JPH01143922A - Spectrophotometric device - Google Patents

Spectrophotometric device

Info

Publication number
JPH01143922A
JPH01143922A JP30225787A JP30225787A JPH01143922A JP H01143922 A JPH01143922 A JP H01143922A JP 30225787 A JP30225787 A JP 30225787A JP 30225787 A JP30225787 A JP 30225787A JP H01143922 A JPH01143922 A JP H01143922A
Authority
JP
Japan
Prior art keywords
light
optical fiber
monochromator
incident
thetam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30225787A
Other languages
Japanese (ja)
Other versions
JP2624273B2 (en
Inventor
Yoshihiro Ono
義弘 大野
Hideo Nishiyama
西山 英夫
Kazuaki Okubo
和明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62302257A priority Critical patent/JP2624273B2/en
Publication of JPH01143922A publication Critical patent/JPH01143922A/en
Application granted granted Critical
Publication of JP2624273B2 publication Critical patent/JP2624273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers

Abstract

PURPOSE:To enable spectrophotometry and colorimetry with high accuracy with any light sources even if the position setting with an incident optical system is rough by combining a monochrometer and the light transmission and diffusion plate, light shielding hood and optical fiber bundle set in the size and position relation to meet the conditions of the optical system within the monochrometer. CONSTITUTION:The monochrometer 5 has an opening angle thetam from an incident slit 6 to a concave diffraction grating 7. The optical fiber bundle 3 is connected at one end to the slit 6 and is specified in diameter (d) and numerical aperture N.A. to N.A.-sin(thetam/2) or N.A.>sin(thetam/2). The milky white diffusion plate 1 having transmission and diffusion characteristics is fixed apart at the distance L of L>>d from the other end of the bundle 3 and has the diameter of D-2Ltan(thetam/2). The light shielding hood 2 shields light in the space from the diffusion plate 1 to the other end of the bundle 3. The light of a light source 8 to be measured is transmitted and diffused by the diffusion plate 1 and is projected through the bundle 3 to approximately the entire surface of the grating 7 of the meter 5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光源の分光分布や、光源色、物体色を高精度
で測定するための分光測光器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a spectrophotometer for measuring the spectral distribution of a light source, the color of the light source, and the color of an object with high precision.

従来の技術 照明用光源やCrtTデイスプレィの品質管理や、樹脂
、塗料その他材料の色の管理、評価を行なう場合、簡易
な方法としては、光電色彩計や、色差計が用いられ、精
密測定法としては分光測光器が一般に用いられる。この
目的では、色度測定精度として色度座標(x、y)で、
0.001程度を必要とする場合があり、高精度の分光
測光をする必要がある。
Conventional technology When controlling the quality of lighting light sources and CRT displays, or controlling and evaluating the color of resins, paints, and other materials, photoelectric colorimeters and color difference meters are used as simple methods, and are used as precision measurement methods. A spectrophotometer is generally used. For this purpose, the chromaticity measurement accuracy is given by the chromaticity coordinates (x, y):
In some cases, a value of about 0.001 is required, and highly accurate spectrophotometry is required.

分光測光は標準光源と被測定光源の比較測定であり、こ
れら光源と分光測光器の入射光学系との位置関係を厳密
に合わせる必要があり、測定時間も長いため、製造現場
等での測定には適さなかった。一方、近年、凹面回折格
子や光電変換素子アレイを用いて分光器の小型化、高速
化が図られ、また、光学系のセツティングを容易にする
ため、第2図のように入射光学系に光ファイバハンドル
を用いた分光測光器が使用され始めている。しかしなが
ら、この構成の従来の分光器は、分光プロフィールの観
測には適するが、測色の目的では十分な精度が得られな
かった。
Spectrophotometry is a comparative measurement of a standard light source and a measured light source, and it is necessary to precisely match the positional relationship between these light sources and the input optical system of the spectrophotometer, and the measurement time is long, so it is not suitable for measurements at manufacturing sites, etc. was not suitable. On the other hand, in recent years, concave diffraction gratings and photoelectric conversion element arrays have been used to make spectrometers smaller and faster. Spectrophotometers using fiber optic handles are beginning to be used. However, although conventional spectrometers with this configuration are suitable for observing spectral profiles, they do not have sufficient accuracy for colorimetry purposes.

発明が解決しようとする問題点 第2図の従来の構成の分光測光器では、被測定光源から
の光が直接、光ファイバの端面に入射するため、光ファ
イバの開口数()J、A、)に対して、sinθm≦N
、A、     、、、、、(1)なる条件を満たす入
射角θiの光が入射して光フアイバ内を伝搬する。入射
した光は、光フアイバ内を全反射して進むため、入射角
が伝搬して光ファイバの出射端に現れる。このため、光
ファイバの出射端での配光特性は、たとえば、点光源測
定時は一方向に鋭いビームとなり、発光面の大きな光源
の測定時は、(1)式で決まる入射角度の範囲内で広が
った配光特性となる。
Problems to be Solved by the Invention In the spectrophotometer with the conventional configuration shown in FIG. 2, the light from the light source to be measured is directly incident on the end face of the optical fiber, so the numerical aperture () J, A, ), sinθm≦N
, A, , , (1) Light having an incident angle θi that satisfies the condition is incident and propagates within the optical fiber. Since the incident light travels through the optical fiber through total reflection, the incident angle propagates and appears at the output end of the optical fiber. Therefore, the light distribution characteristics at the output end of the optical fiber will be, for example, a sharp beam in one direction when measuring a point light source, and within the range of the incident angle determined by equation (1) when measuring a light source with a large light emitting surface. The light distribution characteristics become wider.

一方、モノクロメータは、回折格子やプリズムなどの波
長分散素子と、入射スリットの像を結像する光学系から
成っており、入射スリットからある立体角で広がるある
波長の光を再び収束させて出射スリットの面に結像させ
る構造になっている。
On the other hand, a monochromator consists of a wavelength dispersion element such as a diffraction grating or a prism, and an optical system that forms an image of an input slit.The monochromator reconverges light of a certain wavelength that spreads at a certain solid angle from the input slit and outputs it. The structure is such that the image is formed on the surface of the slit.

したがって、入射スリットから異なった角度でモノクロ
メータ内に入った光は、波長分散素子の受光面上の異な
った点に当たり、結像系でも異なった光路をたどった後
収束する。また、波長分散素子や結像部品の特性には一
般に空間的な不均一性がある。このため、入射スリット
から出射スリットまでのモノクロメータの伝達特性は、
入射スリットから出る光の方向(角度)によって不均一
になる。
Therefore, the light entering the monochromator at different angles from the entrance slit hits different points on the light-receiving surface of the wavelength dispersion element and converges after following different optical paths in the imaging system. Furthermore, there is generally spatial non-uniformity in the characteristics of wavelength dispersive elements and imaging components. Therefore, the transfer characteristic of the monochromator from the entrance slit to the exit slit is
The light becomes non-uniform depending on the direction (angle) of the light exiting the entrance slit.

したがって、第2図の構成の従来の分光測光器では、標
準光源と被測定光源の形状や大きさが異なる場合や、そ
れらが同じ条件でも、光ファイバの入射端に対する位置
合わせが厳密に再現しないと、モノクロメータの伝達特
性がそれぞれの場合すべて異なることになり、大きな測
定誤差を生ずるという問題点を有していた。
Therefore, with the conventional spectrophotometer with the configuration shown in Figure 2, the alignment with respect to the input end of the optical fiber cannot be accurately reproduced even when the standard light source and the measured light source have different shapes and sizes, or even under the same conditions. In this case, the transfer characteristics of the monochromator are different in each case, resulting in a problem of large measurement errors.

本発明は上記の従来の問題点を解決するもので、被測定
光源の形状や大きさが変わっても、また光源と入射光学
系の位置設定が厳密でなくても常に高精度の分光測光、
測色ができる分光測光器を提供することを目的とする。
The present invention solves the above-mentioned conventional problems. Even if the shape and size of the light source to be measured changes, or even if the positioning of the light source and the incident optical system is not precise, it can always perform highly accurate spectrophotometry.
The purpose of this invention is to provide a spectrophotometer that can measure color.

問題点を解決するための手段 本発明は、入射スリットから波長分散素子までの開き角
がθmであるモノクロメータと、前記モノクロメータの
入射スリットに一端を接続し、直径がd1開口数N、A
、がN、A、 〜5in(θm、、/2)またはN、A
、 )sin(θm/2)なる光ファイバハンドルと、
前記光ファイバハンドルの他方の端からL >>dなる
距離りを置いて固定した、D 〜2Ltan(θm、/
2)なる直径りをもつ光透過拡散板と、前記光透過拡散
板と前記光ファイバハンドルの端面までの空間を遮光す
る遮光フードとから構成された分光測光器である。
Means for Solving the Problems The present invention provides a monochromator whose opening angle from the entrance slit to the wavelength dispersion element is θm, and one end of which is connected to the entrance slit of the monochromator, and whose diameter is d1 and the numerical aperture N, A.
, is N,A, ~5in(θm,,/2) or N,A
, ) sin(θm/2), an optical fiber handle;
D ~2Ltan(θm,/
2) A spectrophotometer comprising a light transmitting diffuser plate having a diameter of 2), and a light shielding hood that blocks light from a space between the light transmitting diffuser plate and the end face of the optical fiber handle.

作用 光透過拡散板は、広い立体角内のあらゆる方向からの光
を集め、この入射光を入射角に関係なくできるだけ均一
に拡散させて透過し、また、光ファイバハンドルへの入
射角θ$を、θ1≦Tan−’ (D/2L)の範囲に
制限して光ファイバハンドルに入射させる。遮光フード
は、光透過拡散板以外からの光を遮断し、光ファイバハ
ンドルはモノクロメータの入射スリットまで入射光を導
き、モノクロメータは波長を掃引して入射光の分光デー
タを出力する。
The working light transmitting diffuser plate collects light from all directions within a wide solid angle, diffuses and transmits this incident light as uniformly as possible regardless of the incident angle, and also reduces the incident angle θ to the optical fiber handle. , θ1≦Tan−′ (D/2L), and input the light into the optical fiber handle. The light-shielding hood blocks light from sources other than the light transmission diffuser plate, and the optical fiber handle guides the incident light to the input slit of the monochromator, which sweeps the wavelength and outputs spectral data of the incident light.

この作用により、本発明の分光測光器の受光面(上記光
透過拡散板)への入射角が変わっても、モノクロメータ
の入射スリットを通過する光の配光特性を均一に保つこ
とができ、被測定光源の形状や大きさが変わった場合や
光源と受光面の位置設定がずれた場合の測定誤差を除去
し、かつモノクロメータ内の迷光を低減する効果をもつ
ものである。
Due to this effect, even if the angle of incidence on the light receiving surface (the above-mentioned light transmission diffuser plate) of the spectrophotometer of the present invention changes, the light distribution characteristics of the light passing through the entrance slit of the monochromator can be kept uniform. This has the effect of eliminating measurement errors that occur when the shape or size of the light source to be measured changes or when the position settings of the light source and light receiving surface deviate, and also reduces stray light within the monochromator.

実施例 第1図は、本発明の分光測光器の一実施例を示すもので
ある。第1図において、1は乳白拡散板、2は遮光フー
ド、3は光ファイバハンドル、4は支持具、5はモノク
ロメータ、6はモノクロメータ5内の入射スリット、7
はモノクロメータ5内の凹面回折格子、8は被測定光源
である。以下、本実施例の分光測光器について、その動
作を説明する。
Embodiment FIG. 1 shows an embodiment of the spectrophotometer of the present invention. In FIG. 1, 1 is an opalescent diffuser plate, 2 is a light-shielding hood, 3 is an optical fiber handle, 4 is a support, 5 is a monochromator, 6 is an entrance slit in the monochromator 5, and 7
is a concave diffraction grating in the monochromator 5, and 8 is a light source to be measured. The operation of the spectrophotometer of this embodiment will be described below.

第1図において、まず、被測定光源8の全体からの光が
乳白拡散板1に入射する。乳白拡散板1は完全拡散板に
近い透過拡散特性をもっており、第3図に示すように、
あらゆる方向からの入射光に対してほぼ−様なゴニオ透
過特性をもつものである。乳白拡散板1により透過拡散
した光は、光ファイバハンドル3のファイバ端面からフ
ァイバ内に入射する。このとき、ファイバ端面への入射
角の最大値θ1maxは、乳白拡散板1の直径りとファ
イバ端面までの距離りによって決まり、θm max 
= Tan−1(D/2L)    、 、 、 、 
(2)で表わされる。このとき、この範囲の入射角の光
がすべて光ファイバハンドル3内に入射するためには、 N、A、≧5in(01m。、)     、、、、(
3)を満足するN、A、をもつ光ファイバハンドルを使
用する必要がある。この条件が満たされないと、乳白拡
散板1の周辺の部分からの拡散光が光ファイバハンドル
3に十分入射しないため、後述するように、モノクロメ
ータ5を十分明るい条件で使用することができない、ま
た、乳白拡散板1の大きさを十分活用しないことになる
。遮光フード2は、乳白拡散板1を所定の位置に固定す
るとともに、乳白拡散板1以外からのファイバ端面への
入射光を遮断する。距離りは、光ファイバハンドル3の
径dに対して小さすぎると入射角の範囲が(2)式で表
わされる以上に広がるため、乳白拡散板1と遮光フード
2より成る受光部が実用的なサイズとなる範囲でL>>
dとなるように選ぶ必要がある。
In FIG. 1, first, light from the entire light source 8 to be measured is incident on the opalescent diffuser plate 1. As shown in FIG. The opalescent diffuser plate 1 has transmission and diffusion characteristics close to those of a perfect diffuser plate, and as shown in Fig. 3,
It has nearly-like goniotransmission characteristics for incident light from all directions. The light transmitted and diffused by the opalescent diffuser plate 1 enters the fiber from the fiber end face of the optical fiber handle 3. At this time, the maximum value θ1max of the incident angle to the fiber end face is determined by the diameter of the opalescent diffuser 1 and the distance to the fiber end face, and θm max
= Tan-1(D/2L) , , , ,
It is expressed as (2). At this time, in order for all the light with the incident angle within this range to enter the optical fiber handle 3, N, A, ≧5 inches (01 m.,) , , , (
3) It is necessary to use an optical fiber handle with N, A, satisfying the following. If this condition is not met, the diffused light from the periphery of the opalescent diffuser plate 1 will not be sufficiently incident on the optical fiber handle 3, which will make it impossible to use the monochromator 5 in sufficiently bright conditions, as will be described later. , the size of the opalescent diffuser plate 1 will not be fully utilized. The light-shielding hood 2 fixes the opalescent diffuser plate 1 at a predetermined position and blocks incident light from sources other than the opalescent diffuser plate 1 to the fiber end face. If the distance is too small relative to the diameter d of the optical fiber handle 3, the range of the incident angle will expand beyond that expressed by equation (2), so the light receiving section consisting of the opalescent diffuser 1 and the light shielding hood 2 is not practical. L within the size range>>
It is necessary to choose such that d.

光ファイバハンドル3に入射した光は、光フアイバ内を
全反射により伝搬し、モノクロメータ5の入射スリット
6に接続された他方の端面から出射する。この端面では
、入射スリット6の形状に合わせて各光ファイバを線状
に並べである。この端面からの出射角(中心軸に対する
)は、光フアイバ内の伝搬の性質により入射角と等しく
なるため、出射光の広がり角θfは、 θf=2θ1max         、、、、(4)
で表わされる。入射スリット6から凹面回折格子7への
広がり角をθmとすると、乳白拡散板の経りと距gli
Lを、 D/L〜2tan(θff、/2)      、 、
、、 (5)なる関係になるように選べば、(2)、 
(4)、 (5)式から、01〜6mとなり、入射スリ
ット6を通って広がる光ファイバハンドル3からの出射
光を凹面回折格子7のほぼ全面に入射させることができ
る。
The light incident on the optical fiber handle 3 propagates within the optical fiber by total internal reflection, and exits from the other end face connected to the entrance slit 6 of the monochromator 5. On this end face, each optical fiber is arranged in a line according to the shape of the entrance slit 6. The outgoing angle from this end face (with respect to the central axis) is equal to the incident angle due to the propagation properties within the optical fiber, so the spread angle θf of the outgoing light is: θf=2θ1max, (4)
It is expressed as If the spread angle from the entrance slit 6 to the concave diffraction grating 7 is θm, the warp and distance of the opalescent diffuser plate gli
L is D/L~2tan(θff,/2), ,
,, (5) If you choose so that the relationship becomes (2),
From equations (4) and (5), it becomes 01 to 6 m, and the emitted light from the optical fiber handle 3 that spreads through the entrance slit 6 can be made to enter almost the entire surface of the concave diffraction grating 7.

このときの凹面回折格子7の面上の放射照度の分布は、
乳白拡散板1の働きにより、被測定光源8から乳白拡散
板1への入射角の影響をほとんど受けずに常に一定とな
るため、被測定光源8の大きさや位置が変わっても、そ
れによる測定誤差を生じない、また、乳白拡散板1によ
り、光ファイバハンドル3への入射光量が大幅に減少し
、分光測光器の感度がかなり低下するが、乳白拡散板1
の受光角が広い(入射立体角は最大2π)ので、被測定
光源8を乳白拡散板1に近づけることにより入射光量を
かなり大きくできる。(このとき、乳白拡散板1上の放
射照度の分布が不均一にならないように注意する必要が
ある。)また、モノクロメータS内では、凹面回折格子
7の受光面のほぼ全面を利用するので、モノクロメータ
5を最も明るい条件で使用できる。また、上記の構成に
より、凹面回折格子7の外側には入射スリット6からの
光がほとんど漏れないため、モノクロメータ5内の迷光
も同時に低減できる。
The distribution of irradiance on the surface of the concave diffraction grating 7 at this time is:
Due to the function of the opalescent diffuser plate 1, the angle of incidence from the light source 8 to be measured to the opalescent diffuser plate 1 is almost unaffected and is always constant, so even if the size or position of the light source 8 to be measured changes, the measurement will be accurate. In addition, the opalescent diffuser plate 1 significantly reduces the amount of light incident on the optical fiber handle 3, and the sensitivity of the spectrophotometer is considerably reduced.
Since the light receiving angle is wide (the solid angle of incidence is 2π at maximum), the amount of incident light can be considerably increased by bringing the light source 8 to be measured closer to the opalescent diffuser plate 1. (At this time, care must be taken to ensure that the distribution of irradiance on the opalescent diffuser plate 1 does not become uneven.) Also, in the monochromator S, almost the entire light-receiving surface of the concave diffraction grating 7 is used. , the monochromator 5 can be used under the brightest conditions. Further, with the above configuration, since almost no light from the entrance slit 6 leaks outside the concave diffraction grating 7, stray light inside the monochromator 5 can be reduced at the same time.

発明の効果 以上のように、本発明の分光測光器は、モノクロメータ
と、モノクロメータ内の光学系の条件にあわせた大きさ
と位置関係を設定した光透過拡散板と遮光フードと光フ
ァイバハンドルを組合わせることにより、分光測光器と
しての感度をあまり低下させずに、また、モノクロメー
タ内の迷光も低減しながら、被測定光源の形状や大きさ
、入射角度の違いなどによる誤差を除去し、どのような
光源に対しても、入射光学系との位置設定が粗雑であっ
ても、高精度の分光測光、測色が可能となる分光測光器
を実現でき、その実用的効果は大きい。
Effects of the Invention As described above, the spectrophotometer of the present invention includes a monochromator, a light transmitting diffuser plate, a light-shielding hood, and an optical fiber handle whose size and positional relationship are set according to the conditions of the optical system inside the monochromator. By combining them, it is possible to eliminate errors caused by differences in the shape and size of the light source to be measured, the angle of incidence, etc., without significantly reducing the sensitivity of the spectrophotometer, and while reducing stray light inside the monochromator. It is possible to realize a spectrophotometer that can perform highly accurate spectrophotometry and colorimetry for any light source, even if the positioning with respect to the incident optical system is rough, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例における分光測光器の構成図
、第2図は、従来例における光ファイバハンドルを用い
た分光測光器の構成図、第3図は、乳白拡散板のゴニオ
反射特性を示す図である。 100.乳白拡散板、290.遮光フード、300.光
ファイバハンドル、400.支持具、508.モノクロ
メータ、660.入射スリット、716.凹面回折格子
、800.被測定光源
Fig. 1 is a block diagram of a spectrophotometer according to an embodiment of the present invention, Fig. 2 is a block diagram of a spectrophotometer using an optical fiber handle in a conventional example, and Fig. 3 is a gonioreflection of a milky white diffuser plate. FIG. 3 is a diagram showing characteristics. 100. Opalescent diffuser plate, 290. Shade hood, 300. fiber optic handle, 400. Support, 508. Monochromator, 660. Entrance slit, 716. concave diffraction grating, 800. Measured light source

Claims (1)

【特許請求の範囲】[Claims] 入射スリットから波長分散素子までの開き角がθ_mで
あるモノクロメータと、前記モノクロメータの入射スリ
ットに一端を接続し、直径がd、開口数N.A.がN.
A.〜sin(θ_m/2)またはN.A.>sin(
θ_m/2)なる光ファイバハンドルと、前記光ファイ
バハンドルの他方の端からL>>dなる距離Lを置いて
固定した、D〜2Ltan(θ_m/2)なる直径Dを
もつ光透過拡散板と、前記光透過拡散板と前記光ファイ
バハンドルの端面までの空間を遮光する遮光フードから
構成されることを特徴とする分光測光器。
A monochromator whose opening angle from the entrance slit to the wavelength dispersion element is θ_m, one end of which is connected to the entrance slit of the monochromator, whose diameter is d and whose numerical aperture is N. A. is N.
A. ~sin(θ_m/2) or N. A. >sin(
an optical fiber handle of θ_m/2), and a light transmitting diffuser plate fixed at a distance L of L>>d from the other end of the optical fiber handle and having a diameter D of D~2Ltan(θ_m/2). . A spectrophotometer comprising: a light-shielding hood that shields light from a space between the light transmission diffuser plate and the end face of the optical fiber handle.
JP62302257A 1987-11-30 1987-11-30 Spectrophotometer Expired - Lifetime JP2624273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302257A JP2624273B2 (en) 1987-11-30 1987-11-30 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302257A JP2624273B2 (en) 1987-11-30 1987-11-30 Spectrophotometer

Publications (2)

Publication Number Publication Date
JPH01143922A true JPH01143922A (en) 1989-06-06
JP2624273B2 JP2624273B2 (en) 1997-06-25

Family

ID=17906836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302257A Expired - Lifetime JP2624273B2 (en) 1987-11-30 1987-11-30 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP2624273B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311664A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Photometric device
EP1538430A1 (en) * 2003-12-02 2005-06-08 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Colour sensor
JP2009109315A (en) * 2007-10-30 2009-05-21 Sony Corp Light measuring device and scanning optical system
JP2018009885A (en) * 2016-07-14 2018-01-18 株式会社島津製作所 Spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155279A (en) * 1974-06-05 1975-12-15
JPS62148819A (en) * 1985-12-23 1987-07-02 Anritsu Corp Photodetecting probe of spectocolorimeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155279A (en) * 1974-06-05 1975-12-15
JPS62148819A (en) * 1985-12-23 1987-07-02 Anritsu Corp Photodetecting probe of spectocolorimeter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311664A (en) * 2000-04-28 2001-11-09 Minolta Co Ltd Photometric device
EP1538430A1 (en) * 2003-12-02 2005-06-08 DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. Colour sensor
JP2009109315A (en) * 2007-10-30 2009-05-21 Sony Corp Light measuring device and scanning optical system
JP2018009885A (en) * 2016-07-14 2018-01-18 株式会社島津製作所 Spectrometer

Also Published As

Publication number Publication date
JP2624273B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
EP0570003B1 (en) Three-dimensional automatic gonio-spectrophotometer
US5764352A (en) Process and apparatus for spectral reflectance and transmission measurements
CN105115907A (en) Measuring device for optical filter spectrum transmittance
CN103206964A (en) Spectral-weight-tunable weak light magnitude simulation system
US6459485B1 (en) Optical system
CN103134588A (en) Spectrograph
JPS6355020B2 (en)
CN103575661A (en) Optical measurement system with vertical and oblique incidence measurement functions
JPS61292043A (en) Photodetecting probe for spectocolorimeter
CN201352150Y (en) Photometric device
US2874608A (en) Monochromator optical system
JPH01143922A (en) Spectrophotometric device
JPS6038644B2 (en) spectrophotometer
CN203053569U (en) Spectrograph
CN105157842A (en) Double-optical path color measuring spectrophotometer with repetitive optimization device and optimization method
US20150022810A1 (en) Spectrophotometer and image partial extraction device
JPS62185128A (en) Light and color measuring apparatus
US9347823B2 (en) Absolute measurement method and apparatus thereof for non-linear error
US8164747B2 (en) Apparatus, system and method for optical spectroscopic measurements
JPH01143921A (en) Spectrophotometric device
JP2511902B2 (en) Spectrophotometer
CN107525589A (en) A kind of wavelength scaling system and method
KR102130418B1 (en) Dazaja spectrometer
CN102539120B (en) Measuring method for spectral reflectance of off-axis R-C system
CN111044144A (en) Portable spectral radiation screen brightness meter and optical system thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11