of these may be used.

また、高分子複合体の形状としては、膜状体。In addition, the shape of the polymer composite is a membrane-like body.

粒状体あるいは粉状体等で用いるのがよく、その中でも
、正極体として使用した際に、集電用導電体と密着性が
優れている膜状体として用いるのが望ましい。該高分子
複合体を膜状体として用いる場合、該膜状体の膜厚とし
ては、1Qlzm〜1■の範囲内が望ましい。上記範囲
内の膜状体であれば、支持電解質によるドープ/アンド
ープがなされやすい。
It is preferable to use it in the form of granules or powder, and among these, it is desirable to use it as a film, which has excellent adhesion to the current collecting conductor when used as a positive electrode. When the polymer composite is used as a film-like body, the thickness of the film-like body is preferably within the range of 1Qlzm to 1cm. A membrane-like material within the above range is easily doped/undoped by the supporting electrolyte.

また、該高分子複合体中のポリアニリンとそれに被覆ま
たは結着した重合体との割合は、該重合体がポリアニリ
ンに対して3〜2Qwt%の範囲内になるのが望ましい
Further, the ratio of polyaniline in the polymer composite to the polymer coated or bonded thereto is desirably within the range of 3 to 2 Qwt% of the polyaniline.

該割合が20wt%を越える場合には、ポリアニリンの
有する優れた充放電特性が発揮されに<<。
When the proportion exceeds 20 wt%, the excellent charge and discharge characteristics of polyaniline are not exhibited.

他方3帆%未満では、ポリアニリンの分子間の結合力を
強める等の効果が低下するおそれがある。
On the other hand, if it is less than 3%, the effect of strengthening the bonding force between polyaniline molecules may be reduced.

なお、該高分子複合体を粒状体あるいは粉状体として用
いる場合、カーボン等の導電材を混合して正極体に使用
することもできる。
Note that when the polymer composite is used in the form of granules or powder, a conductive material such as carbon may be mixed therein and used in the positive electrode body.

本発明の蓄電池における支持電解質は、極性有機溶媒に
溶解して、電気伝導体となるとともに。
The supporting electrolyte in the storage battery of the present invention dissolves in a polar organic solvent and becomes an electrical conductor.

溶解した支持電解質のアニオンが下記の化学反応式(0
)及びCD)に示すように、酸化/還元反応でドープ/
アンドープして、充放電を行うものである。
The anion of the dissolved supporting electrolyte undergoes the following chemical reaction formula (0
) and CD), doped/reduced by oxidation/reduction reaction.
It is undoped and then charged and discharged.

(ただし、上式において、Pは前記高分子複合体。(However, in the above formula, P is the above-mentioned polymer complex.

A、Bはそれぞれ支持電解質のアニオン、カチオン、e
″′″は電子を表わす。) すなわち、上記式(C)、CD)とも可逆的に起こ99
式(0)の反応は正極体で9式(1))の反応は負極体
で生じ、充電することにより反応が右に移動し、正極体
ではアニオン人−が該重合体へドーピングする。一方、
放電することにより反応が左に移動し正極体では該重合
体中のアニオンが再び溶液中に溶解して、充放電を行う
ことができる。
A and B are the anion and cation of the supporting electrolyte, e
″′″ represents an electron. ) That is, both the above formulas (C) and CD) occur reversibly99
The reaction of formula (0) occurs at the positive electrode, and the reaction of formula (1) occurs at the negative electrode, and upon charging, the reaction moves to the right, and at the positive electrode, the anion is doped into the polymer. on the other hand,
By discharging, the reaction moves to the left, and the anions in the polymer are dissolved in the solution again in the positive electrode body, allowing charging and discharging to be performed.

該支持電解質としては、金属の過塩素酸塩、フッ化ホウ
酸塩、フッ化リン酸塩、v&酸塩、ヨウ化物、臭化物等
がある。上記過塩素酸塩としては。
The supporting electrolytes include metal perchlorates, fluoroborates, fluorophosphates, v&acids, iodides, bromides, and the like. As for the above perchlorate.

例えば過塩素酸リチウム、過塩素酸ナトリウム。For example, lithium perchlorate, sodium perchlorate.

過塩素酸カリウム、過塩素酸銀等が挙げられ、フッ化ホ
ウ酸塩としては、四フッ化ホウ酸リチウム。
Potassium perchlorate, silver perchlorate, etc. are mentioned, and the fluoroborate is lithium tetrafluoroborate.

四フッ化ホウ酸ナトリウム、四フッ化ホウ酸カリウム等
が、フッ化リン酸塩としては、六フッ化リン酸リチウム
、六フッ化リン酸ナトリウム、六フッ化リン酸カリウム
等が挙げられる。
Examples of the fluorophosphate include sodium tetrafluoroborate, potassium tetrafluoroborate, and the like, and examples of the fluorophosphate include lithium hexafluorophosphate, sodium hexafluorophosphate, potassium hexafluorophosphate, and the like.

例えば、支持電解質として、過塩素酸リチウムを用いた
場合2アニオンとして過塩素酸イオン(CeO,l、カ
チオンとしてリチウムイオン(L i”)がそれぞれ充
放電の担い手となる。
For example, when lithium perchlorate is used as the supporting electrolyte, perchlorate ions (CeO,1) serve as dianions, and lithium ions (L i ″) serve as cations, respectively, serving as carriers of charging and discharging.

本発明においては、上記支持電解質のうちの1種または
2種以上のものを使用する。また、その配合量は、極性
有機溶媒1e中に0.01〜2モル含まれていることが
望ましい。該配合量が、0.01モル未満の場合には、
溶液の抵抗を下げて電流を定常的に流しにくくなシ、更
に、充放電の容量が小さくなる可能性がある。一方、2
モルを越える場合には、溶液中で上記支持電解質が飽和
して。
In the present invention, one or more of the above-mentioned supporting electrolytes are used. Moreover, it is desirable that the compounding amount is 0.01 to 2 moles in the polar organic solvent 1e. If the amount is less than 0.01 mol,
This lowers the resistance of the solution, making it difficult to pass current steadily, and furthermore, the charging and discharging capacity may become smaller. On the other hand, 2
If the mole is exceeded, the supporting electrolyte in the solution becomes saturated.

支持電解質を完全に溶解させることが困難となる。It becomes difficult to completely dissolve the supporting electrolyte.

前記極性有機溶媒は、支持電解質を溶解し、正・負極体
を浸漬することによシ、電流を通電させるものであシ1
本発明においては、正・負極体の酸化を起こしにくい非
水溶媒を使用する。すなわち、これは、水溶液を使用し
た場合1通電することにより水溶液中で水の電気分解が
起こシ、酸素が発生し、正・負極体を酸化させてしまう
ためである0更に溶媒自体も酸化・還元によって分解し
ないものを使用する。該極性有機溶媒としては。
The polar organic solvent dissolves the supporting electrolyte and allows current to flow by immersing the positive and negative electrode bodies.
In the present invention, a non-aqueous solvent that does not easily cause oxidation of the positive and negative electrode bodies is used. In other words, this is because when an aqueous solution is used, applying electricity causes electrolysis of water in the aqueous solution, generating oxygen and oxidizing the positive and negative electrode bodies.In addition, the solvent itself is also oxidized. Use materials that do not decompose through reduction. As the polar organic solvent.

フロヒレフカ−ボネート。スルホフン、アセトニトリル
、ベンゾニトリ〃、ニトロベンゼン、ニトロメタン、ジ
メトキシエタン、硫酸ジメチル等が挙げられ、これらの
うちの1種もしくFX、2種以上を用いる。なお、上記
極性有機溶媒のうち、充放電時の発熱に対して、非常に
安定しているプロピレンカーボネート、ヌルホランが望
ましい。
Frohilev carbonate. Examples include sulfofane, acetonitrile, benzonitrile, nitrobenzene, nitromethane, dimethoxyethane, dimethyl sulfate, etc., and one or FX or two or more of these are used. Among the above polar organic solvents, propylene carbonate and nullholane are preferable because they are extremely stable against heat generation during charging and discharging.

本発明における正極体は、前記のように集電用導電体及
び高分子複合体とから成る。該高分子複合体の製造方法
としては、形成される高分子複合体の電気化学的特性の
面より電解重合で行なうのが好ましいが、酸化剤、触媒
等を用いて合成してもよい。
The positive electrode body in the present invention is composed of a current collecting conductor and a polymer composite as described above. The method for producing the polymer composite is preferably electropolymerization from the viewpoint of electrochemical properties of the polymer composite formed, but synthesis may also be performed using an oxidizing agent, a catalyst, etc.

次に、この高分子複合体の電解重合による製造方法につ
いて詳しく説明する。
Next, a method for producing this polymer composite by electrolytic polymerization will be explained in detail.

マス、ポリアニリンを製造する場合について説明すると
、アニリン単量体と支持電解質とを水に溶解してポリア
ニリン合成用の電析液を形成する。
To explain the case of manufacturing polyaniline, an aniline monomer and a supporting electrolyte are dissolved in water to form an electrodepositing solution for polyaniline synthesis.

このアニリン単量体の配合tは水1eに対し0.01〜
10モルの範囲内が望ましい。該配合量が0,01モル
未満めるいは10モ/l/を越える場合には、蓄電池の
正極体に適した重合物の形成が困難である。
The ratio t of this aniline monomer is 0.01 to 1e of water.
The amount is preferably within the range of 10 moles. When the blending amount is less than 0.01 mol or more than 10 mol/l, it is difficult to form a polymer suitable for a positive electrode body of a storage battery.

上記支持雷解譬として汀前記蓄W池で用いる支持電解質
と同じアニオンを持つ酸すなわち、過塩素酸、フッ化ホ
ウ酸、フッ化リン酸、硫酸、ヨウ素酸、臭素酸等を用い
るのが望しい。なお、ポリアニリンの合成後、同じ電析
液中でドープされているアニオンを脱ドープしてから該
ポリアニリン上にポリピロール系化合物またはポリチオ
フーン系化合物の一方または双方からなる重合体の電析
を行うならば塩酸など他の酸を用いてもよい。該支持電
解質の配合量としては水1eに対し0.05/−5七〃
の範囲内が望ましい。
As an explanation for the above-mentioned supporting electrolyte, it is preferable to use an acid having the same anion as the supporting electrolyte used in the W storage tank, that is, perchloric acid, fluoroboric acid, fluorinated phosphoric acid, sulfuric acid, iodic acid, bromic acid, etc. Yes. In addition, if after synthesizing polyaniline, the anion doped in the same electrodeposition solution is dedoped, and then a polymer consisting of one or both of a polypyrrole compound and a polythiophone compound is electrodeposited on the polyaniline. Other acids such as hydrochloric acid may also be used. The amount of the supporting electrolyte is 0.05/-57 per 1e of water.
It is desirable to be within the range of .

その後、アニリン単量体と支持電解質を含む電析液に正
電極と負電極とを接触しないように浸漬し、該正・負電
極間に直流電圧を印加することによシ、アニリン単量体
を電解東金反応させて正電極上にポリアニリンの膜状体
を形成する。
Thereafter, the positive electrode and the negative electrode are immersed in an electrodepositing solution containing an aniline monomer and a supporting electrolyte so as not to come into contact with each other, and a DC voltage is applied between the positive and negative electrodes. is electrolytically reacted with Togane to form a polyaniline film on the positive electrode.

この正電極上にポリアニリン膜が析出するのは。A polyaniline film is deposited on this positive electrode.

アニリン単量体が酸化される。すなわち、電子を奪われ
ることによって重合が開始するため、正電極表面上で重
合反応が進行することによると考えられる。
Aniline monomer is oxidized. In other words, it is thought that the polymerization reaction progresses on the surface of the positive electrode because polymerization starts when electrons are taken away.

上記正電極としては、ポリアニリン電析液が酸性水溶液
であるため、該電析液中で酸化溶解を起こさない導電体
であり9例えば、白金、金、ニッケ/L/、ステンレス
スチール、黒鉛、カーボン、カーボン複合材等を用いる
。この正電極の表面上にポリアニリン膜が析出するため
、該正電極の形状としては、板状、網状、メッキ膜状、
蒸着膜状のものを用いるのが望ましい。また、負電極は
、電析液中で溶解を起こさない導電体であり、白金。
Since the polyaniline electrodepositing solution is an acidic aqueous solution, the above-mentioned positive electrode is a conductor that does not undergo oxidative dissolution in the electrolytic deposit9. For example, platinum, gold, nickel/L/, stainless steel, graphite, carbon , using carbon composite materials, etc. Since a polyaniline film is deposited on the surface of this positive electrode, the shape of the positive electrode may be plate-like, net-like, plated film-like,
It is desirable to use a vapor-deposited film. In addition, the negative electrode is a conductor that does not dissolve in the electrodepositing solution, and is made of platinum.

ステンレス、二、ケル、カーボン複合材等が挙げられる
Examples include stainless steel, 2, KEL, and carbon composite materials.

また、印加する直流電圧の条件としては、正電極単位面
積当り0.1〜10 M/dの電流密度の電流となる範
囲が望ましい。該電流密度が0.1 mA/d未満の場
合、ポリアニリンの合成に長時間を要し、他方、10m
A/dを越える場合には、ポリアニリンの電気的特性や
寿命性能が低下するおそれがある。
Further, as conditions for the applied DC voltage, it is desirable that the range provides a current density of 0.1 to 10 M/d per unit area of the positive electrode. When the current density is less than 0.1 mA/d, it takes a long time to synthesize polyaniline;
If it exceeds A/d, there is a risk that the electrical properties and life performance of polyaniline will deteriorate.

また一般に同じ電流密度の場合0通電時間が長ければ、
それだけ形成されるポリアニリン膜の膜厚は大きくなる
。そのため該膜厚が110l1〜1麿の範囲内になるよ
うに通電時間をとるのが望ましい0なお、このポリアニ
リン膜は針状重合物の集合体であり、ポリアニリン膜の
合成後9合成用の正電極とともに加圧して膜厚を上記範
囲に制御してもよい。
Generally, for the same current density, if the 0-current time is longer,
The thickness of the polyaniline film thus formed increases accordingly. Therefore, it is desirable to set the current application time so that the film thickness is within the range of 110 l1 to 1 molar. Note that this polyaniline film is an aggregate of needle-like polymers, and after the synthesis of the polyaniline film, the The film thickness may be controlled within the above range by applying pressure together with the electrode.

次に、この合成したポリアニリンWs(針状重合物の集
合体)にポリピロール系化合物またはポリチオフーン系
化合物の一方または双方からなる重合体を電解重合によ
り析出させる。この重合体の析出によシ、ポリアニリン
上に該重合体が被覆または結着する。この場合、上記ポ
リアニリン膜を形成した電極を次の電解重合用正電極に
供する。
Next, a polymer consisting of one or both of a polypyrrole compound and a polythiophone compound is deposited on the synthesized polyaniline Ws (aggregate of acicular polymers) by electrolytic polymerization. Due to the precipitation of this polymer, the polyaniline is coated or bonded with the polymer. In this case, the electrode on which the polyaniline film is formed is used as a positive electrode for the next electrolytic polymerization.

なお、ポリアニリン膜を合成用電極からはぎ取り。In addition, the polyaniline film was peeled off from the synthesis electrode.

別な導電体に密着させて2次の電解重合用′Wt、極と
してもよい。更に、ポリアニリン膜を粉末状にし。
It may also be used as a pole for secondary electrolytic polymerization by closely contacting another conductor. Furthermore, the polyaniline film is made into powder.

その後導電体上で膜状体に加圧成形して次の電解重合用
電極としてもよい。
Thereafter, it may be pressure-molded into a film-like body on a conductor to serve as an electrode for the next electrolytic polymerization.

ポリピロール系化合物またはポリチオフーン系化合物の
一方または双方からなる重合体の電解重合は、先に本出
願人が出願した特願昭58−214855号、特願昭5
8−254474号、特願昭58−247601号に示
されている方法で行なうのがよい。
The electrolytic polymerization of a polymer consisting of one or both of a polypyrrole compound and a polythiophone compound is described in Japanese Patent Application No. 58-214855 and Japanese Patent Application No. 1983, previously filed by the present applicant.
It is preferable to carry out the method shown in Japanese Patent Application No. 8-254474 and Japanese Patent Application No. 58-247601.

これは、過塩素酸塩、フッ化ホク酸塩等の支持室非水電
解質溶液に、負電極と、前記ポリアニリン膜が密着した
導電体からなる正電極とを浸漬し。
In this method, a negative electrode and a positive electrode made of a conductor to which the polyaniline film is closely attached are immersed in a support chamber non-aqueous electrolyte solution such as perchlorate or fluorophocate.

該正・負電極間に直流電圧を印加するものである。A DC voltage is applied between the positive and negative electrodes.

これにより該正電極のポリアニリン膜上にポリピロール
系化合物またはポリチオン8ン系化合物の一方または双
方の重合体が析出する。
As a result, a polymer of one or both of the polypyrrole compound and the polythione compound is deposited on the polyaniline film of the positive electrode.

この電解重合の条件は、前記の3件の出願のものと同様
な条件で行なうのがよい。該条件下であれば、形成され
た重合体は充放電に伴うアニオンのドープ/アンドープ
が円滑であり、しかもポリアニリンの被覆材または結着
材としての寿命が長い。
The conditions for this electrolytic polymerization are preferably similar to those in the three applications mentioned above. Under these conditions, the formed polymer can be smoothly doped/undoped with anions during charging and discharging, and has a long life as a coating material or a binding material for polyaniline.

なお該ポリアニリン上へのポリピロール系化合物または
ポリチオフーン系化合物の一方または双方からなる重合
体の電析は非水電解質溶液から行うのでポリアニリンの
合成後肢ポリアニリンを蒸留水で十分洗浄乾燥してから
行わなければならない。
Since the electrodeposition of a polymer consisting of one or both of a polypyrrole compound and a polythiophone compound onto the polyaniline is carried out from a non-aqueous electrolyte solution, synthesis of polyaniline must be carried out after thoroughly washing and drying the hindlimb polyaniline with distilled water. No.

上記のようにして、高分子複合体が形成され。A polymer complex is formed as described above.

該高分子複合体を集電用導電体に密着させて0本発明に
かかる蓄電池の正極体を製造する・この場合、高分子複
合体は、そのままで集電用導電体に密着させてもよく9
粒状体あるいは粉状体として使用する場合には、カーボ
ン等の導電材と混合して集電用導電体に密着させてもよ
い。
The polymer composite is brought into close contact with a current collecting conductor to produce a positive electrode body for a storage battery according to the present invention. In this case, the polymer composite may be brought into close contact with a current collecting conductor as it is. 9
When used as a granular or powdered material, it may be mixed with a conductive material such as carbon and brought into close contact with a current collecting conductor.

上記集電用導電体としては、蓄電池の非水電解質溶液中
で酸化溶解あるいは不働態化を起こさない導電体であり
、白金、金、ニッケル、カーボン等のものが挙げられる
。なお、前記の高分子複合体を電解重合によシ製造する
際に使用した?[Wlの導電体と同様な材料を用いるこ
とができ、したがって高分子複合体の製造時に使用し9
表面上に高分子複合体が析出した!極をそのまま蓄電池
の正框体として用いてもよい。また該集電用導電体の形
状としては、板状、網状、メッキ膜状、蒸着膜状等のも
のが望ましく、その厚みは、高分子化合物蓄電池の軽量
化の利点を生かすため、0.1〜1.000 pmの範
囲が望ましい。
The current collecting conductor is a conductor that does not undergo oxidative dissolution or passivation in the nonaqueous electrolyte solution of the storage battery, and includes platinum, gold, nickel, carbon, and the like. Incidentally, the polymer was used when producing the above-mentioned polymer composite by electrolytic polymerization. [A material similar to the conductor of Wl can be used and therefore used during the production of the polymer composite9
A polymer complex was deposited on the surface! The electrode may be used as it is as the main body of the storage battery. In addition, the shape of the current collecting conductor is preferably plate-like, net-like, plated film-like, vapor-deposited film-like, etc., and its thickness is 0.1 to take advantage of the weight reduction of polymer compound storage batteries. A range of 1.000 pm is desirable.

該集電用導電体と本発明の高分子複合体とを密着させる
方法としては、前記の電解重合時に高分子複合体が正電
極上に析出するのを利用する方法の他圧着あるいは蒸着
して行う方法等がある。
Methods for bringing the current collecting conductor and the polymer composite of the present invention into close contact include a method that utilizes the fact that the polymer composite is deposited on the positive electrode during electrolytic polymerization, as well as pressure bonding or vapor deposition. There are ways to do this.

本発明の蓄電池の負極体としてはリチウム、カリウム、
ナトリウムのアルカリ金属あるいはこれらアルカリ金属
とスズ、アルミニウム、マグネシウムなどとの合金もし
くは上記アルカリ金属のイオンなどの支持電解質のカチ
オンをドープ/アンドープできる導電性高分子を使用す
ることができる0該導電性高分子としては、ポリアセチ
レン。
As the negative electrode body of the storage battery of the present invention, lithium, potassium,
Conductive polymers that can be doped/undoped with cations of the supporting electrolyte such as alkali metals such as sodium or alloys of these alkali metals with tin, aluminum, magnesium, etc. or ions of the above-mentioned alkali metals can be used. As a molecule, it is polyacetylene.

ポリチオフェン等が挙けられる。Examples include polythiophene.

上記正・負極体を前記非水電解質溶液に互いに接触しな
いように、少なくともその一部分を浸漬する。この場合
、ひとつの蓄電池で充放電の容量を大きくとるため、複
数個の正・負極体を交互に配列して、浸漬してもよい。
At least a portion of the positive and negative electrode bodies is immersed in the non-aqueous electrolyte solution so that they do not come into contact with each other. In this case, in order to increase the charging and discharging capacity of one storage battery, a plurality of positive and negative electrode bodies may be alternately arranged and immersed.

また1本発明の蓄電池の容器は、前記非水電解質溶液に
おかされず、かつ電気絶縁性を有する材質からなるもの
であり、ポリエチレン、ポリプロピレン、ガラス等が望
ましい。なお、複数個の正・負極体を交互に配列する場
合には、上記蓄電池の容器をいくつかのセルに分けて、
各セルに電解質溶液と、正・負極体を入れて、セlvを
接続してもよい。
Furthermore, the container of the storage battery of the present invention is made of a material that is not susceptible to the nonaqueous electrolyte solution and has electrical insulation properties, and is preferably made of polyethylene, polypropylene, glass, or the like. In addition, when arranging multiple positive and negative electrode bodies alternately, divide the storage battery container into several cells,
An electrolyte solution and positive and negative electrode bodies may be placed in each cell, and the cells lv may be connected.

上記り〕ごとき、容器中に非水電解質溶液を備蓄し、正
・負極体を浸漬し、正・負極体間を接続することによっ
て1本発明にかかる蓄電池を得る。
As described above, a storage battery according to the present invention is obtained by storing a non-aqueous electrolyte solution in a container, immersing the positive and negative electrode bodies, and connecting the positive and negative electrode bodies.

なお、非水電解質溶液中で、正・負極体が直接接触する
のを防ぐため、正・負極体間にセパレーター、 ?!解
液保持材、スペーサー等の絶縁体を配置してもよい。上
記絶縁体の中で、セパレーターを用いる場合には、ポリ
プロピレン不織布等の電解質溶液の透過を妨げないもの
全使用するのが望ましい。
In addition, in order to prevent the positive and negative electrode bodies from coming into direct contact in the non-aqueous electrolyte solution, there is a separator between the positive and negative electrode bodies. ! An insulator such as a solution holding material and a spacer may be arranged. When a separator is used among the above-mentioned insulators, it is desirable to use all insulators that do not impede permeation of the electrolyte solution, such as polypropylene nonwoven fabric.

本発明にかかる蓄電池は、充電時には、正極体の高分子
複合体が[71ヒ学的に酸化されて、電解質溶液中のア
ニオンの高分子複合体へのドーピング反応が起こる。一
方、放電時には、高分子複合体が還元されて、該高分子
複合体にドーピングしていたアニオンは再び溶液中へ溶
は出し、この機構により、充放電が行なわれる。
In the storage battery according to the present invention, during charging, the polymer complex of the positive electrode body is oxidized, and a doping reaction of anions in the electrolyte solution to the polymer complex occurs. On the other hand, during discharging, the polymer complex is reduced and the anions doped in the polymer complex are dissolved into the solution again, and charging and discharging are performed by this mechanism.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、正極体として使用するポリアニリンに
ポリピロール系化合物またはポリチオフェン系化合物の
一方または双方からなる重合体が被覆または結着してな
るので、該ポリアニリンの分子間結合力が強く、シかも
抵抗過電圧の小さい正極体を有する蓄電池を提供するこ
とができる。
According to the present invention, since polyaniline used as a positive electrode body is coated with or bonded to a polymer made of one or both of a polypyrrole compound and a polythiophene compound, the intermolecular bonding force of the polyaniline is strong and A storage battery having a positive electrode body with low resistance overvoltage can be provided.

また本発明の蓄電池に、従来のごとく正極体のポリアニ
リンが作動中に脱落することがなく、安定に繰シ返し充
放電を行なうことができる。
Further, in the storage battery of the present invention, the polyaniline of the positive electrode body does not fall off during operation as in the conventional case, and can be repeatedly charged and discharged stably.

〔実施例〕〔Example〕

以下1本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1゜ 本実施例における正極体に使用する高分子複合体の合成
用電解セルを第2図に、該正極体を利用した蓄電池の断
面を第1図に示す。
Example 1 FIG. 2 shows an electrolytic cell for synthesizing the polymer composite used for the positive electrode body in this example, and FIG. 1 shows a cross section of a storage battery using the positive electrode body.

まず、高分子複合体を以下の様に形成した。水でポリア
ニリン電析液2な調製した。、この電析液中に縦50鱈
×演50ffX厚さ400μmのカーボンベーパからな
る正電擾31とこれと同様の材質からなる2枚の負電極
32とを対向する様に浸漬し・該正・負電極を直流電源
に接続した。この電解槽に正tm単位面積当り3 mA
/dの電流密度で定電流管102分間流しく全電気量1
8.4C/C」)、電解を行い、正を極31表面にポリ
アニリンを析出させた。
First, a polymer composite was formed as follows. A polyaniline electrolyte solution 2 was prepared with water. A positive electrode 31 made of carbon vapor with a length of 50 mm x 50 ff x a thickness of 400 μm and two negative electrodes 32 made of the same material are immersed in this electrodeposition solution so as to face each other.・The negative electrode was connected to a DC power source. This electrolytic cell has a positive tm of 3 mA per unit area.
The total amount of electricity flowing through the constant current tube for 102 minutes at a current density of /d 1
8.4C/C''), electrolysis was performed to deposit polyaniline on the surface of the positive electrode 31.

このポリアニリンは図5の8EM<走査型電子M徽鏡)
写真(倍率3080倍)に示す様に大きさ0.03〜5
1tmの針状重合物の集合体である。
This polyaniline is 8EM<scanning electron M mirror in Figure 5.
Size 0.03-5 as shown in the photo (3080x magnification)
It is an aggregate of 1 tm needle-like polymers.

このjwLm上に析出した゛ままのポリアニリンを蒸留
水で十分洗浄後、150℃の温度で真空加熱乾燥’22
Vf間行った。
After thoroughly washing the polyaniline deposited on this jwLm with distilled water, it was vacuum heated and dried at a temperature of 150°C.
I went between Vf.

その後、第2図と同様の電解槽を用いて、極性有機溶媒
としてプロピレンカーボネート1eにピロール単量体と
支持電解質としての過塩素酸リチウムとをそれぞれ0.
2モル溶解したポリピローμ電析液中に正電極としての
上記ポリアニリンが析も 出した電極とカーボンベーパからなる負電極ど0浸漬し
、該正・負電極を直流電源に接続し、正電極単位面積当
!J 7 mA/dの定電流を2.9分間流して(全電
気量1.2c/d)、ポリアニリン上にポリピロー〜を
析出させた。
Thereafter, using an electrolytic cell similar to that shown in FIG. 2, pyrrole monomer and lithium perchlorate as a supporting electrolyte were added to propylene carbonate 1e as a polar organic solvent at 0.0.
The electrode in which the polyaniline was precipitated as a positive electrode and the negative electrode made of carbon vapor were immersed in a 2 mol polypillow μ electrodeposition solution, and the positive and negative electrodes were connected to a DC power source, and the positive electrode unit was immersed. Per area! A constant current of J 7 mA/d was passed for 2.9 minutes (total electric charge 1.2 c/d) to deposit polypillow on the polyaniline.

このポリアニリンとポリピロールとからなる高分子複合
体は全重量12.bwy/d−膜厚的4QQμmの膜状
体であった。また、ポリアニリンとポリピロールとの割
合は重量比で95:5である。このε 高分子複合体は、第4図のSPM写真(倍率10500
倍)に見られる様にポリアニリンの針状重合物カポリヒ
ロールで被覆・結着されており繊維状重合物の連続体と
なっている。
The total weight of this polymer composite consisting of polyaniline and polypyrrole is 12. It was a film-like body with a bwy/d-thickness of 4QQμm. Further, the weight ratio of polyaniline and polypyrrole is 95:5. This ε polymer composite is shown in the SPM photograph (magnification: 10500) in Figure 4.
As can be seen in Figure 2), it is coated and bound with the acicular polyaniline polymer capolyhyrol, making it a continuous body of fibrous polymer.

この高分子複合体を用いて第1図に示す本発明にかかる
蓄電池を製造し九。すなわち、正極体4は該高分子複合
体41と表面上に該高分子複合体を析出させたカーボン
ベーパ集電体42とから構成され、負極体5はリチウム
80重量%−アルミニウム20重量%の合金板を用いた
Using this polymer composite, a storage battery according to the present invention shown in FIG. 1 was manufactured. That is, the positive electrode body 4 is composed of the polymer composite 41 and a carbon vapor current collector 42 on which the polymer composite is deposited, and the negative electrode body 5 is composed of a mixture of 80% by weight of lithium and 20% by weight of aluminum. An alloy plate was used.

非水電解質溶液6としてはプロピレンカーボネート1e
に過塩素酸リチウム1モA/を溶解したものを用い、該
電解質溶液6を電槽7中に備蓄した。
As the non-aqueous electrolyte solution 6, propylene carbonate 1e
The electrolyte solution 6 was prepared by dissolving 1 moA/liter of lithium perchlorate in the electrolyte solution 6 and stored in a container 7.

前記正極体4と負極体5とを上記溶液中に浸漬し。The positive electrode body 4 and the negative electrode body 5 are immersed in the solution.

正・負極体間にセパレータと電解液保持材の両方の役割
を兼ねたポリプロピレン不織布8を挿入し本発明にかか
る蓄電池を製造した。
A storage battery according to the present invention was manufactured by inserting a polypropylene nonwoven fabric 8 that served as both a separator and an electrolyte holding material between the positive and negative electrode bodies.

また、比較のためポリピロール被覆を行なわず。Also, for comparison, no polypyrrole coating was performed.

ポリアニリンのみを電解重合でカーボンベーパ集電体上
に析出させた正極体(電解重合時の全電気量は上記高分
子複合体合成時と同一で、ポリアニリンは重量12.6
4/d、膜厚的40011mの膜状体である。)を用い
た以外は、上記と同様に構成した比較用蓄電池も製造し
た。
A positive electrode body in which only polyaniline was deposited on a carbon vapor current collector by electrolytic polymerization (the total amount of electricity during electrolytic polymerization was the same as that during the synthesis of the polymer composite described above, and the weight of polyaniline was 12.6
4/d, it is a film-like body with a film thickness of 40011 m. ) was also used, but a comparative storage battery constructed in the same manner as above was also manufactured.

上記2種類の蓄電池管用いて正極単位面積当91mA/
dの定電流で一定電気量(高分子複合体(比較例ではポ
リアニリン)1g当10.IAh)充電して、この充放
電サイクルを繰シ返し、その電圧特性を調べた。その結
果を第5図の−〔本発明〕と2〔比較例〕で表わした曲
線で示す。
91 mA/per unit area of positive electrode using the above two types of battery tubes
The battery was charged with a constant amount of electricity (10.IAh per 1 g of polymer composite (polyaniline in the comparative example)) at a constant current of d, and this charge/discharge cycle was repeated to examine the voltage characteristics. The results are shown in the curves indicated by - [present invention] and 2 [comparative example] in Fig. 5.

第5図より明らかな様に9本発明にかかる蓄電池は充電
と放電との電圧差が小さく、シかも充電電圧の低い艮好
な電圧特性を示すのに対し、比較用蓄電池では充電と放
電との電圧差が大きく1本発明のものに比べて、電圧効
率の点で劣っていることがわかる。
As is clear from FIG. 5, the storage battery according to the present invention has a small voltage difference between charging and discharging, and exhibits excellent voltage characteristics with a low charging voltage, whereas the comparative storage battery has a small voltage difference between charging and discharging. It can be seen that the voltage difference is large and the voltage efficiency is inferior to that of the present invention.

実施例2゜ ポリアニリンとポリピローμとの全重量を12゜6 #
/dと一定にし、実施例1と同様の方法でポリアニリン
とポリピロールとの割合を重量比で97:3.90:1
0,80:20とした3種類の高分子複合体(3種類と
も膜厚的4 Q Q IImの膜状体)t−形成した。
Example 2 The total weight of polyaniline and polypillow μ is 12°6 #
/d, and the weight ratio of polyaniline and polypyrrole was 97:3.90:1 in the same manner as in Example 1.
Three types of polymer composites (all three types were film-like bodies with a film thickness of 4 Q Q IIm) with a ratio of 0 and 80:20 were formed.

これらの高分子複合体t−実施例1と同様に正極体に使
用し2本発明の蓄電池す、c、dを製造した。これらの
蓄電池を用いて実施例1と同条件で充放電した場合の電
圧効率を第1表に示す。
These polymer composites were used for positive electrode bodies in the same manner as in Example 1 to produce two storage batteries of the present invention. Table 1 shows the voltage efficiency when these storage batteries were charged and discharged under the same conditions as in Example 1.

第1表中には実施例1のa〔本発明〕および2〔比較例
〕の各蓄電池の電圧効率も付記した。本発明の−、b、
c、dの各蓄電池は比較例2よυ電圧効率が高く、内部
抵抗が小さくなっていることがわかる。その中でも−、
0.dが最も効率が高く、ポリアニリンとポリピロール
との割合が最適であることがわかる。
In Table 1, the voltage efficiency of each storage battery of Example 1 a [invention] and 2 [comparative example] is also listed. -, b, of the present invention
It can be seen that the storage batteries c and d have higher υ voltage efficiency and smaller internal resistance than Comparative Example 2. Among them-
0. It can be seen that d has the highest efficiency and the ratio of polyaniline and polypyrrole is optimal.

第  1  表 実施例3゜ 実施例1と同様の方法でポリアニリンを作製した後、こ
のポリアニリン上にポリチオフェンを電析させた。ポリ
チオフェンはプロピレンカーポネ−)1eにチオフェン
単量体と支持電解質としての過塩素酸リチウムとをそれ
ぞれ0.2モル溶解した電析液から5mA/−の定電流
で電析させた。
Table 1 Example 3 After polyaniline was prepared in the same manner as in Example 1, polythiophene was electrodeposited on the polyaniline. Polythiophene was deposited at a constant current of 5 mA/- from an electrodepositing solution in which 0.2 mol each of thiophene monomer and lithium perchlorate as a supporting electrolyte were dissolved in propylene carbonate (1e).

なお、ポリアニリンとポリピロールとの全重量’t 1
2.6 q/dと一定にし、上記の方法でポリアニリン
とポリピロールの重量比率を97:3゜95:5,90
:10,80:20とした4種類の高分子複合体(4種
類とも膜厚的400μmの膜状体)を形成した。各高分
子複合体を実施例1と同様に正極体に使用して蓄電池e
、f、g、hを製造した。
In addition, the total weight of polyaniline and polypyrrole 't 1
2.6 q/d and the weight ratio of polyaniline and polypyrrole to 97:3゜95:5,90 using the above method.
:10, 80:20 (all four types were film-like bodies with a film thickness of 400 μm) were formed. Using each polymer composite as a positive electrode body in the same manner as in Example 1, a storage battery e
, f, g, and h were produced.

これら各蓄電池を用いて実施例1と同様の充放電を行っ
た時の電圧効率を第2表に示す。
Table 2 shows the voltage efficiency when charging and discharging the same as in Example 1 using each of these storage batteries.

第2表より明らかなように本発明のa、f、g。As is clear from Table 2, a, f, and g of the present invention.

hの各蓄電池は実施例1の比較用蓄電池2よシミ圧動率
が高く内部抵抗が低減していることが分る。
It can be seen that each of the storage batteries h has a higher stain pressure modulus and a lower internal resistance than the comparative storage battery 2 of Example 1.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1における本発明の蓄電池の断面図、
第2図は1本発明の蓄電池の正極体に使用する高分子複
合体の電解重合製造装置、第3図及び第4図は、それぞ
れ実施例1において電解重合したポリアニリン、高分子
複合体の高分子組織の8EM写真(倍率は、それぞれ3
080.10500倍でめる0 )・第5図は、5i!
施例1における本発明の蓄電池と比較用蓄電池の電圧特
性曲線を示す。 31・・・電解重合用圧を極、32・・・電解重合用負
電極、4・・・蓄電池の正極体、41・・・高分子複合
体、42・・・集電用導電体、5・・・蓄電池の負極体
、6・・・電解質溶液、8・・・セパレーター。 (ノド2石〕
FIG. 1 is a sectional view of the storage battery of the present invention in Example 1,
Figure 2 shows an electrolytic polymerization production apparatus for a polymer composite used in the positive electrode body of the storage battery of the present invention, and Figures 3 and 4 respectively show the polyaniline electrolytically polymerized in Example 1 and the polymer composite polymer composite used in the positive electrode body of the storage battery of the present invention. 8EM photographs of molecular structures (magnification is 3 for each
080.10500 times 0)・Figure 5 shows 5i!
1 shows voltage characteristic curves of a storage battery of the present invention and a comparative storage battery in Example 1. 31... Pressure electrode for electrolytic polymerization, 32... Negative electrode for electrolytic polymerization, 4... Positive electrode body of storage battery, 41... Polymer composite, 42... Conductor for current collection, 5 . . . Negative electrode body of storage battery, 6. Electrolyte solution, 8. Separator. (2 stones in the throat)

Claims (4)

【特許請求の範囲】[Claims] (1)極性有機溶媒中に支持電解質を含有する非水電解
質溶液と、該非水電解質溶液を備蓄する容器と、該非水
電解質溶液中に少なくともその一部を浸漬した負極体及
び正極体とからなる蓄電池であって、上記正極体は集電
用導電体及び該集電用導電体に密着した高分子複合体と
から成り、該高分子複合体はポリアニリンと該ポリアニ
リンに被覆または結着したポリピロール系化合物または
ポリチオフェン系化合物の一方または双方から成る重合
体とから成ることを特徴とする非水電解液蓄電池。
(1) Consisting of a non-aqueous electrolyte solution containing a supporting electrolyte in a polar organic solvent, a container for storing the non-aqueous electrolyte solution, and a negative electrode body and a positive electrode body at least partially immersed in the non-aqueous electrolyte solution. In the storage battery, the positive electrode body is composed of a current collecting conductor and a polymer composite in close contact with the current collecting conductor, and the polymer composite includes polyaniline and a polypyrrole-based material coated or bonded to the polyaniline. A non-aqueous electrolyte storage battery characterized by comprising a polymer comprising one or both of a compound and a polythiophene-based compound.
(2)上記高分子複合体は、膜状体であり、その厚みが
10μmないし1mmである特許請求の範囲第(1)項
記載の非水電解液蓄電池。
(2) The non-aqueous electrolyte storage battery according to claim (1), wherein the polymer composite is a membrane-like body and has a thickness of 10 μm to 1 mm.
(3)上記支持電解質は、金属の過塩素酸塩、フッ化ホ
ウ酸塩、フッ化リン酸塩、硫酸塩、ヨウ化物、臭化物の
うちの1種または2種以上である特許請求の範囲第(1
)項記載の非水電解液蓄電池。
(3) The supporting electrolyte is one or more of metal perchlorates, fluoroborates, fluorophosphates, sulfates, iodides, and bromides. (1
) The non-aqueous electrolyte storage battery described in item 2.
(4)上記極性有機溶媒は、プロピレンカーボネート、
スルホラン、アセトニトリル、ベンゾニトリル、ニトロ
ベンゼン、ニトロメタン、ジメトキシエタン、硫酸ジメ
チルのうちの1種または2種以上である特許請求の範囲
第(1)項記載の非水電解液蓄電池。
(4) The polar organic solvent is propylene carbonate,
The nonaqueous electrolyte storage battery according to claim (1), which is one or more of sulfolane, acetonitrile, benzonitrile, nitrobenzene, nitromethane, dimethoxyethane, and dimethyl sulfate.
JP60087092A 1985-04-23 1985-04-23 Nonaqueous electrolyte storage battery Pending JPS61245468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087092A JPS61245468A (en) 1985-04-23 1985-04-23 Nonaqueous electrolyte storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087092A JPS61245468A (en) 1985-04-23 1985-04-23 Nonaqueous electrolyte storage battery

Publications (1)

Publication Number Publication Date
JPS61245468A true JPS61245468A (en) 1986-10-31

Family

ID=13905311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087092A Pending JPS61245468A (en) 1985-04-23 1985-04-23 Nonaqueous electrolyte storage battery

Country Status (1)

Country Link
JP (1) JPS61245468A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144564A (en) * 1987-12-01 1989-06-06 Ricoh Co Ltd Polyaniline electrode
JPH02155733A (en) * 1988-12-09 1990-06-14 Komatsu Ltd Electroconductive plastic compound and plastic cell using the compound
KR100477982B1 (en) * 1997-10-06 2005-06-17 삼성에스디아이 주식회사 Coating method of lithium battery metal grid
JP2005228705A (en) * 2004-02-16 2005-08-25 Nec Corp Power storage device
US10964939B2 (en) 2017-01-31 2021-03-30 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for electrochemical device and electrochemical device, and method for manufacturing same
CN115050951A (en) * 2022-08-17 2022-09-13 潍坊科技学院 Aniline pyrrole copolymer/carbon composite material and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144564A (en) * 1987-12-01 1989-06-06 Ricoh Co Ltd Polyaniline electrode
JP2654038B2 (en) * 1987-12-01 1997-09-17 株式会社リコー Polyaniline electrode
JPH02155733A (en) * 1988-12-09 1990-06-14 Komatsu Ltd Electroconductive plastic compound and plastic cell using the compound
KR100477982B1 (en) * 1997-10-06 2005-06-17 삼성에스디아이 주식회사 Coating method of lithium battery metal grid
JP2005228705A (en) * 2004-02-16 2005-08-25 Nec Corp Power storage device
JP4530133B2 (en) * 2004-02-16 2010-08-25 日本電気株式会社 Power storage device
US10964939B2 (en) 2017-01-31 2021-03-30 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for electrochemical device and electrochemical device, and method for manufacturing same
CN115050951A (en) * 2022-08-17 2022-09-13 潍坊科技学院 Aniline pyrrole copolymer/carbon composite material and preparation method and application thereof
CN115050951B (en) * 2022-08-17 2022-10-28 潍坊科技学院 Aniline pyrrole copolymer/carbon composite material as anode of aluminum ion battery and preparation method and application thereof

Similar Documents

Publication Publication Date Title
TWI332667B (en) Method for preparing a nanostructured composite electrode through electrophoretic deposition and a product prepared thereby
EP2099043B1 (en) Coated electrode and organic electrolyte capacitor
US5151162A (en) Rechargeable storage battery with electroactive organic polymer electrodes in polar solvent electrolyte
JPH0454350B2 (en)
US11043702B2 (en) Zinc ion secondary battery including aqueous electrolyte
JPS6289749A (en) Electrode material
JPS61245468A (en) Nonaqueous electrolyte storage battery
JPS61193367A (en) Cell
JP3089707B2 (en) Solid electrode composition
JPS60127663A (en) Storage battery and manufacturing of its positive electrode polymer
JPS60150563A (en) Manufacture of polymer compound storage battery
JP2752377B2 (en) Sheet electrode
JP2542221B2 (en) Battery using polyaniline composite electrode
JPH0676821A (en) Lead-acid battery
JPH043066B2 (en)
JPH0821430B2 (en) Secondary battery
JPS63152867A (en) Polyaniline
JPS60107273A (en) Production process for storage battery and its positive electrode body film
JPS59112584A (en) Battery
JPH0349151A (en) Secondary battery
JPS63213267A (en) Nonaqueous electrolyte secondary cell
JP2501821B2 (en) Secondary battery
JP2644765B2 (en) Positive electrode for storage battery
JP3344152B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPS61263044A (en) Electrode material