JPH05325631A - Solid electrolyte - Google Patents

Solid electrolyte

Info

Publication number
JPH05325631A
JPH05325631A JP4124592A JP12459292A JPH05325631A JP H05325631 A JPH05325631 A JP H05325631A JP 4124592 A JP4124592 A JP 4124592A JP 12459292 A JP12459292 A JP 12459292A JP H05325631 A JPH05325631 A JP H05325631A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
lone electron
ionic conductivity
electron pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4124592A
Other languages
Japanese (ja)
Inventor
Hiroshi Soejima
博 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP4124592A priority Critical patent/JPH05325631A/en
Publication of JPH05325631A publication Critical patent/JPH05325631A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a solid electrolyte with high ionic conductivity from which substantial driving force can be obtained. CONSTITUTION:This is a solid electrolyte 1 formed between a pair of electrodes 2, 3, wherein the solid electrolyte has a difference in the percentage content of a lone electron pair (x) in a molecule from a negative electrode 2 side to a positive electrode 3 side and is constituted by laminating a substrate polymer P into three layers or more so as to sequentially increase the percentage content of a lone electron pair and then doping an ion carrier therein. Thereby, the gradient of concentration of alkali metal ions is formed within a solid electrolyte, so that the dissolution of negative electrode alkali metal is accelerated to provide a large driving force whereby a solid electrolyte having high ion conductivity may be obtained. Also, a solid electrolyte with the desired ionic conductivity may be easily obtained by changing the percentage content of the lone electron pair within the substrate polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質に関し、詳
しくは高イオン伝導度を有し各種電気化学デバイス用材
料として好適な固体電解質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte, and more particularly to a solid electrolyte having high ionic conductivity and suitable as a material for various electrochemical devices.

【0002】[0002]

【従来の技術】固体電解質として、高分子固体電解質が
室温においても極めて高いイオン伝導度を示すことが知
られており、室温動作の電池をはじめとして、各種電気
化学デバイス用の材料として有望視されている。ところ
が、従来の固体電解質のイオン伝導機構は、基質となる
高分子のセグメント運動によって生じる自由体積へのイ
オンホッピングが主となっている。しかし、この機構で
は、本質的な駆動力がないので、基質高分子を分子設計
により化学修飾しても溶液系電解質の伝導度である10
-2S/cmを超えることは難しい。また、無機固体電解質
で提案されているトンネルまたはキャナル(層状)のイ
オンパスの考えを利用する際においても、本質的な駆動
力がないため高伝導度化には限界がある。
2. Description of the Related Art As a solid electrolyte, a polymer solid electrolyte is known to exhibit extremely high ionic conductivity even at room temperature, and is regarded as a promising material for various electrochemical devices including batteries operating at room temperature. ing. However, the ion conduction mechanism of the conventional solid electrolyte is mainly ion hopping to the free volume generated by the segmental motion of the polymer serving as the substrate. However, in this mechanism, since there is essentially no driving force, even if the substrate polymer is chemically modified by molecular design, it is the conductivity of the solution-based electrolyte.
It is difficult to exceed -2 S / cm. Further, even when utilizing the concept of tunnel or canal (layered) ion paths proposed for the inorganic solid electrolyte, there is no essential driving force, and there is a limit to achieving high conductivity.

【0003】[0003]

【発明が解決しようとする課題】固体電解質のイオン伝
導度を向上させるためには、固体電解質中でアルカリ金
属イオンを保持することが必要で、このためドープした
アルカリ金属塩のアニオン−カチオン間のイオン結合を
切断しなければならない。この結合を切断するために、
アルカリ金属イオンに対して配位能を持つ物質、一般に
は分子鎖中に孤立電子対を有するポリマーを基質ポリマ
ーとして固体電解質を形成している。
In order to improve the ionic conductivity of the solid electrolyte, it is necessary to retain the alkali metal ion in the solid electrolyte, and therefore, the anion-cation between the doped alkali metal salt is retained. The ionic bond must be broken. To break this bond,
A solid electrolyte is formed by using a substance having a coordination ability for an alkali metal ion, generally a polymer having a lone electron pair in the molecular chain as a substrate polymer.

【0004】ところが、上記孤立電子対を有する基質ポ
リマー単層で固体電解質を形成しても、固体電解質中に
孤立電子対が散在するだけで、本質的な駆動力がえられ
ず固体電解質のイオン伝導度を向上させることは困難で
あった。
However, even if the solid electrolyte is formed by a single layer of the substrate polymer having the lone electron pairs, the lone electron pairs are scattered in the solid electrolyte, and the essential driving force cannot be obtained, and the ions of the solid electrolyte are not obtained. It was difficult to improve the conductivity.

【0005】本発明の目的は、上記の如き課題を解消
し、本質的な駆動力がえられ高イオン伝導度を有する高
分子固体電解質を提供することにある。
An object of the present invention is to solve the above problems and to provide a polymer solid electrolyte having an essential driving force and high ionic conductivity.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記固体電
解質の構造に着目し、固体電解質を構成する基質ポリマ
ーに孤立電子対の濃度勾配を持たせる構造とすることに
よって、上記目的が達成できることを見出し、本発明を
完成した。即ち、本発明の高分子固体電解質は、一対の
電極間に形成される固体電解質であって、当該固体電解
質が、負極側から正極側へ分子中の孤立電子対含有率を
異にし、かつ、孤立電子対含有量を順次増加させるよう
に3層以上に基質ポリマーを積層して構成され、これに
イオンキャリアをドープしてなるものである。
Means for Solving the Problems The present inventor has focused on the structure of the above-mentioned solid electrolyte and has achieved the above-mentioned object by providing a structure in which a matrix polymer constituting the solid electrolyte has a concentration gradient of lone electron pairs. The inventors have found that they can do so and have completed the present invention. That is, the polymer solid electrolyte of the present invention is a solid electrolyte formed between a pair of electrodes, the solid electrolyte is different in the lone electron pair content in the molecule from the negative electrode side to the positive electrode side, and, It is formed by laminating a substrate polymer in three or more layers so that the content of lone electron pairs is sequentially increased, and is doped with ion carriers.

【0007】[0007]

【作用】上記構成によれば、孤立電子対含有量の濃度勾
配がついた基質ポリマーで固体電解質となるので、これ
にイオンキャリアをドープするとイオンキャリアの濃度
勾配が形成される。したがって、これをアルカリ電池に
用いると固体電解質中にアルカリ金属イオンの濃度勾配
が形成され、負極のアルカリ金属の溶解が促進されて大
きな駆動力がえられる。また、基質ポリマー中の孤立電
子対含量を変量させることによって、固体電解質のアル
カリ金属イオンの濃度勾配が変えられるので、固体電解
質のイオン伝導度を容易に調節できる。
According to the above construction, the substrate polymer having a concentration gradient of the lone electron pair content forms a solid electrolyte, so that the concentration gradient of the ion carriers is formed by doping this with an ion carrier. Therefore, when this is used in an alkaline battery, a concentration gradient of alkali metal ions is formed in the solid electrolyte, the dissolution of the alkali metal in the negative electrode is promoted, and a large driving force is obtained. Further, by varying the lone electron pair content in the substrate polymer, the concentration gradient of alkali metal ions in the solid electrolyte can be changed, so that the ionic conductivity of the solid electrolyte can be easily adjusted.

【0008】以下、本発明を図面に基づいてより詳細に
説明する。図1は、本発明の固体電解質の構成を示す模
式図であって、1は固体電解質で、負極2と正極3との
間に分子中の孤立電子対xの含量が異なる3層以上の基
質ポリマー層P1 〜Pn (n≧3)より構成される。
The present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing the constitution of the solid electrolyte of the present invention, in which 1 is a solid electrolyte, and three or more layers of substrates having different contents of lone electron pairs x in the molecule between the negative electrode 2 and the positive electrode 3. It is composed of polymer layers P 1 to P n (n ≧ 3).

【0009】上記基質ポリマー層Pは、負極2側から正
極3側へ孤立電子対xの含量を増加させて構成され、負
極2に接する基質ポリマー層P1 は、ポリマー中に孤立
電子対xを含有しないか、または含有してもその含有量
が他の基質ポリマー層のうち最も少なく、正極3に接す
る基質ポリマー層Pn は、ポリマー中に孤立電子対xを
最も多く含有するように形成される。
The substrate polymer layer P is formed by increasing the content of the lone electron pair x from the negative electrode 2 side to the positive electrode 3 side, and the substrate polymer layer P 1 in contact with the negative electrode 2 has the lone electron pair x in the polymer. The substrate polymer layer P n which does not contain or contains the least amount of other substrate polymer layers and which is in contact with the positive electrode 3 is formed so as to contain most lone electron pairs x in the polymer. It

【0010】本発明では、上記基質ポリマーとして、分
子中に孤立電子対を有する公知のポリマーが使用できる
が、例えば、具体的には下記の化学式で示される孤立電
子対を有するユニット(1)、(2)、(3)あるいは
(4)のいずれかを分子中に導入したポリマーが好適に
使用できる。
In the present invention, a known polymer having a lone electron pair in the molecule can be used as the substrate polymer. For example, specifically, a unit (1) having a lone electron pair represented by the following chemical formula, A polymer in which any one of (2), (3) or (4) is introduced into the molecule can be preferably used.

【0011】[0011]

【化1】 [Chemical 1]

【0012】ただし、mは正の整数、nは0または正の
整数を表し、特に限定されないが、通常はm=1〜15
0,n=0〜9が用いられ、好ましくはm=40〜7
0,n=2〜5である。
However, m is a positive integer, n is 0 or a positive integer and is not particularly limited, but usually m = 1 to 15
0, n = 0 to 9 is used, and preferably m = 40 to 7
0, n = 2-5.

【0013】[0013]

【化2】 [Chemical 2]

【0014】ただし、m,nは正の整数を表し、特に限
定されないが、通常はm=1〜650,n=1〜20が
用いられ、好ましくはm=400〜500,n=2〜5
である。
However, m and n represent positive integers, and although not particularly limited, m = 1 to 650 and n = 1 to 20 are usually used, and preferably m = 400 to 500 and n = 2 to 5.
Is.

【0015】[0015]

【化3】 [Chemical 3]

【0016】ただし、m,nは正の整数を表し、特に限
定されないが、通常はm=1〜500,n=1〜100
0が用いられ、好ましくはm=120〜150,n=5
〜8である。
However, m and n represent positive integers and are not particularly limited, but usually m = 1 to 500, n = 1 to 100.
0 is used, preferably m = 120 to 150, n = 5
~ 8.

【0017】[0017]

【化4】 [Chemical 4]

【0018】ただし、mは正の整数、nは0または正の
整数を表し、特に限定されないが、通常はm=1〜15
0,n=0〜20が用いられ、好ましくはm=70〜1
10,n=3〜11である。
However, m is a positive integer, n is 0 or a positive integer and is not particularly limited, but usually m = 1 to 15
0, n = 0 to 20 are used, and preferably m = 70 to 1
10, n = 3 to 11.

【0019】上記ユニットをポリマー中に導入する方法
は、公知の重合手段でなされ、例えばグラフト共重合、
ブロック共重合、リビング重合等でなされる。なお、ポ
リマー分子鎖中の孤立電子対含量の調整は、ポリマー重
合時に上記ユニットを有するモノマー配合量を変量する
ことでなされる。
The above-mentioned unit is introduced into the polymer by a known polymerization means such as graft copolymerization,
It is made by block copolymerization, living polymerization and the like. The lone electron pair content in the polymer molecular chain is adjusted by varying the compounding amount of the monomer having the above unit during polymer polymerization.

【0020】前記3層以上の基質ポリマー層Pの形成
は、上記ポリマーの有機溶媒溶液を、ディップコーティ
ング,キャスト法、ラングミュアー・ブロジェット法等
の方法で、石英ガラス、テフロン板等の基材上に成膜
し、これを成膜する毎に乾燥、脱溶媒して次の成膜を行
い積層する方法あるいは複数の層を積層した後、乾燥、
脱溶媒する方法でなされる。また、本発明では、上記基
質ポリマー中の孤立電子対含有量の順に少なくとも3
層、好ましくは5層以上、さらに好ましくは10層以上
に積層される。
The above-mentioned three or more substrate polymer layers P are formed by dipping a solution of the above polymer in an organic solvent by a dip coating method, a casting method, a Langmuir-Blodgett method, etc. A method of forming a film on the surface, drying each time the film is formed, removing the solvent and forming the next film, or laminating a plurality of layers, followed by drying,
It is made by a method of removing the solvent. Further, in the present invention, at least 3 in the order of the lone electron pair content in the substrate polymer.
It is laminated in layers, preferably 5 layers or more, more preferably 10 layers or more.

【0021】なお、上記各基質ポリマーの膜厚は、1〜
150μm、好ましくは5〜80μm、より好ましくは
10〜50μmに形成し、固体電解質層全体としては、
30〜1000μm、好ましくは40〜300μm、よ
り好ましくは50〜150μm厚さとするのが適当であ
る。この基質ポリマー層の膜厚が、1μmより薄いと、
均質なシート加工をすることが困難となり、150μm
より厚いと、伝導度が低下して好ましくない。また、固
体電解質層全体の厚さが、30μmより薄いと、力学的
強度が劣るために変形、歪みなどに対して極めて弱くな
り実用性に問題が生じ、1000μmより厚いと、孤立
電子対の濃度勾配による駆動力をもってしても、イオン
伝導度が従来のものよりも劣ることになって好ましくな
い。
The film thickness of each of the above substrate polymers is from 1 to
The thickness of the solid electrolyte layer is 150 μm, preferably 5 to 80 μm, and more preferably 10 to 50 μm.
A thickness of 30 to 1000 μm, preferably 40 to 300 μm, and more preferably 50 to 150 μm is suitable. If the thickness of this matrix polymer layer is less than 1 μm,
It becomes difficult to process a homogenous sheet, and 150 μm
If the thickness is thicker, the conductivity is lowered, which is not preferable. Further, if the thickness of the solid electrolyte layer is less than 30 μm, the mechanical strength is inferior, which makes it extremely weak against deformation and distortion, which causes a problem in practicality. Even with the driving force due to the gradient, the ionic conductivity is inferior to the conventional one, which is not preferable.

【0022】本発明では、固体電解質の全体に一体性を
持たせるために、上記各基質ポリマーを同一のものとす
るか、または、できるだけ構造が類似するポリマーを使
用することが望ましい。しかし、構造の異なる基質ポリ
マーを2種以上組み合わせて、固体電解質を形成するこ
ともできる。
In the present invention, in order to make the solid electrolyte as a whole integral, it is desirable that the above-mentioned substrate polymers are the same or polymers having a structure as similar as possible are used. However, it is also possible to form a solid electrolyte by combining two or more substrate polymers having different structures.

【0023】本発明の固体電解質は、これをLiClO4,Li
I,LiBF4,LiCF3SO3,LiAsF6等のアルカリ金属塩の有機溶
媒溶液中に浸漬処理する公知の方法でイオンキャリアを
ドープして使用される。イオンキャリアをドープする
と、イオンキャリアが濃度勾配をもって固体電解質中に
存在するようになる。したがって、この固体電解質は、
初期状態では固体電解質中のアルカリ金属イオン濃度に
も濃度勾配が生じ、負極のアルカリ金属が固体電解質中
に溶解し易くなり、これが駆動力となってイオン伝導度
が上昇する。
The solid electrolyte of the present invention contains LiClO 4 , Li
I, LiBF 4 , LiCF 3 SO 3 , LiAsF 6 and the like are used after being doped with ion carriers by a known method of immersion treatment in an organic solvent solution of an alkali metal salt. When the ion carrier is doped, the ion carrier comes to exist in the solid electrolyte with a concentration gradient. Therefore, this solid electrolyte is
In the initial state, a concentration gradient also occurs in the alkali metal ion concentration in the solid electrolyte, and the alkali metal of the negative electrode is easily dissolved in the solid electrolyte, which serves as a driving force to increase the ionic conductivity.

【0024】この結果、固体電解質のイオン伝導度を交
流インピーダンスアナライザーで測定すると、10-3
/cmオーダの高いイオン伝導度を示すので、この固体電
解質は、電池を始めとしてセンサ、ディスプレイ、コン
デンサのような各種電気化学デバイス用材料として有用
である。
As a result, when the ionic conductivity of the solid electrolyte was measured by an AC impedance analyzer, it was 10 -3 S
Since it exhibits a high ionic conductivity on the order of / cm, this solid electrolyte is useful as a material for various electrochemical devices such as batteries, sensors, displays and capacitors.

【0025】[0025]

【実施例】以下、実施例を示し本発明をより具体的に説
明する。なお、本発明がこれに限定されるものでないこ
とは言うまでもない。 実施例1 図1は本発明の一実施例を示す固体電解質の模式図であ
る。同図において、1は固体電解質で、孤立電子対xの
含有量がそれぞれ異なる5層の基質ポリマー層P1 〜P
n (n=5)で構成されている。これらの基質ポリマー
層は、次のようにして形成した。
EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples. Needless to say, the present invention is not limited to this. Example 1 FIG. 1 is a schematic diagram of a solid electrolyte showing an example of the present invention. In the figure, reference numeral 1 is a solid electrolyte, and five substrate polymer layers P 1 to P having different contents of lone electron pairs x.
n (n = 5). These matrix polymer layers were formed as follows.

【0026】(ポリマーの調製)下記の化学式で示され
る孤立電子対を有するユニット(1)のn=0〜4とし
た5種のポリスチレン・12−クラウン−4置換ポリエ
チレンのブロック共重合体を、リビング重合法により合
成した後、それぞれジメチルアセトアミドで10重量%
溶液に調製した。
(Preparation of Polymer) Five types of block copolymers of polystyrene-12-crown-4 substituted polyethylene, in which n = 0-4 of the unit (1) having a lone electron pair represented by the following chemical formula, are prepared: After synthesis by living polymerization method, 10% by weight each with dimethylacetamide
Prepared into a solution.

【0027】[0027]

【化5】 [Chemical 5]

【0028】(固体電解質1の作製)上記ポリマー溶液
を、n=0の場合のものから順にスピンコート法によっ
てガラスプレート上にエーテル酸素含有率の順に厚さ1
00μmのポリマー層を順次積層した。このとき、各層
の混合を避けるため、ポリマー層を成膜後、80℃/2
2mmHgの条件で十分に溶媒を除去し、ついで次のポリマ
ー層を成膜する方法で積層させた。上記5層よりなるポ
リマー層を成膜した後、これをさらに80℃/22mmHg
の条件で減圧乾燥して水中に浸漬したところ、積層した
ポリマー層がガラスプレートから剥離し始め、10分後
に完全に剥離した。このポリマー層を取り出し、再び減
圧乾燥した。
(Preparation of Solid Electrolyte 1) The above polymer solutions were spin-coated on a glass plate in the order of n = 0, and the thickness of ether oxygen was 1 in this order.
A polymer layer of 00 μm was sequentially laminated. At this time, in order to avoid mixing of the respective layers, after forming the polymer layer, 80 ° C / 2
The solvent was sufficiently removed under the condition of 2 mmHg, and then the following polymer layer was laminated by a method of forming a film. After forming the polymer layer consisting of the above 5 layers, this is further heated at 80 ° C./22 mmHg
When dried under reduced pressure and immersed in water under the conditions described above, the laminated polymer layer started to peel from the glass plate and completely peeled after 10 minutes. This polymer layer was taken out and dried under reduced pressure again.

【0029】ついで、上記ポリマー層を50℃、濃度3
0重量%のLiClO4のエタノール溶液中に8時間浸漬した
後、これを取り出し真空乾燥機で1Torr,70℃の
雰囲気で8時間乾燥させて溶媒等を除去して、リチウム
イオンをドープした固体電解質1を作製した。この固体
電解質1を交流インピーダンスアナライザー(ソーラト
ロン社製)でイオン伝導度を測定したところ、1.3×
10-3S/cmのイオン伝導度であった。
Then, the above polymer layer was added at 50 ° C. and a concentration of
After immersing in an ethanol solution of 0 wt% LiClO 4 for 8 hours, this was taken out and dried in a vacuum dryer for 8 hours in an atmosphere of 1 Torr and 70 ° C. to remove the solvent and the like, and a lithium ion-doped solid electrolyte. 1 was produced. When the ionic conductivity of this solid electrolyte 1 was measured with an AC impedance analyzer (manufactured by Solartron), 1.3 ×
The ionic conductivity was 10 −3 S / cm.

【0030】一方、比較例として上記n=0〜4の5種
それぞれの単独膜を、上記と同様に作製してイオン伝導
度を測定したところ、表1に示すように、いずれも10
-5S/cmのオーダーであった。
On the other hand, as a comparative example, each of the above five independent films of n = 0 to 4 was prepared in the same manner as described above, and the ionic conductivity was measured.
It was on the order of -5 S / cm.

【0031】[0031]

【表1】 [Table 1]

【0032】実施例2 (ポリマーの調製)下記の化学式で示される孤立電子対
を有するユニット(2)のn=2〜6とした5種のポリ
チオエーテルのジメチルスルホキシド飽和溶液を調製し
た。
Example 2 (Preparation of Polymer) A saturated solution of 5 kinds of polythioethers in dimethylsulfoxide having n = 2 to 6 of the unit (2) having a lone electron pair represented by the following chemical formula was prepared.

【0033】[0033]

【化6】 [Chemical 6]

【0034】(固体電解質1の作製)上記溶液を石英ガ
ラスプレート上にn=2から順にキャスト法で成膜し5
層のポリマー層を形成した。なお、各層成膜ごとに、6
5℃/5mmHgの条件で十分に溶媒を除去して乾燥を行っ
た。得られたポリマー層を、実施例1と同様に処理し
て、リチウムイオンをドープした固体電解質1を作製し
た。この固体電解質1を交流インピーダンスアナライザ
ーでイオン伝導度を測定したところ、1.1×10-3
/cmのイオン伝導度であった。
(Preparation of Solid Electrolyte 1) The above solution was deposited on a quartz glass plate in order from n = 2 by a casting method to form a film 5
A polymer layer of layers was formed. In addition, for each layer film formation, 6
The solvent was sufficiently removed under the condition of 5 ° C./5 mmHg and drying was performed. The obtained polymer layer was treated in the same manner as in Example 1 to prepare a lithium ion-doped solid electrolyte 1. When the ionic conductivity of this solid electrolyte 1 was measured by an AC impedance analyzer, it was 1.1 × 10 −3 S
The ionic conductivity was / cm.

【0035】比較としてn=2としたポリチオエーテル
単層膜で固体電解質を作製し、そのイオン伝導度を測定
したところ、3.5×10-5S/cmであった。
For comparison, a solid electrolyte was prepared from a polythioether monolayer film with n = 2, and its ionic conductivity was measured to be 3.5 × 10 -5 S / cm.

【0036】実施例3 下記の化学式で示される孤立電子対を有するユニット
(3)のn=0〜9とした10種の側鎖にオキシメチレ
ンを有するポリエチレン誘導体をそれぞれ合成し、実施
例1と同様の方法で10層のポリマー層を形成した。得
られたポリマー層を、実施例1と同様に処理して、リチ
ウムイオンをドープした固体電解質1を作製した。この
固体電解質1を交流インピーダンスアナライザーでイオ
ン伝導度を測定したところ、2.3×10-3S/cmのイ
オン伝導度であった。
Example 3 A polyethylene derivative having oxymethylene in 10 kinds of side chains with n = 0 to 9 of a unit (3) having a lone electron pair represented by the following chemical formula was synthesized, respectively. Ten polymer layers were formed by the same method. The obtained polymer layer was treated in the same manner as in Example 1 to prepare a lithium ion-doped solid electrolyte 1. When the ionic conductivity of this solid electrolyte 1 was measured with an AC impedance analyzer, the ionic conductivity was 2.3 × 10 −3 S / cm.

【0037】[0037]

【化7】 [Chemical 7]

【0038】実施例4 下記の化学式で示される孤立電子対を有するユニット
(4)のn=2〜6とした5種の側鎖に12−アザクラ
ウン−4−チオエーテル誘導体を有するポリマーをそれ
ぞれ合成した。これらのポリマーを、実施例2と同様の
方法で、順に成膜し5層のポリマー層を作製した。得ら
れたポリマー層を、実施例1と同様に処理して、リチウ
ムイオンをドープした固体電解質1を作製した。この固
体電解質1を交流インピーダンスアナライザーでイオン
伝導度を測定したところ、8.5×10-4S/cmのイオ
ン伝導度であった。
Example 4 A polymer having a 12-azacrown-4-thioether derivative in five side chains with n = 2 to 6 of a unit (4) having a lone electron pair represented by the following chemical formula was synthesized. did. These polymers were sequentially deposited in the same manner as in Example 2 to prepare 5 polymer layers. The obtained polymer layer was treated in the same manner as in Example 1 to prepare a lithium ion-doped solid electrolyte 1. When the ionic conductivity of this solid electrolyte 1 was measured with an AC impedance analyzer, the ionic conductivity was 8.5 × 10 −4 S / cm.

【0039】[0039]

【化8】 [Chemical 8]

【0040】実施例5 前記実施例4におけるn=6のときの12−アザクラウ
ン−4−チオエーテル誘導体のジメチルスルホキシド溶
液、実施例2におけるn=2のポリチオエーテルジメチ
ルスルホキシド溶液、実施例3におけるn=4の側鎖に
オキシメチレンユニットを有するポリエチレン誘導体の
ジメチルホルムアミド溶液の3種を、この順に実施例2
と同様の方法で3層のポリマー層を作製した。得られた
ポリマー層を、実施例1と同様に処理して、リチウムイ
オンをドープした固体電解質1を作製した。この固体電
解質1を交流インピーダンスアナライザーでイオン伝導
度を測定したところ、8.7×10-4S/cmのイオン伝
導度であった。
Example 5 A dimethyl sulfoxide solution of a 12-azacrown-4-thioether derivative when n = 6 in the above Example 4, a polythioether dimethyl sulfoxide solution of n = 2 in Example 2, and an n in Example 3 = 3 in the dimethylformamide solution of a polyethylene derivative having an oxymethylene unit in the side chain of Example 2 in this order.
Three polymer layers were prepared in the same manner as in. The obtained polymer layer was treated in the same manner as in Example 1 to prepare a lithium ion-doped solid electrolyte 1. When the ionic conductivity of this solid electrolyte 1 was measured with an AC impedance analyzer, the ionic conductivity was 8.7 × 10 −4 S / cm.

【0041】実施例6 前記実施例1におけるn=0のときのポリスチレン・1
2−クラウン−4置換ポリエチレンのブロック共重合体
のジメチルアセトアミド溶液、実施例2におけるn=3
のポリチオエーテルジメチルスルホキシド溶液、実施例
4におけるn=6の側鎖に12−アザクラウン−4−チ
オエーテル誘導体を有するポリマーのジメチルスルホキ
シド溶液の3種を、この順に実施例2と同様の方法で3
層のポリマー層を作製した。得られたポリマー層を、実
施例1と同様に処理して、リチウムイオンをドープした
固体電解質1を作製した。この固体電解質1を交流イン
ピーダンスアナライザーでイオン伝導度を測定したとこ
ろ、1.0×10-3S/cmのイオン伝導度であった。
Example 6 Polystyrene-1 when n = 0 in the above Example 1
A solution of a block copolymer of 2-crown-4 substituted polyethylene in dimethylacetamide, n = 3 in Example 2.
Of the polythioether dimethyl sulfoxide solution of Example 3 and a dimethyl sulfoxide solution of a polymer having a 12-azacrown-4-thioether derivative in the side chain of n = 6 in Example 4 in the same manner as in Example 2
A polymer layer of layers was made. The obtained polymer layer was treated in the same manner as in Example 1 to prepare a lithium ion-doped solid electrolyte 1. When the ionic conductivity of this solid electrolyte 1 was measured by an AC impedance analyzer, the ionic conductivity was 1.0 × 10 −3 S / cm.

【0042】(応用例)実施例1で得られた固体電解質
を用いて、図2に示す構成にリチウム電池を組み立て
た。同図において、Dはリチウム電池で、5層のポリマ
ー層P1 〜P5 よりなる固体電解質1と、負極2および
正極3とで構成される。この固体電解質1のポリマー層
1 にはリチウム製負極2を、ポリマー層P5 には、二
酸化マンガン、アセチレンブラックおよびポリテトラフ
ルオロエチレンよりなる正極3がそれぞれ取り付けてい
る。また、上記正極3には、集電体5aを介してステン
レス製缶7を、負極2には、集電体5bを介してステン
レス製キャップ6を取り付けて試験用リチウム電池Dと
した。
(Application Example) Using the solid electrolyte obtained in Example 1, a lithium battery having the structure shown in FIG. 2 was assembled. In the figure, D is a lithium battery, which is composed of a solid electrolyte 1 composed of five polymer layers P 1 to P 5 , a negative electrode 2 and a positive electrode 3. A lithium anode 2 is attached to the polymer layer P 1 of the solid electrolyte 1, and a cathode 3 made of manganese dioxide, acetylene black and polytetrafluoroethylene is attached to the polymer layer P 5 . Further, a stainless steel can 7 was attached to the positive electrode 3 via a current collector 5a, and a stainless steel cap 6 was attached to the negative electrode 2 via a current collector 5b to obtain a test lithium battery D.

【0043】このリチウム電池Dの起電力を二端法で測
定したところ、3.5Vであった。さらに、上記リチウ
ム電池を0.5mA/cmの電流で、上限電圧3.5V,下
限電圧2Vに設定して充放電を繰り返した。サイクル数
10回目の放電容量は12.0mAh であった。さらに充
放電を繰り返し、100回目の放電容量を測定したとこ
ろ、上記10回目の放電容量とほぼ同数値を示し、良好
なサイクル特性を示した。
When the electromotive force of this lithium battery D was measured by the two-end method, it was 3.5V. Further, the lithium battery was charged and discharged repeatedly at a current of 0.5 mA / cm, with an upper limit voltage of 3.5 V and a lower limit voltage of 2 V. The discharge capacity at the 10th cycle was 12.0 mAh. Further, the charging and discharging were repeated and the discharge capacity at the 100th time was measured.

【0044】[0044]

【発明の効果】以上詳述したように、本発明の固体電解
質によれば、固体電解質中にアルカリ金属イオンの濃度
勾配が形成され、負極のアルカリ金属の溶解が促進され
て大きな駆動力がえられるので、高イオン伝導度を有す
る固体電解質がえられる。また、アルカリ金属イオンの
濃度勾配を変えることによって、固体電解質のイオン伝
導度を容易に調節できるので、所望のイオン伝導度を有
する固体電解質が簡単にえられる。したがって、本発明
の固体電解質を用いると、高起電力の、かつ、サイクル
特性に優れる電池が作製できる。
As described in detail above, according to the solid electrolyte of the present invention, a concentration gradient of alkali metal ions is formed in the solid electrolyte, the dissolution of the alkali metal in the negative electrode is promoted, and a large driving force is obtained. As a result, a solid electrolyte having high ionic conductivity can be obtained. Further, since the ionic conductivity of the solid electrolyte can be easily adjusted by changing the concentration gradient of the alkali metal ions, a solid electrolyte having a desired ionic conductivity can be easily obtained. Therefore, by using the solid electrolyte of the present invention, a battery having high electromotive force and excellent cycle characteristics can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す固体電解質の模式図で
ある。
FIG. 1 is a schematic view of a solid electrolyte showing an example of the present invention.

【図2】本発明の応用例を示すリチウム電池の模式図で
ある。
FIG. 2 is a schematic diagram of a lithium battery showing an application example of the present invention.

【符号の説明】[Explanation of symbols]

1 固体電解質 P1 ,Pn ポリマー層 2 負極 3 正極 x 孤立電子対1 solid electrolyte P 1 , P n polymer layer 2 negative electrode 3 positive electrode x lone electron pair

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極間に形成される固体電解質で
あって、当該固体電解質が、負極側から正極側へ分子鎖
中の孤立電子対含有率を異にし、かつ、孤立電子対含有
量を順次増加させるように3層以上に基質ポリマーを積
層して構成され、これにイオンキャリアをドープしてな
る固体電解質。
1. A solid electrolyte formed between a pair of electrodes, wherein the solid electrolyte has a different lone electron pair content in the molecular chain from the negative electrode side to the positive electrode side, and has a lone electron pair content. A solid electrolyte formed by laminating a substrate polymer in three or more layers so as to sequentially increase the number of ions, and doping this with ion carriers.
JP4124592A 1992-05-18 1992-05-18 Solid electrolyte Pending JPH05325631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4124592A JPH05325631A (en) 1992-05-18 1992-05-18 Solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4124592A JPH05325631A (en) 1992-05-18 1992-05-18 Solid electrolyte

Publications (1)

Publication Number Publication Date
JPH05325631A true JPH05325631A (en) 1993-12-10

Family

ID=14889273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4124592A Pending JPH05325631A (en) 1992-05-18 1992-05-18 Solid electrolyte

Country Status (1)

Country Link
JP (1) JPH05325631A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027856A1 (en) * 2000-09-29 2002-04-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
WO2002027858A1 (en) * 2000-09-29 2002-04-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary cell
KR100884598B1 (en) * 2005-08-31 2009-02-19 가부시키가이샤 오하라 Lithium ion secondary battery and solid electrolyte therefor
US20140045064A1 (en) * 2008-09-01 2014-02-13 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
WO2020137391A1 (en) * 2018-12-27 2020-07-02 パナソニックIpマネジメント株式会社 Battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002027856A1 (en) * 2000-09-29 2002-04-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
WO2002027858A1 (en) * 2000-09-29 2002-04-04 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary cell
EP1339128A1 (en) * 2000-09-29 2003-08-27 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
US7238444B2 (en) 2000-09-29 2007-07-03 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium secondary battery
KR100772566B1 (en) * 2000-09-29 2007-11-02 샤프 가부시키가이샤 Lithium secondary cell
KR100772565B1 (en) * 2000-09-29 2007-11-02 샤프 가부시키가이샤 Lithium secondary battery
EP1339128A4 (en) * 2000-09-29 2009-06-17 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary battery
KR100884598B1 (en) * 2005-08-31 2009-02-19 가부시키가이샤 오하라 Lithium ion secondary battery and solid electrolyte therefor
KR100884599B1 (en) * 2005-08-31 2009-02-19 가부시키가이샤 오하라 Lithium ion secondary battery and solid electrolyte therefor
US20140045064A1 (en) * 2008-09-01 2014-02-13 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
WO2020137391A1 (en) * 2018-12-27 2020-07-02 パナソニックIpマネジメント株式会社 Battery

Similar Documents

Publication Publication Date Title
Killian et al. Polypyrrole composite electrodes in an all‐polymer battery system
Sotomura et al. An organosulfur polymer cathode with a high current capability for rechargeable batteries
Taguchi et al. Fibrous polyaniline as positive active material in lithium secondary batteries
US11069940B2 (en) Ionically conductive material for electrochemical generator and production methods
WO2014107433A2 (en) Multi-layer structures prepared by layer-by-layer assembly
CN111403692A (en) Preparation method of metal lithium cathode with hydrophobic protective layer
US5183543A (en) Polyanilines, process for the preparation thereof and cells using them
Tsutsumi et al. Preparation of polyaniline-poly (p-styrenesulfonic acid) composite by post-polymerization and application as positive active material for a rechargeable lithium battery
Zhang et al. Li-ion battery with poly (acrylonitrile-methyl methacrylate)-based microporous gel electrolyte
JP3842442B2 (en) Polymer solid electrolyte and electrochemical device using the same
JPH05325631A (en) Solid electrolyte
JP4060465B2 (en) Polymer solid electrolyte and electrochemical device using the same
De Pinto et al. Polymers and copolymers of pyrrole and thiophene as electrodes in lithium cells
Doeff et al. The use of redox polymerization electrodes in lithium batteries with liquid electrolytes
JP3131441B2 (en) Anode for battery
JP3346661B2 (en) Polymer electrode, method for producing the same, and lithium secondary battery
Watanabe et al. Polypyrrole/polymer electrolyte bilayer composites prepared by electrochemical polymerization of pyrrole using ion-conducting polymers as a solid electrolyte
JP4083297B2 (en) Method for producing polymer electrode
JP3453200B2 (en) Method for producing surface-modified conductive polymer compound film
KR100400215B1 (en) Polymer matrix, polymer solid electrolyte containing the matrix, and lithium secondary battery employing the electrolyte
JPH08203530A (en) Combined electrode, manufacture thereof and lithium secondary battery
JPS62296376A (en) Manufacture of polymer solid electrolyte battery
JPH02295070A (en) Polymer solid electrolyte and secondary battery using same
JPH08109196A (en) Composite electrode and its production
JP3942232B2 (en) Gel-like solid electrolyte and battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees