JPS60242304A - Hologram interferometer for measuring surface shape of large-aperture plane mirror - Google Patents

Hologram interferometer for measuring surface shape of large-aperture plane mirror

Info

Publication number
JPS60242304A
JPS60242304A JP9931484A JP9931484A JPS60242304A JP S60242304 A JPS60242304 A JP S60242304A JP 9931484 A JP9931484 A JP 9931484A JP 9931484 A JP9931484 A JP 9931484A JP S60242304 A JPS60242304 A JP S60242304A
Authority
JP
Japan
Prior art keywords
hologram
light
optical system
illumination light
plane mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9931484A
Other languages
Japanese (ja)
Other versions
JPH0223802B2 (en
Inventor
Kouji Tenjinbayashi
天神林 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9931484A priority Critical patent/JPS60242304A/en
Publication of JPS60242304A publication Critical patent/JPS60242304A/en
Publication of JPH0223802B2 publication Critical patent/JPH0223802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness

Abstract

PURPOSE:To enable measurement of the surface shape of a large-aperture plane mirror by providing a hologram interference system having an optical system for reference light and an optical system for illuminating light and observing the interference fringe between the reconstructed object light reconstructed by a hologram and the illuminating light. CONSTITUTION:A hologram interferometer 1 is constituted of a laser light source 3, the optical system 4 for reference light provided with a reflection mirror M1, a microscopic objective lens MO1 and a pinhole P1 and a hologram HP and the optical system 6 for illuminating light provided with reflection mirror M3, a microscopic objective lens MO3 and a pinhole P3. The set position of the plane mirror MM to be inspected is set as specified. The parallel light from the laser light source 3 is split by a beam splitter BS1. One of the luminous fluxes is made incident on the hologram HP via the system 4 and the object light is reconstructed. The other luminous flux is passed through the system 6 to form the illuminating light which is reflected by the mirror surface MM and is then made incident on the hologram HP then the interference fringe is generated by the reconstructed object light and the reference light and therefore the measurement of the surface shape is made possible.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は大口径の平面鏡の表面形状を測定するための
ホログラム干渉計に関するものである。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] This invention relates to a hologram interferometer for measuring the surface shape of a large-diameter plane mirror.

[従来の技術] 従来から平面鏡はガラスを研磨し、その表面にアルミニ
ウム等の金属を蒸着することによって作られており、通
常、その大きさは直径20Cm以内、精度は0.5μ程
度である。しかるに、最近、ダイヤモンド旋盤の発達に
より、その大きさが口径1m程度の金属鏡が比較的容易
に製作できるようになり、その精度も、ガラス鏡はどで
はないが、それに近づきつつあるのであるが、これらの
大口径の鏡面形状を高精度で簡単な測定する技術が開発
されていない。
[Prior Art] Conventionally, plane mirrors have been made by polishing glass and depositing metal such as aluminum on its surface, and usually have a diameter of 20 cm or less and an accuracy of about 0.5 μm. However, with the recent development of diamond lathes, it has become relatively easy to manufacture metal mirrors with a diameter of about 1 meter, and the precision of these mirrors is approaching that of glass mirrors, although they are still far behind. However, no technology has been developed to easily measure these large-diameter mirror shapes with high precision.

ところで、従来から口径10cm程廉の太ささの鏡の形
状はマイケルソン干渉計、フィゾー干渉計等を使って0
,025μ程度の精度で簡単に測定できるのである。
By the way, the shape of a mirror with a diameter of about 10 cm has traditionally been determined using a Michelson interferometer, a Fizeau interferometer, etc.
It can be easily measured with an accuracy of about ,025μ.

[発明が解決しようとする問題点] しかるに、この測定原理を口径1mにもなる平面鏡の測
定に適用−するとすると、1m以上の径のレンズと、1
m以」二の径の半透鏡、1m以」−の径の標準となる鏡
面が必要となり、それらの大きな測定用光学部品庖製作
することは技術的にも回動が多く、かつ価格もきわめて
高価であって、実用化が困鯉1である。また、このよう
な大口径の鏡面の測定に、前記した小口径の鏡面につい
ての確立しノこ測定技術を適用し、大口径の平面鏡を小
[]径用の干渉計゛C分割して測定覆ることも考えられ
るが、表面粗さの測定であれば、被検鏡面の一部分をサ
ンプリングし゛(行なえば良いのに対し、鏡面の表面形
状の場合は、全体をまとめて測定しなければ、ある一端
の点と、それと反対の他端の点との相対的誤差は検出さ
れず、したがって、この分割1)で測定する手法は測定
誤差を伴いやすい。
[Problems to be solved by the invention] However, if this measurement principle is applied to the measurement of a plane mirror with an aperture of 1 m or more, then a lens with a diameter of 1 m or more and a
A semi-transparent mirror with a diameter of 1 m or more is required, and a standard mirror surface with a diameter of 1 m or more is required, and manufacturing these large measuring optical parts requires a lot of rotation technically and is extremely expensive. It is expensive and difficult to put into practical use. In addition, to measure such large-diameter mirror surfaces, we applied the previously established hacksaw measurement technique for small-diameter mirror surfaces, and measured the large-diameter plane mirror by dividing it into small-diameter interferometers. However, when measuring surface roughness, it is sufficient to sample only a portion of the mirror surface to be inspected. A relative error between a point at one end and a point at the opposite end is not detected, and therefore the method of measuring in this division 1) is likely to be accompanied by measurement errors.

この発明は上記の如き事情に鑑みCなされたものであっ
て大口径の平面鏡の表面形状の測定を容易、確実、安価
に、しかも鏡面を分割せずに一度に測定することができ
る測定技術を提供することを目的としている。
This invention has been made in view of the above circumstances, and provides a measurement technique that can easily, reliably, and inexpensively measure the surface shape of a large-diameter plane mirror, and can also measure the surface shape at once without dividing the mirror surface. is intended to provide.

(ロ)発明の構成 [問題を解決するための手段コ この目的に対応して、この発明の大口径平面鏡の表面形
状測定用ホログラム干渉計は、レーザ光源と、発散球面
波の参照光を生成させる参照光光学系と、発散球面波の
物体光を前記参照先により記録したホログラムと、前記
物体光を生成さける物体光光学系と等価で発散球面波の
照明光を生成させる照明光光学系を備2、前記物体光と
前記照明光とが線対称をなす位置に被検平面鏡面の配設
位置を定めて前記照明光が前記被検平面鏡で反射したの
ち前記ホログラムを照明するように構成し、前記参照光
を前記ホログラムに照明して再生される再生物体光と前
記ホログラムに照明した前記照明光との干渉縞を観測す
るように構成したことを特徴としている。
(b) Structure of the invention [Means for solving the problem] In response to this purpose, the hologram interferometer for measuring the surface shape of a large-diameter plane mirror of the present invention generates a laser light source and a reference light of a diverging spherical wave. a hologram in which a divergent spherical wave object light is recorded by the reference destination; and an illumination light optical system that is equivalent to the object light optical system that generates the object light and generates a divergent spherical wave illumination light. Preparation 2: The object light and the illumination light are arranged at a position where the object light and the illumination light are symmetrical, and the hologram is illuminated after the illumination light is reflected by the test plane mirror. The hologram is illuminated with the reference light to observe interference fringes between the reproduced object light and the illumination light that illuminates the hologram.

以下、この発明の詳細を一実施例を示す図面について説
明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図において、11.1ホログラム干渉甜である。In FIG. 1, there is a 11.1 hologram interference frame.

ホログラム干渉a)1はホログラムHPを備えている。Hologram interference a) 1 comprises a hologram HP.

そこでよ4゛ホログラム1−IPの作製につい【説明J
る。
Therefore, regarding the production of 4゛ hologram 1-IP [Explanation J
Ru.

第2図において2は小に1グラ1.、 l−I Pを作
製するための光学系である。光学系2は例えばアルゴン
イオンレーザを発生さぜるシー11゛光源3、参照光光
学系4、物体光光学系5、ビームスプリッタ(または半
透鏡)BSl 、BS2を備えている。
In Figure 2, 2 is 1 gura 1. , is an optical system for producing l-IP. The optical system 2 includes, for example, a sea 11 light source 3 that generates an argon ion laser, a reference light optical system 4, an object light optical system 5, and beam splitters (or semitransparent mirrors) BS1 and BS2.

参照光光学系4は反射鏡M1、顕微鏡対物レンスへ40
1、ビンホールP1を備えている9、物体光光学系5は
反射鏡M2、顕微鏡対物レンズMO2、ピンホールP2
を備えている。
The reference light optical system 4 includes a reflecting mirror M1 and a microscope objective lens 40.
1. The object light optical system 5 is equipped with a pinhole P1. 9. The object light optical system 5 includes a reflecting mirror M2, a microscope objective lens MO2, and a pinhole P2.
It is equipped with

ボログラムI−IPを作製する場合にはレーザ光源3か
らのレーザ光をビームスプリッタBS1で2光束に分割
し、一方の光束を参照光光学系4に入れ、反!l)I鏡
M1で光路変更したの15顕微鏡=iJ物レンズMo1
、ピンホールP1によって発散球面波の参照光を生成覆
る。他方の光束はさらにビームスプリッタBS2で分割
して物体光光学系5に入れ、反射鏡M2で光路変更して
のち、顕微鏡対物レンズMO2、ピンホールP2によっ
て発散球面波の物体光を生成させる。この物体光を前記
の参照光を用いてボログラムI−IPの位置にある写真
乾板に露光記録し、かつ写真処理してホログラム1−I
Pが完成し、もとの位置にセラl−される。
When producing a bologram I-IP, the laser beam from the laser light source 3 is split into two beams by the beam splitter BS1, one beam is input into the reference beam optical system 4, and the laser beam is split into two beams by the beam splitter BS1. l) 15 microscope with optical path changed by I mirror M1 = iJ object lens Mo1
, a reference beam of a diverging spherical wave is generated by the pinhole P1. The other beam is further split by a beam splitter BS2 and input into an object beam optical system 5, and after changing the optical path by a reflecting mirror M2, a diverging spherical wave object beam is generated by a microscope objective lens MO2 and a pinhole P2. This object light is exposed and recorded on a photographic plate at the position of the bologram I-IP using the reference light, and is photographically processed to produce a hologram 1-I.
P is completed and soldered to the original position.

第1図に示す干渉計1は第2図に示(光学系2からビー
ムスプリッタBS2をとり除き、かつ照明光光学系6を
イ」加し、かつ被検平面鏡面MMのセラ1〜位置を設定
したものである。
The interferometer 1 shown in FIG. 1 is shown in FIG. This is the setting.

照明光光学系6ば反射鏡M3、顕微鏡対物レンズN4o
3、ビンボールP3からなり、物体光光学系5と同価に
構成されていて発散球面波の照明光を生成する。かつ、
照明光光学系6はそれから発生する照明光が被検平面鏡
面MMに関して物体光を線対称をなすように配置され、
したがって被検平面鏡面MMが存在しないと仮定した場
合の物体光がホログラl\HPに達する光路と、照明光
が被検平面鏡面MMで反射したのちホログラムHPに達
する光路とが一致する。このような被検平面鏡面MMの
セット位置を決定するためには、第2図に示すように、
物体光光学系5と照明光光学系6との間にビームスプリ
ッタBS3を挿入し、物体光と照明光が共にホログラム
1−(Pに入射するように構成し、物体光と照明光がボ
ログラムHP上で一致して物体光と照明光との干渉縞が
生じない位置を探せばよい。
Illumination light optical system 6, reflecting mirror M3, microscope objective lens N4o
3. It consists of a bottle ball P3, has the same structure as the object light optical system 5, and generates a diverging spherical wave illumination light. and,
The illumination light optical system 6 is arranged so that the illumination light generated therefrom has line symmetry with respect to the object light with respect to the plane mirror surface MM to be inspected,
Therefore, the optical path of the object light reaching the hologram l\HP when it is assumed that the flat mirror surface MM to be tested does not exist matches the optical path of the illumination light reaching the hologram HP after being reflected by the flat mirror surface MM to be tested. In order to determine the set position of the flat mirror surface MM to be tested, as shown in FIG.
A beam splitter BS3 is inserted between the object light optical system 5 and the illumination light optical system 6, so that the object light and the illumination light both enter the hologram 1-(P, and the object light and the illumination light enter the hologram HP). What is necessary is to search for a position where the object light and the illumination light coincide and no interference fringes occur.

[作用] この第1図に示ず如ぎホログラム干渉計1において、被
検平面鏡面MMの表面形状を測定するには、レーザ光源
3からの平行光をビームスプリッタBS1で分割し、一
方の光束を参照光光学系4に導いて発散球面波の参照光
を生成ざ往てホログラムHPに入射し、ホログラムHP
に記録しである物体光を再生させる。かつ他方の光束を
照明光光学系6に導いて発散球面波の照明光を生成させ
て、被検平面鏡面MMで反則さぜたのちホログラムHP
に入射する。
[Operation] In order to measure the surface shape of the flat mirror surface MM to be measured in the hologram interferometer 1 as shown in FIG. 1, parallel light from the laser light source 3 is split by the beam splitter BS1, and one beam is guided to the reference beam optical system 4 to generate a reference beam in the form of a divergent spherical wave, which is incident on the hologram HP.
Record the object beam and reproduce it. Then, the other light beam is guided to the illumination light optical system 6 to generate a diverging spherical wave illumination light, and after being mixed with the flat mirror surface MM to be tested, a hologram HP is generated.
incident on .

埼 照明光は被検平面鏡面MMの鏡面の凹凸の影響を受
けて標準となる物体光からずれているので、再生物体光
と照明光とで第3図に示すような干渉縞が生じる。
Sai: Since the illumination light is influenced by the unevenness of the mirror surface of the flat mirror surface MM to be tested and deviates from the standard object light, interference fringes as shown in FIG. 3 are generated between the reproduced object light and the illumination light.

この干渉縞における干渉縞ピッチDどずれ(fld 。The interference fringe pitch D deviation (fld) in this interference fringe.

被検面の形状誤差△hの間には、λを波長としてΔh−
(d/D)・(λ/2) の関係があるから、干渉縞ピッチDとずれff1dから
形状誤差△1)をめ、被検平面鏡面MMの表面形状を測
定することができる。
The shape error △h of the surface to be inspected is Δh−, where λ is the wavelength.
Since the relationship is (d/D)·(λ/2), the surface shape of the flat mirror surface MM to be tested can be measured by determining the shape error Δ1) from the interference fringe pitch D and the deviation ff1d.

(ハ)発明の効果 このように、この発明のホログラム干渉計によれば、ホ
ログラムHPだりは被検平面鏡面の大きさとほぼ同じ大
きさのものを準備する必要がある【プれども、その他の
レンズ、半透鏡は従来の小1]径のものをそのまま使用
することができ、また、標準となる鏡面を必要とせず、
製作が容易で、かつ安価にJることができる。しかも、
被検平面鏡面とほぼ同じ大きさのホログラムはそれほど
高価ではないから、これを使用しても干渉訓令体の価格
を大幅に高価にすることはない。
(c) Effects of the invention As described above, according to the hologram interferometer of the present invention, it is necessary to prepare a hologram HP that is approximately the same size as the flat mirror surface to be tested. The conventional small 1] diameter lenses and semi-transparent mirrors can be used as they are, and there is no need for a standard mirror surface.
It is easy to manufacture and can be manufactured at low cost. Moreover,
Since a hologram that is approximately the same size as the plane mirror surface to be tested is not very expensive, its use will not significantly increase the price of the interference training body.

また、被検鏡面の全体を分割覆ることなく一度第2図 ′M3B32 BSIIn addition, without dividing and covering the entire mirror surface to be inspected, it is possible to 'M3B32 BSI

Claims (1)

【特許請求の範囲】[Claims] レーザ光源と、発散球面波の参照光を生成させる参照光
光学系と、発散球面波の物体光を前記参照先により記録
したホログラムと、前記物体光を生成させる物体光光学
系と等価で発散球面波の照明光を生成さける照明光光学
系を備え、前記物体光と前記照明光とが線対称をなす位
置に被検平面鏡面の配設位置を定めて前記照明光が前記
被検平面鏡で反射したのち前記ホログラムを照明するよ
うに構成し、前記参照光を前記ホログラムに照明して再
生される再生物体光と前記ホログラムに照明した前記照
明光との干渉縞を観測するように構成したことを特徴と
する大口径平面鏡の表面形状測定用ホログラム干渉計
A laser light source, a reference beam optical system that generates a reference beam of a diverging spherical wave, a hologram in which an object beam of a diverging spherical wave is recorded by the reference destination, and a divergent spherical surface equivalent to the object beam optical system that generates the object beam. an illumination light optical system that avoids generating wave illumination light; a test plane mirror surface is arranged at a position where the object light and the illumination light are symmetrical; and the illumination light is reflected by the test plane mirror. After that, the hologram is illuminated, and the reference light is illuminated on the hologram to observe interference fringes between the reproduced object light and the illumination light illuminated on the hologram. Hologram interferometer for measuring the surface shape of large-diameter plane mirrors
JP9931484A 1984-05-17 1984-05-17 Hologram interferometer for measuring surface shape of large-aperture plane mirror Granted JPS60242304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9931484A JPS60242304A (en) 1984-05-17 1984-05-17 Hologram interferometer for measuring surface shape of large-aperture plane mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9931484A JPS60242304A (en) 1984-05-17 1984-05-17 Hologram interferometer for measuring surface shape of large-aperture plane mirror

Publications (2)

Publication Number Publication Date
JPS60242304A true JPS60242304A (en) 1985-12-02
JPH0223802B2 JPH0223802B2 (en) 1990-05-25

Family

ID=14244175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9931484A Granted JPS60242304A (en) 1984-05-17 1984-05-17 Hologram interferometer for measuring surface shape of large-aperture plane mirror

Country Status (1)

Country Link
JP (1) JPS60242304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300312A (en) * 2015-11-30 2016-02-03 北京航空航天大学 High-numerical-aperture hemispherical detection system based on digital holography
CN106123793A (en) * 2016-06-29 2016-11-16 北京航天控制仪器研究所 A kind of portable optical interferometric method sphere diameter sphericity fast detector
CN112525071A (en) * 2020-11-27 2021-03-19 南京理工大学 Method for inhibiting non-uniformity influence of optical material in large-aperture interferometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300312A (en) * 2015-11-30 2016-02-03 北京航空航天大学 High-numerical-aperture hemispherical detection system based on digital holography
CN106123793A (en) * 2016-06-29 2016-11-16 北京航天控制仪器研究所 A kind of portable optical interferometric method sphere diameter sphericity fast detector
CN112525071A (en) * 2020-11-27 2021-03-19 南京理工大学 Method for inhibiting non-uniformity influence of optical material in large-aperture interferometer

Also Published As

Publication number Publication date
JPH0223802B2 (en) 1990-05-25

Similar Documents

Publication Publication Date Title
JPH0324432A (en) Optical instrument for phase detection inspection of optical system, particularly spectacle lens
JP6042586B2 (en) High numerical aperture phase-shifting dual pinhole diffraction interferometer and its test method
JPS60242304A (en) Hologram interferometer for measuring surface shape of large-aperture plane mirror
JPH0250411B2 (en)
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
US3833301A (en) Testing of spherical surfaces by holographic interference
JPH0552881B2 (en)
JPS6211106A (en) Film thickness measurement by interference method
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
JPH03156305A (en) Aspherical-shape measuring apparatus
Simon et al. The Mach-Zehnder interferometer: examination of a volume by non-classical localization plane shifting
JPS629203A (en) Hologram interferometer for measuring surface shape of elliptic surface mirror
JPS598762B2 (en) How to use the information
JP2003021577A (en) Method and apparatus for measuring refractive-index distribution
JPH0814854A (en) Flat plate with computer hologram and measurement using the plate
JPH07318307A (en) Interferometer for measuring conical shape
JPH0439886B2 (en)
JPH11325848A (en) Aspherical surface shape measurement device
JPS62289704A (en) Step measuring instrument by shearing interference contrast method
JPS6382307A (en) Film thickness measuring apparatus using beam scanning type interference method
JPH0140285B2 (en)
JPH04109136A (en) Refraction factor distribution measuring device
JPS6067834A (en) Hologram shearing interferometer for measuring lateral abberation of lens
JPS60190805A (en) Hologram interferometer
JPH1082615A (en) Microscopic step-measuring apparatus of shearing interference contrast method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term