JPH01142008A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH01142008A
JPH01142008A JP30028587A JP30028587A JPH01142008A JP H01142008 A JPH01142008 A JP H01142008A JP 30028587 A JP30028587 A JP 30028587A JP 30028587 A JP30028587 A JP 30028587A JP H01142008 A JPH01142008 A JP H01142008A
Authority
JP
Japan
Prior art keywords
furnace
gas
height
blast furnace
blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30028587A
Other languages
Japanese (ja)
Inventor
Masaaki Sakurai
桜井 雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30028587A priority Critical patent/JPH01142008A/en
Publication of JPH01142008A publication Critical patent/JPH01142008A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To stably control the molten iron temp. in a blast furnace with good responsiveness by analyzing plural gas samples in the vertical direction of the furnace to obtain the height of the melt zone of raw materials in the furnace, and controlling the furnace heat to adjust the melt zone height to a set level. CONSTITUTION:Plural gas sampling tubes 12 are fixed in the vertical direction of the wall 10 of the blast furnace, and the furnace gas is sampled through the sampling tube 16 and sent to an analyzer 18. The gas samples from respective stages are analyzed by gas chromatography, etc., to obtain the contents of CO, CO2, N2, etc. The reducing condition in the furnace is thereby obtained, the melt zone height and furnace condition are further obtained, and the conditions are outputted to the furnace heat controller 20 consisting of a programmable controller 20a and a furnace-top feeder 20b. As a result, the furnace heat is stably controlled that the melt zone height is adjusted to the set level, and the operation of furnace is stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶鉱炉及びシャフト炉等の高炉の操業を安定
に行うために炉内溶融帯の高さレベルを制御する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the height level of a molten zone in a blast furnace in order to stably operate a blast furnace such as a blast furnace and a shaft furnace.

〔従来技術〕[Prior art]

本出願人らは、高さ方向に配置した複数のガスサンプリ
ング装置と圧力検出装置の情報から高炉内の溶融帯の位
置や炉内圧力などを求める乙とにより炉内の操業状況を
検出する方法を与えた(特願昭62−040349号及
び特願昭62−040350号)。
The present applicants have proposed a method for detecting the operating status inside a blast furnace by determining the position of the molten zone in the blast furnace, the pressure inside the furnace, etc. from information from a plurality of gas sampling devices arranged in the height direction and a pressure detection device. (Japanese Patent Application No. 62-040349 and Japanese Patent Application No. 62-040350).

一方、高炉の炉熱を制御するための制御方法は、大きく
別けて2つある。
On the other hand, there are broadly two control methods for controlling the furnace heat of a blast furnace.

第1は、炉内の溶銑温度を測定し、数式モデルにより目
標溶銑温度との偏差を求め、それに基づきフィードバッ
ク制御をする方法である。
The first method is to measure the temperature of hot metal in the furnace, calculate the deviation from the target hot metal temperature using a mathematical model, and perform feedback control based on the deviation.

第2は、炉外に排出された溶銑中のケイ素濃度を測定し
、炉下部における定常モデルによりフィードバック制御
をする方法である。
The second method is to measure the silicon concentration in hot metal discharged outside the furnace and perform feedback control using a steady-state model in the lower part of the furnace.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、第1の方法では、炉内の溶銑温度を測定
した後に制御をするため、操作量に対する状態量の応答
遅れが大きく、さらに、高炉内では、常に何らかの外乱
が生じており、これらの外乱に対する応答も遅れ時間が
存在し、動的制御が困難である。
However, in the first method, the temperature of the hot metal in the furnace is measured and then controlled, so there is a large response delay of the state quantity to the manipulated variable.Furthermore, some kind of disturbance always occurs in the blast furnace, and these disturbances There is also a delay time in the response, making dynamic control difficult.

第2の方法では、第3図に示すごとく、ケイ素濃度と溶
銑温度とは相関関係があるものの、その傾向または絶対
値は必ずしも同一ではない。さらに、第4図に示すよう
に、炉内状況のいかんによってはケイ素濃度が高いにも
かかわらず、溶銑温度が低いということ(図中、矢印)
もあり、ケイ素濃度制御によってのみ、高炉の炉熱を制
御することは困難である。
In the second method, as shown in FIG. 3, although there is a correlation between silicon concentration and hot metal temperature, their trends or absolute values are not necessarily the same. Furthermore, as shown in Figure 4, depending on the situation inside the furnace, the hot metal temperature may be low despite the high silicon concentration (arrow in the figure).
Therefore, it is difficult to control the furnace heat of a blast furnace only by controlling the silicon concentration.

なお、第3図は、ある高炉でのケイ素濃度と溶銑温度と
の相関関係を示す線図てあり、図中Oは高炉内をクリー
ニングした週、×・Δはその前後の週を□示す。第4図
はある3つの高炉での溶銑成分と溶銑温度の推移を示す
線図であり、・・0・Δは各々の高炉の値を示す。
In addition, FIG. 3 is a diagram showing the correlation between silicon concentration and hot metal temperature in a certain blast furnace. In the diagram, O indicates the week in which the inside of the blast furnace was cleaned, and ×·Δ indicates the weeks before and after that. FIG. 4 is a diagram showing changes in hot metal components and hot metal temperature in three blast furnaces, where 0.Δ represents the value for each blast furnace.

従って、従来の第1、第2の方法では、安定な炉熱制御
が出来ないという問題点があった。
Therefore, the conventional first and second methods have the problem that stable furnace heat control is not possible.

本発明は、かかる問題点に鑑みてなされたもので、炉内
の溶銑温度を安定に制御できる方法を提供するものであ
る。
The present invention has been made in view of such problems, and provides a method for stably controlling the temperature of hot metal in a furnace.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にかかわる高炉操業法は、炉内還元状態を求める
高さ方向に配置した複数のガスサンプリング装置とサン
プリングされたガスの分析装置と炉熱制御装置を備え、
前記ガス分析装置によって炉内の原料の溶融帯高さと炉
内状況を求め、前記溶融帯高さが設定レベルとなるよう
に、前記炉熱制御装置を制御するものである。
The blast furnace operating method according to the present invention includes a plurality of gas sampling devices arranged in the height direction for determining the reduction state in the furnace, an analyzer for the sampled gas, and a furnace heat control device,
The height of the melting zone of the raw material in the furnace and the condition inside the furnace are determined by the gas analyzer, and the furnace heat control device is controlled so that the height of the melting zone is at a set level.

〔作用〕[Effect]

本発明においては、炉下部の熱的バランス及び溶銑、ス
ラグへの伝熱を支配している溶融帯の高さを検知し、そ
の高さレベルを保持制御することにより、溶銑温度を安
定に制御する。
In the present invention, the temperature of the molten metal is stably controlled by detecting the height of the molten zone that governs the thermal balance in the lower part of the furnace and the heat transfer to the hot metal and slag, and controlling the height level to maintain it. do.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を使って説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す構成図+あり、(1
0)は高炉の炉壁である。また、ガスの検出及び成分の
分析を行う構成要素のうち、(12)は炉体の高さ方向
に垂直に複数配饋薯れるとともに、炉壁(10)を貫通
して炉内に挿入するように設置されたガス採取管であり
、炉頂から20m付近は、−定値の変化率の大きな部分
であり、誤差の少ない検出を行う上で、密な情報が必要
であるために、間隔を狭めて設置されている。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and (1
0) is the furnace wall of the blast furnace. In addition, among the components for detecting gas and analyzing components, (12) are installed in multiple positions perpendicularly to the height direction of the furnace body, and are inserted into the furnace by penetrating the furnace wall (10). The area around 20m from the top of the furnace is where the rate of change in the constant value is large, and detailed information is required to perform detection with little error, so the interval is It is set narrowly.

また、最上段の採取管(12)は、炉頂の原料装入位置
直下の近傍に配置されている。これは、炉頂のガス成分
が、操業状況を把握するための各データの初期値を算出
するための計算上重要な情報となるからであり、仮に最
上段の採取管(12)が、炉頂の原料挿入位置から離れ
た位置に設置された場合には、炉頂のガス成分が採取管
(12)に至までに変化し、誤差が太き(なってしまう
ためである。
Further, the uppermost sampling pipe (12) is placed near the top of the furnace, directly below the raw material charging position. This is because the gas components at the top of the furnace are important information for calculating the initial values of each data to understand the operating status, and if the top sampling pipe (12) is This is because if it is installed at a position away from the raw material insertion position at the top, the gas components at the top of the furnace will change up to the sampling tube (12), resulting in a large error.

(12a)はガス採取管(12)に接続されたパージ用
窒素ガス供給管、(14)は窒素ガスの背圧を測定し、
その測定値に応じて電気信号を出力する圧力変換濶、(
1B)はガス採取管(12)に接続され、採取したガス
を後記分析装置(18)に供給するためのサンプリング
管である。(18)はフィルタボックスと粗ガス分析計
とを有するガスクロマトグラフィ等の分析装置である。
(12a) is a purge nitrogen gas supply pipe connected to the gas sampling pipe (12), (14) measures the back pressure of nitrogen gas,
A pressure converter that outputs an electrical signal according to the measured value (
1B) is a sampling tube connected to the gas sampling tube (12) and for supplying the sampled gas to the analyzer (18) described later. (18) is an analysis device such as a gas chromatography device having a filter box and a crude gas analyzer.

分析装置(18)の入力側はサンプリング管(IB)を
介してガス採取管(12)に接続され、出力側は後記炉
熱制御装置(20)に接続されている。
The input side of the analyzer (18) is connected to a gas sampling tube (12) via a sampling tube (IB), and the output side is connected to a furnace heat control device (20) described later.

□他方、操業管理を行う構成要素のうち、炉熱制御装置
(20)はプログラマブルコントローラ(20a)と炉
頂装入装置(20b)によって構成され、分析装置(1
8)及び後記出力装置(22)に接続されている。
□On the other hand, among the components that perform operational management, the furnace heat control device (20) is composed of a programmable controller (20a) and a furnace top charging device (20b), and an analyzer (1).
8) and an output device (22) described later.

(22)は炉熱制御装置(20)に接続されるとともに
、炉内状況の測定データを出力表示するCRT等の出力
装置である。
(22) is an output device, such as a CRT, which is connected to the furnace heat control device (20) and outputs and displays measured data on the inside of the furnace.

次に、上記のように構成された実施例の全体的な動作に
ついて説明する。
Next, the overall operation of the embodiment configured as described above will be explained.

まず、炉壁(10)の高さ方向に多段に設けるとともに
、炉内に挿入したガス採取管(12)により炉内のガス
を採取し、サンプリング管(16)によって分析装置(
18)に送給する。各段のガス採取管(12)には、窒
素ガス供給管(12a)及び圧力変換器(14)が各々
接続されており、窒素ガス供給管(12a)からN2ガ
スの背圧を測定して、その測定値に応じた信号をも分析
装置(18)に入力する。
First, the gas inside the furnace is sampled using gas sampling tubes (12) installed in multiple stages in the height direction of the furnace wall (10) and inserted into the furnace, and the gas inside the furnace is collected using the sampling tube (16).
18). A nitrogen gas supply pipe (12a) and a pressure transducer (14) are connected to the gas sampling pipe (12) at each stage, and the back pressure of N2 gas is measured from the nitrogen gas supply pipe (12a). , a signal corresponding to the measured value is also input to the analyzer (18).

第2図は、炉壁ストックライン図(A)と各サンゴリン
グ位置のある時間のガス反応率から求めた鉱石還元率分
布曲線図(B)である。図における還元率R6、ガス利
用率η。。は下記の様に求めた。
FIG. 2 is a furnace wall stock line diagram (A) and an ore reduction rate distribution curve diagram (B) obtained from the gas reaction rate at a certain time at each coral ring position. Reduction rate R6 and gas utilization rate η in the figure. . was determined as follows.

なお、以下の式中に示される記号は次のものを表してい
る。
Note that the symbols shown in the following formulas represent the following.

Wg:  ガス流量(NrrI″/m”m1n)■b:
送風量 (NI′11′7m′m1n)ΔO:酸素移動
量(kg / m’ m1n)ΔC:炭素移動量(kg
/、、’ m1n)CO:ガス中CO濃度 (%) CO□:ガス中CO2濃度(%) N2:ガス中N2濃度 (%) (添字) i : 1段目 、n :炉頂、1 :ボッシュ1n:
入側 、Out :出側 初めに、1段目のガス採取管(12)におけるある間隔
ΔZの酸素バランスΔO11炭素バランスΔCIを求め
ると次式のようになる。
Wg: Gas flow rate (NrrI″/m″m1n) ■b:
Air flow rate (NI'11'7m'm1n) ΔO: Oxygen transfer amount (kg / m' m1n) ΔC: Carbon transfer amount (kg
/,,' m1n) CO: CO concentration in gas (%) CO□: CO2 concentration in gas (%) N2: N2 concentration in gas (%) (Subscript) i: 1st stage, n: furnace top, 1: Bosch 1n:
Inlet side, Out: Outlet side At the beginning, the oxygen balance ΔO11 carbon balance ΔCI at a certain interval ΔZ in the first stage gas sampling pipe (12) is calculated as follows.

Δ Ol=        (Wg+”” (CO+O
u官+2CO2+Ou電)22.4 Wg+”(C(L”+2CO□ 、”)l  ・・■Δ
Cr−(Wg+°” (GO+””+CO2+””)2
2.4 Wg+”(CO+1″+ CO21′″)l  ■ここ
でWgt’はN2バランスより次式で表される。
ΔOl= (Wg+”” (CO+O
U official+2CO2+Ou electric)22.4 Wg+”(C(L”+2CO□,”)l ・・■Δ
Cr-(Wg+°” (GO+””+CO2+””)2
2.4 Wg+"(CO+1"+CO21'")l ■Here, Wgt' is expressed by the following formula based on the N2 balance.

Wgt’=0.79XVb/ N 2+’  −■ボッ
シュ−炉頂間では、■、■式は、 16X0.79 (COrl。”+2GO,Il”’)
Σ △O、/ V b −□ (□ i=1           22.4       
N2 ll。u′(C011n+2CO2□In) 一□)−■ N、、l11 12xo、79    (CO,lOu’十 CO□ 
 、ou會)Σ ΔG 、 / V b = −□ (
□i”1           22.4      
  N2  n。u’(CO+ ’ ” 十〇O21’
 ”)−□)−・■ N2 □1 の通りとなる。
Wgt' = 0.79
Σ △O, / V b −□ (□ i=1 22.4
N2ll. u'(C011n+2CO2□In) 1□)-■ N,, l11 12xo, 79 (CO, lOu' 10 CO□
,oukai) Σ ΔG , / V b = −□ (
□i”1 22.4
N2 n. u'(CO+ ' ” 10O21'
”)−□)−・■ N2 □1.

従ってi=iにおける還元率R0は次式の通りR,=1
−(Σ △0./Σ Δ01)i−11−1 =1−((Σ Δo+/vb)/(Σ Δo 、/vb
))−■i−1i=1 となる。また、ガス利用率η。は次式の通りとなる。
Therefore, the reduction rate R0 at i=i is as follows: R,=1
-(Σ Δ0./Σ Δ01)i-11-1 =1-((Σ Δo+/vb)/(Σ Δo,/vb
))-■i-1i=1. Also, the gas utilization rate η. is as follows.

O2 ηO: CO+CO2 以上より、ボッシュガス中のco、co2. N2濃度
を計算より求め、i=iにおけるco、co、。
O2 ηO: CO+CO2 From the above, co, co2. The N2 concentration is determined by calculation, co, co, at i=i.

N2を測定することより、その部分における還元率R0
を求めることができる。
By measuring N2, the reduction rate R0 in that part
can be found.

分析装置(18)では、送給された情報に基づいてガス
組成を分析し、ガス反応率、ガス背圧から炉内圧の圧損
等の炉内状況、更に炉内の原料の溶融帯高さ位置を検出
する。ここで、炉内の溶融帯高さ位置は、あらかじめ仮
定された溶融帯高さ位置における還元率(R,)の値を
求めて仮想溶融帯高さ位置(例えばR8290%)とし
て、第2図のように各サンプリング位置のガス反応率よ
り鉱石還元率分布曲線を求めそれを仮想溶融帯高さ位置
にあてはめることにより求める。
The analyzer (18) analyzes the gas composition based on the supplied information, and determines the gas reaction rate, gas back pressure, furnace internal conditions such as pressure drop in the furnace, and the height position of the molten zone of the raw material in the furnace. Detect. Here, the height position of the melting zone in the furnace is determined by determining the value of the reduction rate (R,) at a pre-assumed melting zone height position and setting it as a virtual melting zone height position (for example, R8290%), as shown in Figure 2. The ore reduction rate distribution curve is obtained from the gas reaction rate at each sampling position as shown in the figure, and it is obtained by applying it to the virtual melting zone height position.

検出された諸データは、制御装置のプログラマプルコン
トローラに入力される。ここで、炉内の溶融帯高さ位置
を正常時の溶融帯高さと比較し、炉頂装入装置を駆動・
停止して、正常時の溶融帯高さに移行・保持する。
The detected data are input to a programmable controller of the control device. Here, the height position of the molten zone in the furnace is compared with the height of the molten zone under normal conditions, and the furnace top charging device is driven and
Stop and move to and maintain the normal melting zone height.

乙のように、炉内の溶融帯の操業状況を任意の時間に連
続的に把握することができるため、その溶融帯の高さを
設定レベルに保持する制御ができる。
As shown in Part B, since the operating status of the melting zone in the furnace can be continuously monitored at any time, it is possible to control the height of the melting zone to be maintained at a set level.

本実施例での制御装置は、プログラマブルコン1−ロー
ラと炉頂装入装置を組合せた装置であるが、送風量を調
節する装置、送風温度を調節する装置など、溶融帯高さ
を調節する装置であれば同様な効果を期待できる。また
、本実施例では、サンプリングされたガスのうち、Go
、Co2.N2を成分分析したが、単純化するためにC
02C02を分析したり、逆に、緻密な制御をするため
にCO2Co2.N2.H,を分析しても相当の効果を
期待できる。
The control device in this example is a device that combines a programmable controller 1-roller and a furnace top charging device, and there are other devices that adjust the height of the melting zone, such as a device that adjusts the air flow rate and a device that adjusts the air blow temperature. A similar effect can be expected with this device. In addition, in this example, among the sampled gases, Go
, Co2. We analyzed the components of N2, but for simplicity, C
CO2Co2. N2. Considerable effects can be expected by analyzing H.

〔発明の効果〕〔Effect of the invention〕

す上のように本発明によれば、炉下部の熱的バランス及
び溶銑、スラグへの伝熱を支配している溶融帯の高さを
検知し、その高さレベルを制御するので、炉内の溶銑温
度を安定に制御できる効果がある。
As described above, according to the present invention, the height of the molten zone that governs the thermal balance in the lower part of the furnace and the heat transfer to hot metal and slag is detected and the height level is controlled. This has the effect of stably controlling the temperature of hot metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図(
A)は炉壁ストックライン図、(B)は鉱石還元率分布
曲線図、第3図はある高炉でのケイ素濃度と溶銑温度と
の相関関係を示す線図、第4図はある3つの高炉での溶
銑成分と溶銑温度の推移を示す線図である。 図において、(10)は炉壁、(12)はガス採取管、
(12a)は窒素ガス供給管、(14)は圧力変換器、
(16)はサンプリング管である。 なお、各図中同一符号は同一または相当部分を示す。
Figure 1 is a schematic configuration diagram showing an embodiment of the present invention, Figure 2 (
A) is a furnace wall stock line diagram, (B) is an ore reduction rate distribution curve diagram, Figure 3 is a diagram showing the correlation between silicon concentration and hot metal temperature in a certain blast furnace, and Figure 4 is a diagram of three blast furnaces. It is a diagram showing changes in hot metal components and hot metal temperature at . In the figure, (10) is the furnace wall, (12) is the gas sampling pipe,
(12a) is a nitrogen gas supply pipe, (14) is a pressure transducer,
(16) is a sampling tube. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)炉内還元状態を求める高さ方向に配置した複数の
ガスサンプリング装置、サンプリングされたガスの分析
装置、炉熱制御装置を備えた銑鉄を生産する高炉におい
て、ガス分析装置によって炉内の原料の溶融帯高さと炉
内状況を求め、溶融帯高さが設定レベルとなるように、
炉熱制御装置を制御することを特徴とする高炉操業法。
(1) In a blast furnace that produces pig iron, which is equipped with multiple gas sampling devices arranged in the height direction to determine the reduction state in the furnace, an analyzer for the sampled gas, and a furnace heat control device, the gas analysis device measures the inside of the furnace. Determine the height of the molten zone of the raw material and the situation inside the furnace, and make sure that the height of the molten zone is at the set level.
A blast furnace operating method characterized by controlling a furnace heat control device.
(2)ガス分析装置によって、サンプリングされたガス
のうち、CO、CO_2、N_2を成分分析することを
特徴とする特許請求範囲第1項記載の高炉操業法。
(2) The blast furnace operating method according to claim 1, wherein CO, CO_2, and N_2 of the sampled gas are analyzed by a gas analyzer.
(3)炉熱制御装置として、プログラマブルコントロー
ラと炉頂装入装置を組合せた装置を用いることを特徴と
する特許請求範囲第1項記載の高炉操業法。
(3) The blast furnace operating method according to claim 1, characterized in that a device combining a programmable controller and a furnace top charging device is used as the furnace heat control device.
JP30028587A 1987-11-30 1987-11-30 Operation of blast furnace Pending JPH01142008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30028587A JPH01142008A (en) 1987-11-30 1987-11-30 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30028587A JPH01142008A (en) 1987-11-30 1987-11-30 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH01142008A true JPH01142008A (en) 1989-06-02

Family

ID=17882949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30028587A Pending JPH01142008A (en) 1987-11-30 1987-11-30 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH01142008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019706A (en) * 2011-07-08 2013-01-31 Jfe Steel Corp Method and apparatus for measuring utilization rate of blast furnace gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019706A (en) * 2011-07-08 2013-01-31 Jfe Steel Corp Method and apparatus for measuring utilization rate of blast furnace gas

Similar Documents

Publication Publication Date Title
US3561743A (en) Use of stack gas as oxygen potential measurements to control the bof process
US4408569A (en) Control of a furnace
US2778018A (en) Method of and apparatus for operating metallurgical furnaces
JPH01142008A (en) Operation of blast furnace
CN107557528A (en) A kind of molten steel temperature regulation and control method and its device
US3489518A (en) Carbon determination method and apparatus
US20110203415A1 (en) Method of suppressing slag foaming in continuous melting furnace
JPH0419282B2 (en)
JPS58133308A (en) Operation of shaft furnace
US4619694A (en) Method of refining steel and apparatus
JP2012520983A (en) Hot gas feed method to shaft furnace
JPH01162707A (en) Method for operating blast furnace
JPS61119610A (en) Method for controlling balance of blast furnace by water blowing
JPS58164925A (en) Control method for combustion of multi-belt type combustion furnace
JPH04350108A (en) Method for controlling blast furnace
JPS6347315A (en) Smelting, reducing and refining equipment
JPH03240926A (en) Method for estimating distribution of carbon concentration in height direction of sintered layer
JPS6383210A (en) Pre-reduction smelting apparatus
JPS6335716A (en) Method and instrument for measuring secondary combustion rate in smelting reduction
SU1341211A1 (en) Device for checking parameters of converter process
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium
JPH079013B2 (en) Control method of pulverized coal injection into blast furnace
JPS6196322A (en) Combustion control for small-sized furnace
JPH01195218A (en) Operation of melting and reducing furnace
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace