JP2624273B2 - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JP2624273B2
JP2624273B2 JP62302257A JP30225787A JP2624273B2 JP 2624273 B2 JP2624273 B2 JP 2624273B2 JP 62302257 A JP62302257 A JP 62302257A JP 30225787 A JP30225787 A JP 30225787A JP 2624273 B2 JP2624273 B2 JP 2624273B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
monochromator
incident
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62302257A
Other languages
Japanese (ja)
Other versions
JPH01143922A (en
Inventor
義弘 大野
英夫 西山
和明 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62302257A priority Critical patent/JP2624273B2/en
Publication of JPH01143922A publication Critical patent/JPH01143922A/en
Application granted granted Critical
Publication of JP2624273B2 publication Critical patent/JP2624273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光源の分光分布や、光源色、物体色を高精
度で測定するための分光測光器に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectrophotometer for measuring a spectral distribution of a light source, a light source color, and an object color with high accuracy.

従来の技術 照明用光源やCRTディスプレイの品質管理や、樹脂、
塗料その他材料の色の管理、評価を行なう場合、簡易な
方法としては、光電色彩計や、色差計が用いられ、精密
測定法としては分光測光器が一般に用いられる。この目
的では、色度測定精度として色度座標(x,y)で、0.001
程度を必要とする場合があり、高精度の分光測光をする
必要がある。
Conventional technology Quality control of lighting light sources and CRT displays, resin,
When managing and evaluating the colors of paints and other materials, a photoelectric colorimeter or a color difference meter is used as a simple method, and a spectrophotometer is generally used as a precise measurement method. For this purpose, chromaticity coordinates (x, y) of 0.001
In some cases, it is necessary to perform a high-precision spectrophotometry.

分光測光は標準光源と被測定光源の比較測定であり、
これら光源と分光測光器の入射光学系との位置関係を厳
密に合わせる必要があり、測定時間を長いため、製造現
場等での測定には適さなかった。一方、近年、凹面回折
格子や光電変換素子アレイを用いて分光器の小型化、高
速化が図られ、また、光学系のセッティングを容易にす
るため、第2図のように入射光学系に光ファイババンド
ルを用いた分光測光器が使用され始めている。しかしな
がら、この構成の従来の分光器は、分光プロフィールの
観測には適するが、測色の目的では十分な精度が得られ
なかった。
Spectrophotometry is a comparative measurement between a standard light source and a measured light source,
It is necessary to strictly adjust the positional relationship between these light sources and the incident optical system of the spectrophotometer, and the measurement time is long, which is not suitable for measurement at a manufacturing site or the like. On the other hand, in recent years, the size and speed of the spectrometer have been reduced by using a concave diffraction grating or a photoelectric conversion element array. In addition, in order to facilitate the setting of the optical system, as shown in FIG. Spectrophotometers using fiber bundles have begun to be used. However, the conventional spectroscope having this configuration is suitable for observing a spectral profile, but cannot obtain sufficient accuracy for the purpose of colorimetry.

発明が解決しようとする問題点 第2図の従来の構成の分光測光器では、被測定光源か
らの光が直接、光ファイバの端面に入射する。
2. Problems to be Solved by the Invention In the spectrophotometer having the conventional configuration shown in FIG. 2, light from the light source to be measured is directly incident on the end face of the optical fiber.

ここで、大気の屈折率をn0、光ファイバのコアの屈折
率をn1とし、光ファイバへの光の入射角をθi、光ファ
イバの入射端面からコアの方への屈折角をθcとすれ
ば、光ファイバの開口数N.A.は次式で定義される。
Here, the refractive index of the atmosphere is n 0 , the refractive index of the core of the optical fiber is n 1 , the incident angle of light on the optical fiber is θi, and the refraction angle from the incident end face of the optical fiber toward the core is θc. Then, the numerical aperture NA of the optical fiber is defined by the following equation.

N.A.=n0・sinθi=n1・sinθc 大気の屈折率はほぼ1であるから sinθi≦N.A. ‥‥(1) なる条件を満たす入射角θiの光が入射して光ファイバ
内を伝搬する。入射した光は、光ファイバ内を全反射し
て進むため、入射角が伝搬して光ファイバの出射端に現
れる。このため、光ファイバの出射端での配光特性は、
たとえば、点光源測定時は一方向に鋭いビームとなり、
発光面の大きな光源の測定時は、(1)式で決まる入射
角度の範囲内で広がった配光特性となる。
NA = n 0 · sinθi = n 1 · sinθc refractive index of the atmosphere is the incident light sinθi ≦ NA ‥‥ (1) comprising satisfies incident angle θi since approximately 1 propagating in the optical fiber. The incident light travels after being totally reflected within the optical fiber, and the incident angle propagates and appears at the output end of the optical fiber. For this reason, the light distribution characteristics at the output end of the optical fiber are:
For example, when measuring a point light source, the beam becomes sharp in one direction,
When a light source having a large light emitting surface is measured, the light distribution characteristics become wide within the range of the incident angle determined by the expression (1).

一方、モノクロメータは、回折格子やプリズムなどの
波長分散素子と、入射スリットの像を結像する光学系か
ら成っており、入射スリットからある立体角で広がるあ
る波長の光を再び収束させて出射スリットの面に結像さ
せる構造になっている。したがって、入射スリットから
異なった角度でモノクロメータ内に入った光は、波長分
散素子の受光面上の異なった点に当たり、結像系でも異
なった光路をたどった後収束する。また、波長分散素子
や結像部品の特性には一般に空間的な不均一性がある。
このため、入射スリットから出射スリットまでのモノク
ロメータの伝達特性は、入射スリットから出る光の方向
(角度)によって不均一になる。
On the other hand, a monochromator is composed of a wavelength dispersion element such as a diffraction grating or a prism, and an optical system that forms an image of the entrance slit. The structure is such that an image is formed on the surface of the slit. Therefore, light entering the monochromator at different angles from the entrance slit hits different points on the light receiving surface of the wavelength dispersive element and converges after following different optical paths in the imaging system. Further, the characteristics of the wavelength dispersion element and the imaging component generally have spatial non-uniformity.
For this reason, the transfer characteristics of the monochromator from the entrance slit to the exit slit become non-uniform depending on the direction (angle) of the light exiting from the entrance slit.

したがって、第2図の構成の従来の分光測光器では、
標準光源と被測定光源の形状や大きさが異なる場合や、
それらが同じ条件でも、光ファイバの入射端に対する位
置合わせが厳密に再現しないと、モノクロメータの伝達
特性がそれぞれの場合すべて異なることになり、大きな
測定誤差を生ずるという問題点を有していた。
Therefore, in the conventional spectrophotometer having the configuration shown in FIG.
When the shape and size of the standard light source and the light source to be measured are different,
Even under the same conditions, if the alignment with respect to the incident end of the optical fiber is not strictly reproduced, the transfer characteristics of the monochromator are all different in each case, and there is a problem that a large measurement error occurs.

本発明は上記の従来の問題点を解決するもので、被測
定光源の形状や大きさが変わっても、また光源と入射光
学系の位置設定が厳密でなくても常に高精度の分光測
光、測色ができる分光測光器を提供することを目的とす
る。
The present invention solves the above-mentioned conventional problems, even if the shape and size of the light source to be measured is changed, and even if the position setting of the light source and the incident optical system is not strict, always highly accurate spectrophotometry, An object of the present invention is to provide a spectrophotometer capable of performing colorimetry.

問題点を解決するための手段 本発明は、入射スリットから波長分散素子までの開き
角がθであるモノクロメータと、前記モノクロメータ
の入射スリットに一端を接続し、直径がd、開口数N.A.
がN.A.≧sin(θm/2)なる光ファイババンドルと、前記
光ファイババンドルの他方の端からL>>dなる距離L
をおいて固定した、D≒2Ltan(θm/2)なる直径Dを持
ち、かつあらゆる方向からの入射光に対してほぼ一様な
ゴニオ透過特性をもつ光透過拡散板と、前記光透過拡散
板と前記光ファイババンドルの端面までの空間を遮光す
る遮光フードを有することを特徴とする。
Means the present invention for solving the problems, a monochromator which is open angle from the entrance slit to the wavelength dispersion element theta m, one end connected to the entrance slit of the monochromator, the diameter is d, the numerical aperture NA
Is an optical fiber bundle satisfying NA ≧ sin (θm / 2), and a distance L satisfying L >> d from the other end of the optical fiber bundle.
A light transmission / diffusion plate having a diameter D of D ≒ 2Ltan (θm / 2) and having substantially uniform gonio transmission characteristics with respect to incident light from all directions; And a light shielding hood for shielding the space up to the end face of the optical fiber bundle.

作用 光透過拡散板は、広い立体角内のあらゆる方向からの
光を集め、この入射光を入射角に関係なくできるだけ均
一に拡散させて透過し、また、光ファイババンドルへの
入射角θを、θ≦Tan-1(D/2L)の範囲に制限して
光ファイババンドルに入射させる。遮光フードは、光透
過拡散板以外からの光を遮断し、光ファイババンドルは
モノクロメータの入射スリットまで入射光を導き、モノ
クロメータは波長を掃引して入射光の分光データを出力
する。この作用により、本発明の分光測光器の受光面
(上記光透過拡散板)への入射角が変わっても、モノク
ロメータの入射スリットを通過する光の配光特性を均一
に保つことができ、被測定光源の形状や大きさが変わっ
た場合や光源と受光面の位置設定がずれた場合の測定誤
差を除去し、かつモノクロメータ内の迷光を低減する効
果をもつものである。
The light transmission / diffusion plate collects light from all directions within a wide solid angle, diffuses this incident light as uniformly as possible irrespective of the angle of incidence, transmits the same, and reduces the angle of incidence θ i to the optical fiber bundle. , Θ i ≦ Tan −1 (D / 2L). The light-shielding hood blocks light from other than the light transmission / diffusion plate, the optical fiber bundle guides the incident light to the entrance slit of the monochromator, and the monochromator sweeps the wavelength and outputs spectral data of the incident light. By this action, even if the angle of incidence on the light receiving surface (the above-mentioned light transmission / diffusion plate) of the spectrophotometer of the present invention changes, the light distribution characteristics of the light passing through the entrance slit of the monochromator can be kept uniform, This has the effect of eliminating measurement errors when the shape or size of the light source to be measured has changed or when the position setting of the light source and the light receiving surface has shifted, and has the effect of reducing stray light in the monochromator.

実施例 第1図は、本発明の分光測光器の一実施例を示すもの
である。第1図において、1は乳白拡散板(光透過拡散
板)、2は遮光フード、3は光ファイババンドル、4は
支持具、5はモノクロメータ、6はモノクロメータ5内
の入射スリット、7はモノクロメータ5内の凹面回折格
子、8は被測定光源である。以下、本実施例の分光測光
器について、その動作を説明する。
Embodiment FIG. 1 shows an embodiment of the spectrophotometer of the present invention. In FIG. 1, 1 is a milky white diffusion plate (light transmission diffusion plate), 2 is a light shielding hood, 3 is an optical fiber bundle, 4 is a support, 5 is a monochromator, 6 is an entrance slit in the monochromator 5, and 7 is an entrance slit. A concave diffraction grating 8 in the monochromator 5 is a light source to be measured. Hereinafter, the operation of the spectrophotometer of the present embodiment will be described.

第1図において、まず、被測定光源8の全体からの光
が乳白拡散板1に入射する。乳白拡散板1は完全拡散板
に近い透過拡散特性をもっており、第3図に示すよう
に、あらゆる方向からの入射光に対してほぼ一様なゴニ
オ透過特性をもつものである。乳白拡散板1により透過
拡散した光は、光ファイババンドル3のファイバ端面か
らファイバ内に入射する。このとき、ファイバ端面への
入射角の最大値θimaxは、乳白拡散板1の直径Dとファ
イバ端面までの距離Lによって決まり、 θimax=Tan-1(D/2L) ‥‥(2) で表わされる。このとき、この範囲の入射角の光がすべ
て光ファイババンドル3内に入射するためには、 N.A.≧sin(θimax) ‥‥(3) を満足するN.A.をもつ光ファイババンドルを使用する必
要がある。この条件が満たされないと、乳白拡散板1の
周辺の部分からの拡散光が光ファイババンドル3に十分
入射しないため、後述するように、モノクロメータ5を
十分明るい条件で使用することができない。また、乳白
拡散板1の大きさを十分活用しないことになる。遮光フ
ード2は、乳白拡散板1を所定の位置に固定するととも
に、乳白拡散板1以外からのファイバ端面への入射光を
遮断する。距離Lは、光ファイババンドル3の径dに対
して小さすぎると入射角の範囲が(2)式で表わされる
以上に広がるため、乳白拡散板1と遮光フード2より成
る受光部が実用的なサイズとなる範囲でL>>dとなる
ように選ぶ必要がある。光ファイババンドル3に入射し
た光は、光ファイバ内を全反射により伝搬し、モノクロ
メータ5の入射スリット6に接続された他方の端面から
出射する。この端面では、入射スリット6の形状に合わ
せて各光ファイバを線状に並べてある。この端面からの
出射角(中心軸に対する)は、光ファイバ内の伝搬の性
質により入射角と等しくなるため、出射光の広がり角θ
は、 θ=2θimax ‥‥(4) で表わされる。入射スリット6から凹面回折格子7への
広がり角をθとすると、乳白拡散板の径Dと距離L
を、 D/L≒2tan(θm/2) ‥‥‥(5) なる関係になるように選べば、(2),(4),(5)
式から、θf≒θmとなり、入射スリット6を通って広
がる光ファイババンドル3からの出射光を凹面回折格子
7のほぼ全面に入射させることができる。このときの凹
面回折格子7の面上の放射照度の分布は、乳白拡散板1
の働きにより、被測定光源8から乳白拡散板1への入射
角の影響をほとんど受けずに常に一定となるため、被測
定光源8の大きさや位置が変わっても、それによる測定
誤差を生じない。また、乳白拡散板1により、光ファイ
ババンドル3への入射光量が大幅に減少し、分光測光器
の感度がかなり低下するが、乳白拡散板1の受光角が広
い(入射立体角は最大2π)ので、被測定光源8を乳白
拡散板1に近づけることにより入射光量をかなり大きく
できる。(このとき、乳白拡散板1上の放射照度の分布
が不均一にならないように注意する必要がある。)ま
た、モノクロメータ5内では、凹面回折格子7の受光面
のほぼ全面を利用するので、モノクロメータ5を最も明
るい条件で使用できる。また、上記の構成により、凹面
回折格子7の外側には入射スリット6からの光がほとん
ど漏れないため、モノクロメータ5内の迷光も同時に低
減できる。
In FIG. 1, first, light from the entire light source 8 to be measured enters the milky-white diffusion plate 1. The milky-white diffusion plate 1 has a transmission diffusion characteristic close to that of a perfect diffusion plate, and as shown in FIG. 3, has a substantially uniform gonio transmission characteristic with respect to incident light from all directions. The light transmitted and diffused by the milky-white diffuser 1 enters the fiber from the fiber end face of the optical fiber bundle 3. At this time, the maximum value θ imax of the incident angle to the fiber end face is determined by the diameter D of the milky-white diffuser 1 and the distance L to the fiber end face, and θ imax = Tan −1 (D / 2L) ‥‥ (2) Is represented. At this time, in order for all light having an incident angle in this range to enter the optical fiber bundle 3, it is necessary to use an optical fiber bundle having an NA satisfying NA ≧ sin (θ imax ) ‥‥ (3). is there. If this condition is not satisfied, the diffused light from the peripheral portion of the milky-white diffuser 1 will not sufficiently enter the optical fiber bundle 3, so that the monochromator 5 cannot be used under sufficiently bright conditions, as described later. In addition, the size of the milky white diffusion plate 1 is not sufficiently utilized. The light-shielding hood 2 fixes the milky-white diffusion plate 1 at a predetermined position, and also blocks light incident on the fiber end surface from portions other than the milky-white diffusion plate 1. If the distance L is too small with respect to the diameter d of the optical fiber bundle 3, the range of the incident angle becomes wider than that represented by the expression (2), so that the light receiving section including the milky white diffusion plate 1 and the light shielding hood 2 is practical. It is necessary to select L >> d within the size range. The light incident on the optical fiber bundle 3 propagates in the optical fiber by total reflection, and exits from the other end face of the monochromator 5 connected to the entrance slit 6. On this end face, each optical fiber is linearly arranged according to the shape of the entrance slit 6. The exit angle (with respect to the central axis) from this end face becomes equal to the incident angle due to the nature of propagation in the optical fiber.
f is represented by θ f = 2θ imax ‥‥ (4 ). When m the divergence angle θ from the entrance slit 6 to the concave diffraction grating 7, the diameter D of a milky diffusion plate and the distance L
Is chosen so that D / L ≒ 2tan (θm / 2) ‥‥‥ (5), (2), (4), (5)
From the formula, θf ≒ θm, and the output light from the optical fiber bundle 3 spreading through the entrance slit 6 can be made incident on almost the entire surface of the concave diffraction grating 7. At this time, the distribution of the irradiance on the surface of the concave diffraction grating 7 was
Of the light source 8 to be measured is almost constant without being affected by the incident angle from the light source 8 to the milky-white diffuser plate 1. Therefore, even if the size or the position of the light source 8 to be measured changes, no measurement error occurs. . Also, the milky-white diffusion plate 1 significantly reduces the amount of light incident on the optical fiber bundle 3 and considerably reduces the sensitivity of the spectrophotometer. Therefore, by bringing the light source 8 to be measured close to the milky-white diffusion plate 1, the amount of incident light can be considerably increased. (At this time, care must be taken not to make the distribution of irradiance on the milky white diffusion plate 1 non-uniform.) In the monochromator 5, almost the entire light receiving surface of the concave diffraction grating 7 is used. , The monochromator 5 can be used under the brightest conditions. Further, according to the above configuration, since the light from the entrance slit 6 hardly leaks outside the concave diffraction grating 7, the stray light in the monochromator 5 can be reduced at the same time.

発明の効果 以上のように、本発明の分光測光器は、モノクロメー
タと、モノクロメータ内の光学系の条件にあわせた大き
さと位置関係を設定したあらゆる方向からの入射光に対
してほぼ一様なゴニオ透過特性をもつ光透過拡散板と遮
光フードと光ファイババンドルを組合わせることによ
り、分光測光器としての感度をあまり低下させずに、ま
た、モノクロメータ内の迷光も低減しながら、被測定光
源の形状や大きさ、入射角度の違いなどによる誤差を除
去し、どのような光源に対しても、入射光学系との位置
設定が粗雑であっても、高精度の分光測光、測色が可能
となる分光測光器を実現でき、その実用的効果は大き
い。
Effect of the Invention As described above, the spectrophotometer of the present invention is substantially uniform with respect to incident light from all directions in which the size and the positional relationship are set according to the condition of the monochromator and the optical system in the monochromator. By combining a light-transmitting diffuser with high gonio transmission characteristics, a light-shielding hood, and an optical fiber bundle, the measured object can be measured without significantly lowering the sensitivity as a spectrophotometer and reducing stray light in the monochromator. Eliminates errors due to differences in the shape and size of the light source, the angle of incidence, etc., and ensures that high-precision spectrophotometry and color A spectrophotometer that can be realized can be realized, and its practical effect is great.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例における分光測光器の構成
図、第2図は、従来例における光ファイババンドルを用
いた分光測光器の構成図、第3図は、乳白拡散板のゴニ
オ反射特性を示す図である。 1……乳白拡散板、2……遮光フード、3……光ファイ
ババンドル、4……支持具、5……モノクロメータ、6
……入射スリット、7……凹面回折格子、8……被測定
光源
FIG. 1 is a configuration diagram of a spectrophotometer according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a spectrophotometer using an optical fiber bundle in a conventional example, and FIG. 3 is gonio-reflection of a milky white diffuser plate. It is a figure showing a characteristic. DESCRIPTION OF SYMBOLS 1 ... Milky-white diffusing plate, 2 ... Light shielding hood, 3 ... Optical fiber bundle, 4 ... Supporting tool, 5 ... Monochromator, 6
...... Incident slit, 7 ... Concave diffraction grating, 8 ... Light source to be measured

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大久保 和明 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭62−148819(JP,A) 特開 昭50−155279(JP,A) 特開 昭61−265535(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuaki Okubo 1006 Oaza Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd. (56) References JP-A-62-148819 (JP, A) JP-A-50 -155279 (JP, A) JP-A-61-265535 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入射スリットから波長分散素子までの開き
角がθmであるモノクロメータと、前記モノクロメータ
の入射スリットに一端を接続し、直径がd、開口数N.A.
が N.A.≧sin(θm/2) なる光ファイババンドルと、 前記光ファイババンドルの他方の端からL>>dなる距
離Lをおいて固定した、D≒2Ltan(θm/2)なる直径D
を持ち、かつあらゆる方向からの入射光に対してほぼ一
様なゴニオ透過特性をもつ光透過拡散板と、 前記光透過拡散板と前記光ファイババンドルの端面まで
の空間を遮光する遮光フードを有することを特徴とする
分光測光器。
1. A monochromator having an opening angle from the entrance slit to the wavelength dispersion element of .theta.m, one end connected to the entrance slit of the monochromator, having a diameter d and a numerical aperture NA.
An optical fiber bundle with NA ≧ sin (θm / 2) and a diameter D of D な る 2Ltan (θm / 2) fixed at a distance L of L >> d from the other end of the optical fiber bundle
And a light-transmitting / diffusing plate having substantially uniform gonio-transmission characteristics with respect to incident light from all directions, and a light-shielding hood for shielding a space between the light-transmitting / diffusing plate and an end face of the optical fiber bundle. A spectrophotometer characterized in that:
JP62302257A 1987-11-30 1987-11-30 Spectrophotometer Expired - Lifetime JP2624273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302257A JP2624273B2 (en) 1987-11-30 1987-11-30 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302257A JP2624273B2 (en) 1987-11-30 1987-11-30 Spectrophotometer

Publications (2)

Publication Number Publication Date
JPH01143922A JPH01143922A (en) 1989-06-06
JP2624273B2 true JP2624273B2 (en) 1997-06-25

Family

ID=17906836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302257A Expired - Lifetime JP2624273B2 (en) 1987-11-30 1987-11-30 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP2624273B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126848B2 (en) * 2000-04-28 2008-07-30 コニカミノルタセンシング株式会社 Photometric device
DE10356729B4 (en) * 2003-12-02 2011-08-11 Deutsches Zentrum für Luft- und Raumfahrt e.V., 51147 color sensor
JP2009109315A (en) * 2007-10-30 2009-05-21 Sony Corp Light measuring device and scanning optical system
JP6686754B2 (en) * 2016-07-14 2020-04-22 株式会社島津製作所 Spectroscope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155279A (en) * 1974-06-05 1975-12-15
JPS62148819A (en) * 1985-12-23 1987-07-02 Anritsu Corp Photodetecting probe of spectocolorimeter

Also Published As

Publication number Publication date
JPH01143922A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
US5784158A (en) Broad spectrum spectrometer apparatus
WO2015182571A1 (en) Optical characteristic measurement device and optical characteristic measurement method
WO1981003552A1 (en) Dispersive optical device
US6459485B1 (en) Optical system
CN102680098A (en) Spectral measurement device
US5212748A (en) Fiber optic mixer and spectrometer
US6646739B2 (en) Four-stage type monochromator
JP2624273B2 (en) Spectrophotometer
JPS61292043A (en) Photodetecting probe for spectocolorimeter
CN101251418A (en) Integration spectrum in light small-sized machine as well as radialization scaling device
JPS6038644B2 (en) spectrophotometer
JPH05157661A (en) Light transmittance measuring device of optical fiber
EP1106979B1 (en) Device for the simultaneous analysis of multiple optical channels
JPS62185128A (en) Light and color measuring apparatus
US20150022810A1 (en) Spectrophotometer and image partial extraction device
US20200300699A1 (en) Method and apparatus for linear variable bandpass filter array optical spectrometer
CN112540459B (en) Optimization adjustment method of double-prism dispersion device
US4140399A (en) Monochromator for simultaneous selection and utilization of two wave-lengths
JP2511902B2 (en) Spectrophotometer
KR102130418B1 (en) Dazaja spectrometer
JPH01143921A (en) Spectrophotometric device
JP2001264166A (en) Photometer
US5170222A (en) Measurement of spectra
JP4542648B2 (en) Photometric device
CN217358748U (en) Device for improving accuracy of spectral imager and spectral imaging system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11