JPH01142118A - Improving work of low-strength regulating ground - Google Patents
Improving work of low-strength regulating groundInfo
- Publication number
- JPH01142118A JPH01142118A JP29619687A JP29619687A JPH01142118A JP H01142118 A JPH01142118 A JP H01142118A JP 29619687 A JP29619687 A JP 29619687A JP 29619687 A JP29619687 A JP 29619687A JP H01142118 A JPH01142118 A JP H01142118A
- Authority
- JP
- Japan
- Prior art keywords
- ground
- strength
- stabilizer
- improved
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001105 regulatory effect Effects 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 37
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims abstract description 18
- 239000003381 stabilizer Substances 0.000 claims abstract description 18
- 238000003756 stirring Methods 0.000 claims abstract description 16
- 239000002689 soil Substances 0.000 claims abstract description 15
- 229910000019 calcium carbonate Inorganic materials 0.000 claims abstract description 9
- 239000011398 Portland cement Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 230000000087 stabilizing effect Effects 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims description 2
- 238000009412 basement excavation Methods 0.000 abstract description 14
- 238000002347 injection Methods 0.000 description 12
- 239000007924 injection Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 6
- 239000004568 cement Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 238000013019 agitation Methods 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、低強度調整地盤改良工法に関し、特に、改
良された地盤が掘削などに適した低強度地盤となる地盤
改良工法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low-strength adjustment ground improvement method, and particularly to a ground improvement method in which the improved ground becomes a low-strength ground suitable for excavation, etc.
(従来の技術)
周知のように、軟弱地盤の改良工法として、深層混合工
法やプレミキシング工法等が良く知られている。(Prior Art) As is well known, deep mixing methods, pre-mixing methods, etc. are well known as methods for improving soft ground.
この種の地盤改良工法では、例えば、セメント系の安定
材と改良対象とする地盤土砂とを混合撹拌し、地盤の強
度を改良する。In this type of ground improvement method, for example, a cement-based stabilizer and ground soil to be improved are mixed and stirred to improve the strength of the ground.
ところで、近時、土留め掘削のための地盤やケーソンを
地盤中に沈設する場合のケーソン刃口下地盤や、シール
ド掘進機の発進立坑の近傍地盤、および連続地中壁用の
溝孔を掘削する際の地盤等で、掘削を容易にしたりケー
ソンの不動沈下を防止したり、シールド掘進機を安全に
発進させるためや、溝孔の孔壁の崩壊を防止することを
目的として、これらの地盤を改良することがある。By the way, recently, excavation of the ground for earth retaining excavation, the ground below the caisson tip when the caisson is sunk into the ground, the ground near the starting shaft of a shield excavator, and the trench hole for a continuous underground wall has been excavated. These grounds are used to facilitate excavation, prevent caissons from settling, safely launch shield excavators, and prevent the walls of trenches from collapsing. may be improved.
このような目的で行われる地盤改良は、地盤の安定化だ
けでなく掘削が容易にできる程度の強度を有していなけ
ればならない。Ground improvement performed for such purposes must not only stabilize the ground, but also have sufficient strength to facilitate excavation.
この強度は一軸圧縮強度で5〜10 kg f / c
−程度が好ましいことが経験的に知られている。This strength is 5-10 kg f/c in unconfined compressive strength
It is empirically known that - degree is preferable.
そこで、従来は、このような場合−船釣には、安定材の
量を少量に押さえたり、あるいは水やベントナイトを添
加して強度を抑えていたが、このような方法には以下に
説明する問題があった。Therefore, in the past, in such cases - boat fishing, the strength was reduced by keeping the amount of stabilizer to a small amount, or by adding water or bentonite, but such methods are explained below. There was a problem.
(発明が解決しようとする問題点)
すなわち、上述した如き方法では、たとえ室内の配合試
験で所望の強度が得られる添加量が求められたとしても
、実際の現場でバラツキのない低強度の改良地盤を得る
ための添加量を決定することが難しく、適切な添加量の
範囲を逸脱して改良地盤の強度発現が極端に小さくなっ
たり、逆に長期強度が大きくなり過ぎたりして、改良地
盤の品質が大きくバラツクという問題があった。(Problems to be Solved by the Invention) In other words, in the method described above, even if the amount added to obtain the desired strength is determined in an indoor mixing test, it is difficult to improve the low strength without variation in the actual field. It is difficult to determine the amount of addition needed to obtain the soil, and if the amount of addition is outside the appropriate range, the strength of the improved soil may become extremely low, or conversely, the long-term strength may become too high, resulting in the improvement of the soil. There was a problem that the quality of the products varied widely.
この発明は、このような従来の問題点に鑑みてなされた
ものであって、その目的とするところは、長期間安定な
低強度発現改良地盤が現場において、従来の高強度改良
施工方法と同じ施工方法で簡単に管理できる低強度調整
地盤改良工法を提供することにある。This invention was made in view of these conventional problems, and its purpose is to provide long-term stable, low-strength improved soil in the field, in the same manner as the conventional high-strength improvement construction method. The purpose is to provide a low-strength adjustment ground improvement method that can be easily managed by construction method.
(問題点を解決するための手段)
上記目的を達成するために、この発明は、地盤土砂と安
定材とを混合撹拌して改良地盤を造成する地盤改良工法
において、前記安定材に普通ポルトランドセメントと炭
酸カルシウムとの混合物を用いることを特徴とする
特に、地盤改良の後に掘削が予定されている例えば、土
止め掘削地盤、ケーソン刃口下地盤、シールド発進立坑
近傍地盤、連続地中壁用掘削地盤などに上記炭酸カルシ
ウムを上記普通ポルトランドセメントに対して添加すれ
ば、掘削に適した安定な地盤が長期間に亘って維持でき
る。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a ground improvement method for preparing improved ground by mixing and stirring ground soil and a stabilizing material, in which the stabilizing material is made of ordinary Portland cement. In particular, excavation is planned after ground improvement, such as earthwork excavation ground, ground under the mouth of a caisson, ground near a shield starting shaft, and continuous underground wall excavation. By adding the calcium carbonate to the ordinary Portland cement to the ground, stable ground suitable for excavation can be maintained for a long period of time.
この種の改良地盤に適用する際の実用的な配合としては
、例えば、深層攪拌混合工法においては、水セメント比
が0.6〜1.5、注入率が地盤土砂の単位体積に対し
て15〜30%の範囲に設定することが望ましい。Practical formulations when applied to this type of improved ground include, for example, in the deep agitation mixing method, the water-cement ratio is 0.6 to 1.5, and the injection rate is 15 to 1.5 per unit volume of ground soil. It is desirable to set it in the range of ~30%.
この場合、水セメント比が1.5以上になると含水比の
高い高圧縮性の品質となり、また、注入率が15%以下
になると、改良地盤の品質にバラツキが生じ易くなる。In this case, when the water-cement ratio is 1.5 or more, the quality of the improved soil is high and compressible, and when the injection rate is 15% or less, the quality of the improved ground tends to vary.
逆に水セメント比が0.6以下、注入率が30%以上に
なると、改良地盤の強度が10kgf/cj以上になっ
たり、バラツキが大きくなって掘削が困難になる。On the other hand, if the water-cement ratio is less than 0.6 and the injection rate is more than 30%, the strength of the improved ground will be more than 10 kgf/cj, or variations will become large, making excavation difficult.
(実施例)
以下、この発明の作用効果を確認するために行った実験
例について説明する。(Example) Hereinafter, an experimental example conducted to confirm the effects of the present invention will be described.
第1図は、本実験に使用した実験装置の説明図であって
、この実験では深層攪拌混合工法を想定して行った。FIG. 1 is an explanatory diagram of the experimental equipment used in this experiment, and the experiment was conducted assuming a deep stirring mixing method.
実験装置は、上端が開6した容器10を準備し、この容
器10内に改良すべき地盤土砂12を収容し、一対の板
状の撹拌翼14.14を所定の間隔を置いて配置し、か
つ、これらの撹拌翼14間に楕円撹拌翼16を配置した
中空バイブ状の撹拌軸18を連結材17で結合した2軸
式の撹拌装置を使用し、撹拌軸18.18の間隔を26
0市に設定し、各撹拌装置で地盤改良する範囲は320
m+sとして相互に一部同士がオーバラップするよう
に設定した。The experimental device prepares a container 10 with an open top 6, stores ground soil 12 to be improved in this container 10, and arranges a pair of plate-shaped stirring blades 14, 14 at a predetermined interval. In addition, a two-shaft type stirring device is used in which a hollow vibration-shaped stirring shaft 18 with an elliptical stirring blade 16 arranged between these stirring blades 14 is connected with a connecting member 17, and the interval between the stirring shafts 18.18 is set to 26.
The area to be improved by each stirring device is 320.
They were set so that they partially overlapped each other as m+s.
地盤土砂12への安定材の供給は、上記撹拌軸の楕円撹
拌翼16が固着された部分のほぼ中心位置に貫通孔19
を穿設して行った。The stabilizing material is supplied to the ground soil 12 through a through hole 19 located approximately in the center of the portion of the stirring shaft to which the elliptical stirring blade 16 is fixed.
was drilled.
第2図は、上記構成の2軸式の撹拌装置で地盤改良した
ときに、形成される固結体20の断面積を示しており、
実験例では各撹拌軸18の中心位置とその外周部分の合
計5a1所■〜■のサンプリングを行い、それぞれの深
度方向での一軸圧縮強度を測定した。FIG. 2 shows the cross-sectional area of the solidified body 20 formed when the ground is improved using the two-shaft stirring device configured as described above.
In the experimental example, sampling was performed at a total of 5a1 locations (■ to ■) at the center position of each stirring shaft 18 and its outer circumference, and the uniaxial compressive strength in the depth direction of each was measured.
第3図およq第4図は測定した各サンプル■〜■の圧縮
強度をグラフ表示したものである。Figures 3 and 4 are graphical representations of the compressive strengths of the measured samples ① to ②.
なお、同図に示°す一軸圧縮強度はすべて材令14日後
の値である。Note that all the unconfined compressive strengths shown in the figure are values after 14 days of age.
第3図(a)は、本発明方法を適用したものであって、
同図の安定材の欄に表示しているA、 B種は、安定
材として普通ポルトランドセメントと炭酸カルシウムと
の混合物を使用し、A種ではこれらを50 : 50の
配合比とし、B種では70:30の配合比としたもので
、これらの混合物をスラリー化する際の水/A、B比は
それぞれ1とした。FIG. 3(a) is a diagram to which the method of the present invention is applied,
Types A and B shown in the stabilizer column in the same figure use a mixture of ordinary Portland cement and calcium carbonate as the stabilizer, with type A having a mixture ratio of 50:50, and type B using a mixture of ordinary Portland cement and calcium carbonate. The mixing ratio was 70:30, and the water/A and B ratios were each 1 when slurrying these mixtures.
また、地盤土砂12への安定材の注入率は、それぞれ2
0%と30%の21W類とした。In addition, the injection rate of stabilizer into the ground soil 12 is 2, respectively.
0% and 30% 21W class.
第4図(b)は、本発明方法との比較のために行った従
来方法による地盤改良での固結体20の圧縮強度を測定
した結果を示しており、この従来方法では上記と同じ実
験装置を使用し、サンプリング位置も上記と同じ位置と
し、同様に5個所■′〜■′で行った。FIG. 4(b) shows the results of measuring the compressive strength of the consolidated body 20 in ground improvement using the conventional method, which was conducted for comparison with the method of the present invention. Using the same equipment and the same sampling positions as above, sampling was carried out at five locations ■' to ■'.
安定材としては、普通ポルトランドセメントだけを使用
し、水/セメント比は1とし、注入率は7%、10%、
15%、20%、30%の5種類とした。As a stabilizer, only ordinary Portland cement was used, the water/cement ratio was 1, and the injection rate was 7%, 10%,
There were five types: 15%, 20%, and 30%.
第3図(a)および第4図(a)を見ると明らかなよう
に、安定材の注入率を下げると固結体20の強度が低下
し、逆に注入率を上げると強度が上昇している。As is clear from FIGS. 3(a) and 4(a), lowering the injection rate of the stabilizer reduces the strength of the solid body 20, and conversely, increasing the injection rate increases the strength. ing.
また、撹拌軸18の中心部と外周部とを比較すると、全
体的に外周部が中心部よりも小さくなっていることが認
められるものの、その差は発現強度の大きさが異なって
くるので、絶対値での比較が難しい。Furthermore, when comparing the center and outer circumference of the stirring shaft 18, it is recognized that the outer circumference is generally smaller than the center, but the difference is due to the difference in the magnitude of the developed strength. Difficult to compare absolute values.
そこで、その差を明確にするために、各注入率において
、中心部の強度と外周部の強度の比率を求めた。Therefore, in order to clarify the difference, the ratio between the strength at the center and the strength at the outer periphery was determined at each injection rate.
第3図(b)、第4図(b)はこれを示している。FIG. 3(b) and FIG. 4(b) show this.
この図の結果から明らかなように、第4図(b)に示し
た従来方法では、注入率を小さくすると改良強度は小さ
くなるが、固結体20の中心部と外周部との強度比のバ
ラ′ツキが大きくなる。As is clear from the results in this figure, in the conventional method shown in FIG. 4(b), the improved strength decreases as the injection rate decreases, but the strength ratio between the center and outer periphery of the solid body 20 decreases. The variation becomes larger.
また、逆に、注入率を大きくすると、強度比のバラツキ
は小さくなるものの改良強度が大きくなり過ぎ、事後の
掘削に適さないものとなる。Conversely, if the injection rate is increased, the variation in strength ratio will be reduced, but the improved strength will become too large, making it unsuitable for subsequent excavation.
これに対し、炭酸カルシウムを安定材に混合した本発明
方法では、注入率が20〜30%の範囲で強度比のバラ
ツキが小さく、しかも、従来方法のように強度が大きく
なり過ぎることもない。On the other hand, in the method of the present invention in which calcium carbonate is mixed as a stabilizer, the variation in strength ratio is small when the injection rate is in the range of 20 to 30%, and the strength does not become too large as in the conventional method.
第6図は、この発明方法が実際に適用できる各種の工事
を例示したものであって、同図(a)は゛上止め30を
構築して、その内部を掘削する際に、土止め30の安定
を確保するために、土止め30内の掘削地盤を深層混合
工法であらかじめ低強度となるように地盤改良する方法
である。FIG. 6 shows examples of various types of construction work to which the method of the present invention can actually be applied. In order to ensure stability, this is a method in which the excavated ground within the shoring 30 is improved in advance so that it has low strength using a deep mixing method.
また、同図(b)は、ケーソン32の刃口下地盤を本発
明方法で低強度に改良する工法、同図(c)はシールド
掘進機34の発進立坑36で、シールド掘進機34が発
進する部分を地盤改良する場合に適用したものを示して
いる。In addition, the same figure (b) shows a method of improving the ground under the cutting edge of the caisson 32 to have low strength by the method of the present invention, and the same figure (c) shows the starting shaft 36 of the shield excavator 34, and the shield excavator 34 is started. This shows what is applied when improving the ground in areas where
さらに、第6図(d)は、連続地中壁工法で崩壊性の地
盤を掘削して溝孔38を形成する際に、掘削前に本発明
方法で掘削地盤を改良する方法を示している。Furthermore, FIG. 6(d) shows a method of improving the excavated ground using the method of the present invention before excavation when forming a trench hole 38 by excavating collapsible ground using the continuous underground wall construction method. .
さらにまた、第6図(e)は、上記した適用例が本発明
を深ノー混合工法に用いた方法であるのに対し、この例
では本発明をプレミキシング工法に採用しており、同図
はシールド掘進機の発進に用いる場合であるが、発進立
坑36から海底地盤40に向けて掘進機を斜めに発進さ
せるため、発進立坑36の近傍の海底地盤40上に、予
め土砂と炭酸カルシウムを含む安定材とを混合した盛土
材42を作製し、これを地盤40上に投入する方法であ
る。Furthermore, FIG. 6(e) shows that, while the application example described above is a method in which the present invention is applied to a deep no-mixing method, in this example, the present invention is applied to a pre-mixing method; is used to launch a shield tunneling machine, but in order to launch the tunneling machine diagonally from the starting shaft 36 toward the submarine ground 40, earth and sand and calcium carbonate are placed in advance on the submarine ground 40 near the starting shaft 36. This is a method in which an embankment material 42 is prepared by mixing a stabilizer and a stabilizer, and this is placed on the ground 40.
なお、第6図(e)に示した方法では、安定材に分離低
減用の粘結材を添加しても良い。In addition, in the method shown in FIG. 6(e), a caking agent for reducing separation may be added to the stabilizer.
また、上記実施例では安定材をスラリー化して用いる場
合を例示したが、例えばプレミキシング工法では粉体で
も使用できる。Further, in the above embodiments, the stabilizer is used in the form of a slurry, but for example, in the premixing method, a powder can also be used.
(発明の効果)
以上詳細に説明したように、この発明にかかる低強度調
整地盤改良工法では、改良すべき地盤に炭酸カルシウム
を含む安定材を用いるので、掘削に適した低強度の改良
地盤が、強度のバラツキが少なく安定した状態で得られ
る。(Effects of the Invention) As explained in detail above, in the low-strength adjustment ground improvement method according to the present invention, a stabilizing material containing calcium carbonate is used for the ground to be improved, so that the low-strength improved ground suitable for excavation is created. , it can be obtained in a stable state with little variation in strength.
また、このような均質な強度を有する改良地盤は、従来
の工法に変更を来たすことなく得られる。In addition, improved ground having such homogeneous strength can be obtained without making any changes to conventional construction methods.
第1図は本発明方法の効果を確認するために行った実験
装置の説明図、第2図は同実験装置で得られる固結体の
説明図、第3図は本発明方法の実験で得られた固結体の
圧縮強度の測定結果を示す図と、同測定結果の中心部と
外周部との強度比率を示す図、第4図は従来方法の実験
で得られた固結体の圧縮強度の測定結果を示す図と、同
測定結果の中心部と外周部との強度比率を示す図、第5
図(a)〜(e)は本発明方法が適用できる工法の例を
示す説明図である。
特許出願人 株式会社 大 林 組代 理
人 弁理士 −色健輔同
同 松本雅利第1図
第3図(b)
t<4 JL’P−’< 114HA@n14崎LQ強
に比”’A、、。
($uc:中ICU強度、3up:円mW強度)+
注入!Ji孤=20@/@
O−a 會 眞=204
鴫+−ラ m=30z
シー(・ 義=304
第4図(b)
0−−−0 速入fべ=7%
ローーーロ ・ べ=10%
Δ−−Δ ・ d=15%
◇−−−〇 ・ べ=20%
☆−−−☆ ・ 区=304
(C)
5図
(b)
(d)Figure 1 is an explanatory diagram of the experimental equipment used to confirm the effects of the method of the present invention, Figure 2 is an explanatory diagram of the solids obtained with the same experimental equipment, and Figure 3 is an explanatory diagram of the solids obtained in the experiment of the method of the present invention. Figure 4 shows the measurement results of the compressive strength of the solidified body obtained through experiments using the conventional method. A diagram showing the strength measurement results and a diagram showing the strength ratio between the center and the outer periphery of the same measurement results, 5th
Figures (a) to (e) are explanatory diagrams showing examples of construction methods to which the method of the present invention can be applied. Patent applicant Obayashi Co., Ltd. Agent
Person Patent Attorney - Kensuke Shiro
Same as Masatoshi Matsumoto Figure 1 Figure 3 (b) t<4 JL'P-'< 114HA@n14SakiLQ strong "'A,... ($uc: medium ICU strength, 3up: circle mW strength) +
injection! Ji = 20 @ / @ O-a Kai Shin = 204 Shi + - La m = 30z Sea (・ い = 304 Figure 4 (b) 0 - - - 0 Quick entry fbe = 7% Rollo - Be = 10 % Δ−−Δ ・ d=15% ◇−−−〇 ・ Be=20% ☆−−−☆ ・ Ward=304 (C) Figure 5 (b) (d)
Claims (4)
成する地盤改良工法において、前記安定材に普通ポルト
ランドセメントと炭酸カルシウムとの混合物を用いるこ
とを特徴とする低強度調整地盤改良工法。(1) A ground improvement method for preparing improved ground by mixing and stirring ground soil and a stabilizing material, characterized in that a mixture of ordinary Portland cement and calcium carbonate is used as the stabilizing material. .
、上記地盤土砂に対して体積比で15〜30%の範囲で
添加されることを特徴とする特許請求の範囲第1項記載
の低強度調整地盤改良工法。(2) The stabilizer according to claim 1, wherein the stabilizer is made of slurry or powder and is added in a volume ratio of 15 to 30% to the ground soil. Strength adjustment ground improvement method.
とを特徴とする特許請求の範囲第1項または第2項に記
載の低強度調整地盤改良工法。(3) The low strength adjustment ground improvement method according to claim 1 or 2, wherein the stabilizer is directly injected into the improved ground.
かる後に埋戻されることを特徴とする特許請求の範囲第
1項または第2項に記載の低強度調整地盤改良工法。(4) The low-strength adjustment ground improvement method according to claim 1 or 2, wherein the stabilizer is mixed with the improved ground in advance and then backfilled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62296196A JPH079092B2 (en) | 1987-11-26 | 1987-11-26 | Low strength adjustment ground improvement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62296196A JPH079092B2 (en) | 1987-11-26 | 1987-11-26 | Low strength adjustment ground improvement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01142118A true JPH01142118A (en) | 1989-06-05 |
JPH079092B2 JPH079092B2 (en) | 1995-02-01 |
Family
ID=17830419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62296196A Expired - Fee Related JPH079092B2 (en) | 1987-11-26 | 1987-11-26 | Low strength adjustment ground improvement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH079092B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001140282A (en) * | 1999-08-31 | 2001-05-22 | Kobe Steel Ltd | Stabilized soil and method for producing the same |
JP2006336220A (en) * | 2005-05-31 | 2006-12-14 | Shimizu Corp | Soil improvement method |
JP2008231810A (en) * | 2007-03-22 | 2008-10-02 | Ps Mitsubishi Construction Co Ltd | Underground structure construction method |
JP2008308887A (en) * | 2007-06-14 | 2008-12-25 | Sumitomo Forestry Co Ltd | Method of constructing columnar improved body in ground |
JP2017014780A (en) * | 2015-06-30 | 2017-01-19 | 三菱マテリアル株式会社 | Ground improvement method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56118477A (en) * | 1980-02-23 | 1981-09-17 | Tokyu Constr Co Ltd | Stabilization treatment for soft ground |
JPS57100180A (en) * | 1980-12-15 | 1982-06-22 | Asahi Chem Ind Co Ltd | Constructing method for forming cured article in ground |
JPS57108328A (en) * | 1980-12-26 | 1982-07-06 | Morio Yashiki | Formation of basement |
JPS57172027A (en) * | 1981-04-15 | 1982-10-22 | Fudo Constr Co Ltd | Improvement work for soft ground |
-
1987
- 1987-11-26 JP JP62296196A patent/JPH079092B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56118477A (en) * | 1980-02-23 | 1981-09-17 | Tokyu Constr Co Ltd | Stabilization treatment for soft ground |
JPS57100180A (en) * | 1980-12-15 | 1982-06-22 | Asahi Chem Ind Co Ltd | Constructing method for forming cured article in ground |
JPS57108328A (en) * | 1980-12-26 | 1982-07-06 | Morio Yashiki | Formation of basement |
JPS57172027A (en) * | 1981-04-15 | 1982-10-22 | Fudo Constr Co Ltd | Improvement work for soft ground |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001140282A (en) * | 1999-08-31 | 2001-05-22 | Kobe Steel Ltd | Stabilized soil and method for producing the same |
JP2006336220A (en) * | 2005-05-31 | 2006-12-14 | Shimizu Corp | Soil improvement method |
JP2008231810A (en) * | 2007-03-22 | 2008-10-02 | Ps Mitsubishi Construction Co Ltd | Underground structure construction method |
JP2008308887A (en) * | 2007-06-14 | 2008-12-25 | Sumitomo Forestry Co Ltd | Method of constructing columnar improved body in ground |
JP2017014780A (en) * | 2015-06-30 | 2017-01-19 | 三菱マテリアル株式会社 | Ground improvement method |
Also Published As
Publication number | Publication date |
---|---|
JPH079092B2 (en) | 1995-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01142118A (en) | Improving work of low-strength regulating ground | |
JP6831211B2 (en) | Strength control method of backfill material and backfill method of ground | |
JPS5980814A (en) | Ground improvement work | |
JP2918323B2 (en) | Ground improvement method | |
JPS5536592A (en) | Construction method for cast-in-place differential- diameter pile | |
JPH01163309A (en) | Artificial light-weight soil | |
JP2575329B2 (en) | Tensile reinforcement | |
JPS5817849B2 (en) | Foundation pile construction method | |
JPS5847527B2 (en) | Anti-forming method using soil condensation | |
JPS6051220A (en) | Improvement work of ground | |
JPH07197450A (en) | Earth retaining wall in soft ground and soil improvement method by use thereof | |
JP3182674B2 (en) | Construction method of agitated mixing reinforcement | |
JP2789527B2 (en) | Construction method and apparatus of columnar consolidated body in ground improvement | |
JPS563714A (en) | Foundation pile constructing method | |
JPS62178620A (en) | Formation of improved angular ground | |
JPH08199567A (en) | Construction method of pile | |
JP2003277738A (en) | Pile periphery fixing liquid and embedding method of pile | |
JP6014288B1 (en) | Rotating method of steel pipe pile with tip wing | |
JP2802137B2 (en) | Pile expansion method and the equipment used in the method | |
JP2003003462A (en) | Soil stabilization method | |
JPH0673729A (en) | Execution method of built-in pile consolidating section | |
JP2001164550A (en) | Improvement method of construction ground for underground structure | |
JPS58204218A (en) | Burying work of pile | |
JPS6236983B2 (en) | ||
JPS6140919A (en) | Formation of pile solidified on site |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |