JPH01143906A - Measuring instrument for parallelism between front and rear surfaces of opaque body - Google Patents

Measuring instrument for parallelism between front and rear surfaces of opaque body

Info

Publication number
JPH01143906A
JPH01143906A JP30249787A JP30249787A JPH01143906A JP H01143906 A JPH01143906 A JP H01143906A JP 30249787 A JP30249787 A JP 30249787A JP 30249787 A JP30249787 A JP 30249787A JP H01143906 A JPH01143906 A JP H01143906A
Authority
JP
Japan
Prior art keywords
optical path
light
luminous flux
test sample
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30249787A
Other languages
Japanese (ja)
Inventor
Hiroshi Mizojiri
溝尻 寛
Moriyasu Kawamura
河村 守康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIZOJIRI KOGAKU KOGYOSHO KK
Original Assignee
MIZOJIRI KOGAKU KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIZOJIRI KOGAKU KOGYOSHO KK filed Critical MIZOJIRI KOGAKU KOGYOSHO KK
Priority to JP30249787A priority Critical patent/JPH01143906A/en
Publication of JPH01143906A publication Critical patent/JPH01143906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately and speedily measure the parallelism between both front and rear surfaces of the opaque plate body by allowing pieces of reflected luminous flux from reflection mirrors provided on respective optical paths from the prism border surface of a beam splitter to travel in the same optical path, and inserting a sample to be inspected into the optical path. CONSTITUTION:Parallel luminous flux i0 emitted by a projection device Q is split into reflected luminous flux i1 and transmitted luminous flux i2 by the prism border surface G of the beam splitter B. The reflection mirrors M1 and M2 are provided on the optical paths L1 and L2 of those pieces of luminous flux i1 and i2 and optical paths L3 and L4 after reflection are made coincident by angle adjusters for the mirror surfaces of the reflection mirrors M1 and M2. Therefore, two pieces of clockwise and counterclockwise luminous flux from the border surface G reaches a photodetecting device R in phase with each other and there is no interference fringes found in the current observation visual field. When the opaque sample S to be inspected is put between the optical paths L3 and L4, whether or not interference fringes appear in the visual field depends upon whether or not both top and reverse surfaces of the sample are parallel to each other as well as when the same S is not inserted, and the parallelism between the front and rear surfaces of the sample S is measured with high accuracy.

Description

【発明の詳細な説明】 (発明の目的) この発明は物体の機械的精度の光学的測定手段に関する
l2ので、特に不透明な板状の物体の表裏両面の平ξ度
を3速、簡便かつ精密に測定できる手段を提供するのが
この発明の第1の目的である。
DETAILED DESCRIPTION OF THE INVENTION (Objective of the Invention) This invention relates to an optical measuring means for measuring the mechanical precision of an object, so it is possible to easily and precisely measure the flatness of both the front and back surfaces of an opaque plate-like object in three speeds. The first object of the present invention is to provide a means for measuring .

この発明の第2の目的は、透明体の表裏両面の平后度を
測定する場合にも同様手段で簡便に使用できる装置を提
供するのにある。
A second object of the present invention is to provide an apparatus that can be easily used by the same means when measuring the flatness of both the front and back surfaces of a transparent body.

不透明物体の表裏両面の平后度の精密な測定を欲する場
合、たとえば秒速のオーダーで迅速、簡便に使用できる
装置は全く知られていない。この発明はこのような使用
目的Qこ確実に対処できる手段を研究工夫したl2ので
、以下、図示した一実施例につきこの発明を説明する。
When it is desired to accurately measure the flatness of both the front and back surfaces of an opaque object, there is no known device that can be used quickly and easily, for example, on the order of seconds. This invention has been developed by researching and devising a means that can surely meet the purpose of use Q. Therefore, the invention will be explained below with reference to one embodiment shown in the drawings.

(発明の構成) 囲み鎖線によりQで表示したのはレーサーの平2テ光束
を射出する投光装置である。図示の実施例によれば、図
示を省略したが光源にはヘリウム・ネオンレーザ−光発
生装置が使用されている。なお、図示の例によれば集光
されたレーザー光束は2面反射プリズムPlにより光路
を変換するとともにコリメーターレンズに1により平行
光束への射出が可能になっている。
(Structure of the Invention) What is indicated by Q in the enclosed dashed line is a projector that emits the laser beam of 200 nm. According to the illustrated embodiment, although not shown, a helium-neon laser light generating device is used as a light source. In addition, according to the illustrated example, the optical path of the condensed laser beam is converted by the dihedral reflection prism Pl, and the beam can be emitted into a parallel beam by the collimator lens 1.

Bはビームスプリッタ−で、前記した投光装置qから射
出された平行光束4を受け、プリズム境界面Gにおいて
反射光束と透明光束に分割するl2のである。
Reference numeral B denotes a beam splitter l2 which receives the parallel light beam 4 emitted from the above-mentioned light projection device q and splits it into a reflected light beam and a transparent light beam at the prism boundary surface G.

Mlは第1の反射鏡で、ビームスプリッタ−Bのプリズ
ム境界面Gの反射光束11の光路L1に設けられている
Ml is a first reflecting mirror, which is provided in the optical path L1 of the reflected light beam 11 from the prism boundary surface G of the beam splitter B.

誠2は第2の反射鏡で、ビームスプリッタ−Bのプリズ
ム境界面Gの透過光束りの光w!IL2に設けられてい
る。
Makoto 2 is the second reflecting mirror, and the light of the beam transmitted through the prism interface G of the beam splitter B is reflected w! It is provided in IL2.

凹み鎖線によりRで表示したのは受光装置で、前記した
光路L1の前記プリズム境界面Gの背後への延長光路L
5にそい、前記プリズム境界面Gから射出する光束へを
受光し、集光投映するl2ので、図示例によれば、前記
した光束へをコリメーターレンズに2で受け、2面反射
プリズムP2で方向変換して集光し、ターゲットTに投
映できるようになっている。
The light receiving device is indicated by the concave chain line R, and the optical path L1 is an extension of the optical path L1 to the rear of the prism boundary surface G.
According to 5, the luminous flux emitted from the prism boundary surface G is received and condensed and projected. Therefore, according to the illustrated example, the aforementioned luminous flux is received by the collimator lens 2 and then by the two-sided reflective prism P2. It is now possible to change the direction, condense the light, and project it onto the target T.

この発明によれば、前記した光路L3および前記した光
路L4はたがいに一致させなければならない。
According to this invention, the optical path L3 described above and the optical path L4 described above must match each other.

図示例によれば、反射鏡111および反射鏡M2にはそ
れぞれ鏡面の角度調整具(rM示は省略した)を設け、
容易に光路L3および光路L4.)一致カ得うれるよう
になっている。
According to the illustrated example, the reflecting mirror 111 and the reflecting mirror M2 are each provided with a mirror angle adjusting tool (rM illustration is omitted),
Light path L3 and light path L4. ) It is now possible to get a match.

Sはたがいに一致させた光路L3および光路L4に挿入
した被検試料で、このように被検試料Sを挿入すること
により、前記光路L1および前記光路L3からなる被検
試料Sへの第1の投射光路と、前記光路L2および前記
光路L4からなる被検試料Sへの$2の投射光路が形成
されている。なお、図示において、被検試料SはN1の
反射鏡町およびIE2の反射11M2からほぼ等距離の
位置に描かれているけれども、この発明によれば、被検
試料Sの位置は後述するように、一致させた前記光路L
3 T L4上の任意の位111Gこ選定することがで
きる。
S is a test sample inserted into the optical path L3 and the optical path L4 which are made to coincide with each other. By inserting the test sample S in this way, the first The projection optical path of $2 to the test sample S is formed by the projection optical path of $2 and the optical path L2 and the optical path L4. In the illustration, the test sample S is drawn at a position approximately equidistant from the reflection mirror town of N1 and the reflection 11M2 of IE2, but according to the present invention, the position of the test sample S is as described below. , the matched optical path L
Any position 111G on 3T L4 can be selected.

この発明は1記のようにしてなり、第1の反射鏡町をビ
ームスプリッタ−Bのプリズム境界面Gの反射光束11
の光路L1に設け、第2の反射mに2をビームスプリッ
タ−Bのプリズム境界面Gの透過光束への光路L2に設
け、かつ前記光路L3と、前記光路L4とをたがいに一
致させであるので、前記プリズム境界面Gを起点とし、
反射111MIから反射鏡M2をへて再びプリズム境界
面Gに戻る、すなわち、図示では左回りの光束の光路長
と、同様E1プリズム境界面Gを起点とし、反射鏡M2
から反射Ill、をへてプリズム境界面Gに戻る石回り
の光束の光路長とは、プリズム境界面Gのどの点を起点
とする場合でもたがいに等しい。
This invention is made as described in 1 above, and the first reflecting mirror area is the reflected light beam 11 of the prism boundary surface G of the beam splitter B.
2 is provided in the optical path L1 of the second reflection m, and 2 is provided in the optical path L2 to the transmitted light beam of the prism boundary surface G of the beam splitter B, and the optical path L3 and the optical path L4 are made to coincide with each other. Therefore, starting from the prism boundary surface G,
From the reflection 111MI, it passes through the reflection mirror M2 and returns to the prism boundary surface G, that is, in the figure, the optical path length of the counterclockwise light beam, similarly starting from the E1 prism boundary surface G, the reflection mirror M2
The optical path length of the light beam around the stone that returns to the prism boundary surface G through reflection Ill is equal to each other no matter which point on the prism boundary surface G is the starting point.

いま、被検試料Sの未挿入状態において、プリズム境界
面Gに戻った前記左回りの光束は、プリズム境界面Gに
おいて反射し、前記光路L1の前記プリズム境界面Gの
背後への延長光路L5をへて受光装置1Hに達し、一方
、プリズム境界面Gに戻った前記右回りの光束はプリズ
ム境界面Gを透過し、同様に前記延長光路L5をへて受
光装置Rに達する。
Now, in a state where the test sample S is not inserted, the counterclockwise light beam that has returned to the prism boundary surface G is reflected at the prism boundary surface G, and the optical path L1 is extended to the rear of the prism boundary surface G as an optical path L5. On the other hand, the clockwise light flux returning to the prism boundary surface G passes through the prism boundary surface G and similarly reaches the light receiving device R through the extended optical path L5.

すなわち、投光装置Qの射出光束ちのビームスプリッタ
−Bによる反射光束と、同じく透過光束とは同一位相に
おいて受光装@Rに達するので、受光WgIRによって
観測される視野には干渉舗がなく、明または暗の、いわ
ゆるワンカラーの視野が尋られる。
In other words, since the emitted light beam from the light projector Q and the reflected light beam by the beam splitter B and the transmitted light beam reach the light receiver @R in the same phase, there is no interference field in the field of view observed by the light receiver WgIR, and there is no bright light. Or dark, so-called one-color vision is asked.

そこで、前記した光路L3+L4に不透明体の被検試a
Sを挿入すれば、前記した光路L1および光路L3から
なる被検試料Sへの第1の投射光路と、前記した光路L
2および光路L4からなる被検試料Sへの第2の投射光
路がそれぞれ別個に光学系を形成する。そして、前記第
1の投射光路にかかる光束の被検試BSによる反射光束
は反射l11M1およびビームスプリッタ−Bをへて受
光装!llRに達する一方、前記@2の投射光路にかか
る光束の被検試料Sによる反射光束は反射wA−および
ビームスプリッタ−Bをへて受光装置1Rに達する。
Therefore, the test specimen a of an opaque body is placed in the optical path L3+L4 described above.
If S is inserted, the first projection optical path to the test sample S consisting of the optical path L1 and the optical path L3 described above, and the optical path L
The second projection optical path to the test sample S consisting of the optical path L4 and the optical path L4 form separate optical systems. Then, the light flux reflected by the test sample BS on the first projection optical path passes through the reflection l11M1 and the beam splitter B to the light receiving device! On the other hand, the light beam reflected by the test sample S of the light beam on the projection optical path of @2 reaches the light receiving device 1R via the reflection wA- and the beam splitter B.

いま、表裏の両面が平行な被検試Bsを反射鏡M1と反
射鏡賛2間の距離の2分の1の箇所に挿入しだとすれば
、光路L3と光路L4の光路長とは等しくなるので、前
記第1の投射光路にかかる光束の被検試料Sによる反射
光束が反射鏡M1およびビームスプリッタ=Bをへて受
光装@已に達した光束と、前記第2の投射光路にかかる
光束の被検試料Sによる反射光束が反射鏡M2およびビ
ームスプリッタ−Bをへて受光装faRに達した光束と
は光波の位相が一致するので、前記のように被検試料S
の未挿入状態と同様、ワンカラーの視野が受光装置Rに
より観測される。
Now, if we insert the test specimen Bs whose front and back surfaces are parallel to each other at a position that is half the distance between the reflector M1 and the reflector support 2, the optical path lengths of the optical paths L3 and L4 are equal. Therefore, the light flux reflected by the test sample S of the light flux applied to the first projection optical path is reflected by the light flux that passes through the reflector M1 and the beam splitter = B and reaches the light receiving device @, and the light flux applied to the second projection optical path. Since the light beam reflected by the test sample S has the same light wave phase as the light flux that has passed through the reflector M2 and the beam splitter B and reached the photoreceptor faR, as described above, the test sample S
Similar to the non-inserted state, a one-color visual field is observed by the light receiving device R.

ところで、平行な表裏面をもつ前記した被検試料Sを、
不平dな表裏面をもつ被検試料SGこ置き換えた場合は
、前記した光路L3と光路L4の光路長に差異があるの
で、前記のようにして受′に装置Rに達したふたつの光
束間に位相差が発生し、そのため、受光装置IHにより
光の干#鳩が観測される。
By the way, the above-mentioned test sample S having parallel front and back surfaces,
When replacing the test sample SG with unsatisfactory front and back surfaces, there is a difference in the optical path length between the optical path L3 and the optical path L4, so the difference between the two light beams that reached the receiving device R as described above is A phase difference occurs, and as a result, light lag is observed by the light receiving device IH.

第2図を参照し、いま、干渉縞が観測される方@(こお
ける被検試USの長さ(被検試料Sが円板である場合に
ついては前記した方同の直径)を!、端部の厚みをhl
、h2、表裏面の平行度を!とすれば        
 h 1  h 2 =Δh!=Δb/l・・・・・・
・・・・・・(1)である。−万、前記した位相差は 電入 =2Δh 従って、 △ト1λ/2・・・・・・・・・・・・・・(2)が湿
られる。ただし、λは光の波長、■は干渉鳴の次数(シ
フト量)である。
Referring to Figure 2, the direction where interference fringes are observed is now the length of the test sample US (if the test sample S is a disk, the diameter is the same as described above). The thickness of the end is hl
, h2, the parallelism of the front and back surfaces! given that
h 1 h 2 =Δh! =Δb/l・・・・・・
...(1). -10,000, the above phase difference is 2Δh Therefore, Δt1λ/2 (2) is damped. However, λ is the wavelength of light, and ■ is the order (shift amount) of the interference sound.

ゆえに、式(2)を式(1)に代入すれば、平行度デは
           f  =、^ /22・・・・
・・・・・・・・ (3)である。
Therefore, by substituting equation (2) into equation (1), the parallelism de is f =, ^ /22...
...... (3).

以下、数値例を掲げると、光@Qに波長0.633mm
のHe−Neレーザーを用い、lは50 m+aとする
Below is a numerical example: Light @Q has a wavelength of 0.633 mm.
A He-Ne laser is used, and l is 50 m+a.

!!測視野における干渉鳩が1本、すなわちm=1とす
れば、式(3)は L;6.33X 10  ’ Rad すなわち、表裏平面間の傾き角をθとすればθ = t
an  ’6.33X 10−6幻1.3秒 の測定値が得られる。
! ! If there is one interference pigeon in the measurement field, that is, m = 1, then equation (3) is L; 6.33X 10' Rad.In other words, if the angle of inclination between the front and back planes is θ, then θ = t
A measurement value of an '6.33X 10-6 phantom 1.3 seconds is obtained.

ところで、観測視野における干渉縞の本数については1
/2本の判定が可能であるから、傾き角θが帆65秒ま
での平行度の測定が容易に可能である。
By the way, the number of interference fringes in the observation field is 1
Since it is possible to determine /2, it is possible to easily measure the parallelism when the inclination angle θ is up to 65 seconds.

なお、観測視野における干渉栖の本数の判定については
第3図を膠原されたい。
For determining the number of interference channels in the observation field, please refer to Figure 3.

以上の説明においては、説明の便宜上被検試料Sの挿入
位置を反射鏡M1と反射鏡1112の丁度中央とし、被
検試料Sの表裏両面がたがいに平行である場合について
は1記光路L3および光路L4の光路長に差がない場合
をn提にした。事実、光源光がインコヒーレントな普通
光の場合は、被検試料Sの挿入位置の誤差が1μ麺を超
える場合は表裏両面が不平オテな場合の干渉惰の観測は
困難となるのである。しかしながら、この発明によれば
光源光(こコヒーレンシーの高いレーザー光を用いてい
るので、前記した被検試料Sの挿入位置や、反射鏡M1
、反射鏡M2間に形成される光路に対する被検試料Sの
直交性の誤差は問題にならず、反射鏡に1、反射鏡M2
間の適当な箇所に被検試料を挿入すれば、容易に前記干
渉偽を観測し、被検試料Sの両面間の平行度を相当の高
精度で測定できる。
In the above explanation, for convenience of explanation, the insertion position of the test sample S is assumed to be exactly at the center of the reflecting mirror M1 and the reflecting mirror 1112, and when the front and back surfaces of the test sample S are parallel to each other, the optical path L3 and The case where there is no difference in the optical path length of the optical path L4 is set as n. In fact, when the light source light is incoherent ordinary light, if the error in the insertion position of the test sample S exceeds 1 μm, it becomes difficult to observe interference when both the front and back surfaces are uneven. However, according to the present invention, since the light source light (laser light with high coherency is used), the insertion position of the test sample S and the reflecting mirror M1 are
, the error in orthogonality of the test sample S with respect to the optical path formed between the reflecting mirrors M2 is not a problem;
By inserting the test sample at an appropriate location between the test samples, it is possible to easily observe the interference error and measure the parallelism between both surfaces of the test sample S with considerably high accuracy.

さらに、この発明によれば、不透明体と同様、透明体に
ついても表裏面の平行度を簡単に測定することができる
。すなわち、透明体の被検試料Sを反射境町、反射鏡M
2の中間に挿入するとともに、被検試料Sへの前記した
第1の投射光路または第2の投射光路に遮光板りを挿入
して使用する。すなわち、図示例によれば、前記投射光
路における光路L1に遮光板りが表示されているが、こ
のような遮光板りは光路Llのほか光路L3、または前
記第2の投射光路中の光路L2または光路L4に設けて
もよい。
Further, according to the present invention, it is possible to easily measure the parallelism of the front and back surfaces of a transparent body as well as an opaque body. In other words, the transparent test sample S is reflected by the reflective mirror M.
2, and a light shielding plate is inserted in the first projection optical path or the second projection optical path to the test sample S. That is, according to the illustrated example, a light shielding plate is displayed on the optical path L1 in the projection optical path, but such a light shielding plate is used not only for the optical path Ll but also for the optical path L3, or the optical path L2 in the second projection optical path. Alternatively, it may be provided in the optical path L4.

いま、−例として前記例のように光路L1に遮光板りを
挿入したl2のとすれば、被検試料Sに入射する光束は
光路L4を経由する。第4図を参照し、この大割光束l
aから、被検試料Sの表面による反射光束へと同じく底
面による反射光束tcが生じ、これら2皿類の反射光束
は反射鏡M2およびビームスプリッターBをへて受光装
!Hに達し、それら2種類の反射光束間の光路差により
第3図と同様な干渉iが観測される。
As an example, if a light shielding plate is inserted in the optical path L1 as in the above example, the light beam incident on the test sample S passes through the optical path L4. Referring to Figure 4, this large luminous flux l
From a, a light flux reflected by the surface of the test sample S and a light flux tc reflected by the bottom surface are generated, and the reflected light fluxes from these two dishes pass through the reflector M2 and the beam splitter B to the light receiving device! H, and interference i similar to that shown in FIG. 3 is observed due to the optical path difference between the two types of reflected light beams.

この場合、 型入 =2nΔh (ただしnは被検試@Sの屈折率) が成立するので、 が得られる。そこで、式(4)による△hの計算値およ
び被検試料Sの長さノを式(1)に代入すれば表裏面の
平行度rの値または表裏面間の傾き角θが容易に計算さ
れる。
In this case, since the following holds true: molding = 2nΔh (where n is the refractive index of the test sample @S). Therefore, by substituting the calculated value of △h according to equation (4) and the length of the test sample S into equation (1), the value of parallelism r between the front and back surfaces or the inclination angle θ between the front and back surfaces can be easily calculated. be done.

(発明の効果) かくして、この発明によれば、不透明体の表裏両面の平
行度が相当に高い精度をもって測定できるのみならず、
被検試料への投射光路への被検試料の挿入には厳密な位
置ぎめが不要であるから測定操作が容易簡便、かつきわ
めて迅速に行うことができるので、学術研究においては
もちろん、生産現場における使用にも最適である。さら
に、この発明によれば、光学ガラスその他透明材料の表
裏面の平行度の測定においても、同様に迅速正確にこれ
を行うことが可能であることも大きい特長である。
(Effects of the Invention) Thus, according to the present invention, not only can the parallelism of both the front and back surfaces of an opaque body be measured with considerably high accuracy;
Inserting the test sample into the projection optical path for the test sample does not require precise positioning, so the measurement operation is easy, simple, and extremely quick, making it ideal not only for academic research but also for production sites. Also suitable for use. Another great feature of the present invention is that it is possible to measure the parallelism of the front and back surfaces of optical glass or other transparent materials similarly quickly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる装置の光路図、第2図は不透
明な被検試料の縦断面図、第3図は受光装置の観測視野
における干渉iの数の判定の解説図、第4図は透明な被
検試料の測定における光路a明図である。 Bはビームスプリッタ−1Gはプリズム境界面、qは投
光装置、Rは受光装置、Pl、P2は2面反射プリズム
、Kl、IC2はコリメーターレンズ、M1+H2は反
射鏡、Sは被検試料、Dは遮光板、τはタープ”/ ト
s L11L21L31L41L5 ia光路s 4 
+ Jl r /2 + 13 + 14 +4+ l
、tb+ lcは光束である。 特許出願人  株式会社 溝尻光学工業所第2図 第3am −l   −/   −17−4−1−114図
Fig. 1 is an optical path diagram of the device according to the present invention, Fig. 2 is a longitudinal cross-sectional view of an opaque test sample, Fig. 3 is an explanatory diagram of the determination of the number of interferences i in the observation field of the light receiving device, and Fig. 4 1 is a diagram showing the optical path in measurement of a transparent test sample. B is a beam splitter, 1G is a prism boundary surface, q is a light emitter, R is a light receiver, Pl and P2 are two-sided reflective prisms, Kl and IC2 are collimator lenses, M1+H2 is a reflecting mirror, S is a test sample, D is a light-shielding plate, τ is a tarp"/tos L11L21L31L41L5 ia optical path s 4
+ Jl r /2 + 13 + 14 +4+ l
, tb+lc is the luminous flux. Patent applicant Mizojiri Optical Industry Co., Ltd. Figure 2 Figure 3 am -l -/ Figure -17-4-1-114

Claims (1)

【特許請求の範囲】[Claims] レーザーの平行光束を射出する投光装置Qと、投光装置
Qの射出光束l_0を受けて反射光束と透過光束に分割
するビームスプリッターBと、ビームスプリッターBの
プリズム境界面Gの反射光束l_1の光路L_1に設け
た第1の反射鏡M_1と、ビームスプリッターBのプリ
ズム境界面Gの透過光束l_2の光路L_2に設けた第
2の反射鏡M_2と、前記光路L_1の前記プリズム境
界面Gの背後への延長光路L_5にそい前記プリズム境
界面Gから射出する光束l_5を受光して集光投映する
受光装置Rとを有し、前記光束l_1の反射鏡M_1の
反射光束l_3の光路L_3および前記光路L_2の反
射鏡M_2の反射光束l_4の光路L_4をたがいに一
致させるとともに前記光路L_3、L_4に被検試料S
を挿入することにより、前記光路L_1および前記光路
L_3からなる被検試料Sへの第1の投射光路と、前記
光路L_2および前記光路L_4からなる被検試料Sへ
の第2の投射光路とを形成してなる不透明体表裏面の平
行度測定装置。
A light projection device Q that emits a parallel beam of laser light, a beam splitter B that receives the emitted light beam l_0 of the light projection device Q and splits it into a reflected light beam and a transmitted light beam, and a beam splitter B that receives the emitted light beam l_0 of the light projection device Q and splits the reflected light beam l_1 of the prism boundary surface G of the beam splitter B. The first reflecting mirror M_1 provided in the optical path L_1, the second reflecting mirror M_2 provided in the optical path L_2 of the transmitted light beam l_2 of the prism boundary surface G of the beam splitter B, and the back of the prism boundary surface G of the optical path L_1. and a light receiving device R that receives and condenses and projects the light beam l_5 emitted from the prism boundary surface G along an extended optical path L_5 to the optical path L_3 of the light beam l_3 reflected by the reflecting mirror M_1 of the light beam l_1 and the optical path L_3. The optical path L_4 of the reflected light beam l_4 of the reflecting mirror M_2 of L_2 is made to match each other, and the test sample S is placed in the optical paths L_3 and L_4.
By inserting the optical path L_1 and the optical path L_3, a first projection optical path toward the test sample S, and a second projection optical path toward the test sample S, consisting of the optical path L_2 and the optical path L_4. Parallelism measurement device for the front and back surfaces of an opaque body formed by
JP30249787A 1987-11-30 1987-11-30 Measuring instrument for parallelism between front and rear surfaces of opaque body Pending JPH01143906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30249787A JPH01143906A (en) 1987-11-30 1987-11-30 Measuring instrument for parallelism between front and rear surfaces of opaque body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30249787A JPH01143906A (en) 1987-11-30 1987-11-30 Measuring instrument for parallelism between front and rear surfaces of opaque body

Publications (1)

Publication Number Publication Date
JPH01143906A true JPH01143906A (en) 1989-06-06

Family

ID=17909670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30249787A Pending JPH01143906A (en) 1987-11-30 1987-11-30 Measuring instrument for parallelism between front and rear surfaces of opaque body

Country Status (1)

Country Link
JP (1) JPH01143906A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995226A (en) * 1997-06-11 1999-11-30 Super Silicon Crystal Research Institute Corporation Optical apparatus for measuring profiles of a wafer
US6271925B1 (en) * 1996-01-24 2001-08-07 Nanopro Luftlager-Produktions-Und Messtechnik Gmbh Apparatus and method for measuring two opposite surfaces of a body
US6504615B1 (en) 1998-03-09 2003-01-07 Super Silicon Crystal Research Institute Corporation Optical instrument for measuring shape of wafer
DE102008001473B3 (en) * 2008-04-30 2009-12-31 Robert Bosch Gmbh Optical arrangement for illuminating a measurement object, interferometric arrangement for measuring surfaces of a measurement object
US20110128551A1 (en) * 2008-04-30 2011-06-02 Matthias Fleischer Interferometric system and method for adjusting a path difference

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271925B1 (en) * 1996-01-24 2001-08-07 Nanopro Luftlager-Produktions-Und Messtechnik Gmbh Apparatus and method for measuring two opposite surfaces of a body
US5995226A (en) * 1997-06-11 1999-11-30 Super Silicon Crystal Research Institute Corporation Optical apparatus for measuring profiles of a wafer
US6504615B1 (en) 1998-03-09 2003-01-07 Super Silicon Crystal Research Institute Corporation Optical instrument for measuring shape of wafer
DE19980579B4 (en) * 1998-03-09 2010-10-07 Kuroda Precision Industries Ltd., Kawasaki Optical device for measuring profiles of wafers
DE102008001473B3 (en) * 2008-04-30 2009-12-31 Robert Bosch Gmbh Optical arrangement for illuminating a measurement object, interferometric arrangement for measuring surfaces of a measurement object
US20110128551A1 (en) * 2008-04-30 2011-06-02 Matthias Fleischer Interferometric system and method for adjusting a path difference
US8625103B2 (en) 2008-04-30 2014-01-07 Robert Bosch Gmbh Interferometric system and method for adjusting a path difference
US8913249B2 (en) 2008-04-30 2014-12-16 Robert Bosch Gmbh Optical system for illuminating a measured object and interferometric system for measuring surfaces of a measured object

Similar Documents

Publication Publication Date Title
JPS6337364B2 (en)
JP7044272B2 (en) Lens refractive index measuring device and its measuring method
US7466427B2 (en) Vibration-resistant interferometer apparatus
KR20000016177A (en) Interferometer for measuring thickness variations of semiconductor wafers
CN109358435B (en) Device and method for adjusting perpendicularity of double telecentric lenses
US4072422A (en) Apparatus for interferometrically measuring the physical properties of test object
JPH02161332A (en) Device and method for measuring radius of curvature
JPH01143906A (en) Measuring instrument for parallelism between front and rear surfaces of opaque body
JP2533514B2 (en) Depth / thickness measuring device
JPS5979104A (en) Optical device
JP4810693B2 (en) Lightwave interference measurement device
JP3230983B2 (en) Subject position adjustment method for lightwave interference device
US3347130A (en) Optical measuring instruments
JP2002286409A (en) Interferometer
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
JPH0921606A (en) Interferometer for measuring transparent thin plate
JP3067697B2 (en) Phase difference measuring device
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JP2891715B2 (en) Fringe scanning interferometer
JPS598762B2 (en) How to use the information
JPS60211304A (en) Measuring instrument for parallelism
JP2527176B2 (en) Fringe scanning shearing interferometer
JPS60242304A (en) Hologram interferometer for measuring surface shape of large-aperture plane mirror
JPH11287612A (en) Interferometer
JPS6110164Y2 (en)