JPH079013B2 - Control method of pulverized coal injection into blast furnace - Google Patents

Control method of pulverized coal injection into blast furnace

Info

Publication number
JPH079013B2
JPH079013B2 JP16678890A JP16678890A JPH079013B2 JP H079013 B2 JPH079013 B2 JP H079013B2 JP 16678890 A JP16678890 A JP 16678890A JP 16678890 A JP16678890 A JP 16678890A JP H079013 B2 JPH079013 B2 JP H079013B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
amount
injection
hydrogen component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16678890A
Other languages
Japanese (ja)
Other versions
JPH0456711A (en
Inventor
幸一 篠原
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP16678890A priority Critical patent/JPH079013B2/en
Publication of JPH0456711A publication Critical patent/JPH0456711A/en
Publication of JPH079013B2 publication Critical patent/JPH079013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高炉炉内への微粉炭吹込み量を正確に制御する
ことができるようにした高炉への微粉炭吹込み制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for controlling the injection of pulverized coal into a blast furnace, which is capable of accurately controlling the amount of pulverized coal injected into the blast furnace. is there.

〈従来の技術〉 従来からよく行われている高炉への微粉炭吹込み制御方
法は、第1図に示すようにサービスタンク8,インジェク
ションタンク7にそれぞれ設置されたロードセル6によ
って微粉炭の重量を測定し、これによって微粉炭の吹込
み量を制御するのを基本としている(特開昭58-74426
号,特開平1-316405号公報参照)。その補正手段として
圧力調整器13によってインジェクションタンク7の加圧
値を調整する補正制御を加味して微粉炭の吹込み量を制
御していた。
<Prior Art> A conventional pulverized coal injection control method to a blast furnace is a conventional method in which the weight of pulverized coal is controlled by load cells 6 installed in a service tank 8 and an injection tank 7, respectively, as shown in FIG. It is basically measured and the amount of pulverized coal injected is controlled based on the measured value (Japanese Patent Laid-Open No. 58-74426).
No., JP-A-1-316405). As the correction means, the pressure adjuster 13 is used to control the injection amount of the pulverized coal by adding the correction control for adjusting the pressure value of the injection tank 7.

しかし前記の従来法を用いると、サービスタンク8,イン
ジェクションタンク7の圧力変化に伴う慣性力の影響に
よる重量変化に対応するための推定項を加える必要があ
り、精度が悪くなる。またブローパイプ3および羽口2
を介して高炉1内へ吹込まれる送風圧変動等による外乱
からインジェクションタンク7,各微粉炭吹込み配管ライ
ン14を介して微粉炭吹込みバーナ4に供給される微粉炭
の量が変化してしまうという問題点があった。
However, when the above-mentioned conventional method is used, it is necessary to add an estimation term for dealing with the weight change due to the influence of the inertial force due to the pressure change of the service tank 8 and the injection tank 7, and the accuracy deteriorates. Blow pipe 3 and tuyere 2
The amount of pulverized coal supplied to the pulverized coal injection burner 4 via the injection tank 7 and each pulverized coal injection pipe line 14 changes due to disturbances caused by fluctuations in the blown air pressure blown into the blast furnace 1 via the There was a problem that it would end up.

したがって、各吹込み配管ライン14に粉体流量計(図示
せず)を設置し、微粉炭吹込みバーナ4から羽口2内に
吹込まれる微粉炭量を個別に測定しない限り正確な微粉
炭の吹込み量制御は困難である。また羽口2は高炉1の
周壁に多数形成されているので多数の粉体流量計を必要
として不経済であるばかりでなく、粉体流量計の精度は
ロードセルに比較すると劣るため必ずしも微粉炭の吹込
み量を正確に制御できることにならないという問題点が
あった。
Therefore, unless a powder flow meter (not shown) is installed in each blowing pipe line 14 and the amount of pulverized coal blown into the tuyere 2 from the pulverized coal injection burner 4 is individually measured, accurate pulverized coal is obtained. Is difficult to control. Further, since the tuyere 2 is formed in a large number on the peripheral wall of the blast furnace 1, not only is it uneconomical because a large number of powder flow meters are required, but the accuracy of the powder flow meter is inferior to that of the load cell, so that it is not always the case of pulverized coal. There was a problem that the blowing amount could not be controlled accurately.

〈発明が解決しようとする課題〉 本発明は微粉炭を貯蔵するサービスタンク,インジェク
ションタンク等の圧力タンクに設置したロードセルによ
って測定される微粉炭の重量値のみによって高炉への微
粉炭吹込みを制御する問題点すなわち圧力タンク間の慣
性力差や、送風圧変動等に起因する微粉炭吹込量の精度
が低くなるという問題点を改善することができる高炉へ
の微粉炭吹込み制御方法を提供することを目的とするも
のである。
<Problems to be Solved by the Invention> The present invention controls the injection of pulverized coal into a blast furnace only by the weight value of the pulverized coal measured by a load cell installed in a pressure tank such as a service tank or an injection tank that stores the pulverized coal. The present invention provides a method for controlling pulverized coal injection into a blast furnace, which can solve the problems that occur, that is, the accuracy of the amount of pulverized coal injection that is reduced due to differences in inertial force between pressure tanks, fluctuations in blast pressure, etc. That is the purpose.

〈課題を解決するための手段〉 前記の目的を達成するための本発明は、高炉羽口へ吹込
まれる微粉炭をロードセルで測定しつつ吹込むに際し、
高炉炉頂ガスを高炉炉頂部に配設された各々のアップテ
ークから採取して、その水素成分を分析し、該水素成分
の変化情報に基いて各羽口に吹込む微粉炭の吹込み量を
制御することを特徴とする高炉への微粉炭吹込み制御方
法である。
<Means for Solving the Problems> The present invention for achieving the above-mentioned object, when measuring the pulverized coal blown into the tuyere of the blast furnace while measuring the load cell,
Blast furnace top gas is sampled from each uptake arranged at the top of the blast furnace, the hydrogen component is analyzed, and the amount of pulverized coal blown into each tuyere is based on the change information of the hydrogen component. Is a method for controlling pulverized coal injection into a blast furnace.

〈作用〉 圧力タンクに設置したロードセルで微粉炭量を測定しな
がら各々の高炉羽口へ吹込むに際し、微粉炭の吹込み量
の測定精度を向上させるため、実際の微粉炭吹込み量に
比例して発生する高炉炉頂ガス中の水素成分を測定す
る。
<Operation> Proportional to the actual pulverized coal injection amount in order to improve the measurement accuracy of the pulverized coal injection amount when blowing it into each blast furnace tuyere while measuring the amount of pulverized coal with the load cell installed in the pressure tank. Then, the hydrogen component in the blast furnace top gas that is generated is measured.

そして、ロードセルで測定される羽口への微粉炭吹込み
量と炉頂ガス中の水素成分値のバラツキを抑制するよう
に微粉炭の吹込み量を制御する。すなわち水素成分値の
バラツキが小さい場合には、従来法と同様にロードセル
で測定される微粉炭吹込値のみ、または圧力タンクの加
圧値を加味した補正値を用いて微粉炭吹込み量を制御す
る。また水素成分値のバラツキが大きい場合には水素成
分値をロードセルによる微粉炭吹込値に優先して吹込み
量を制御する。
Then, the injection amount of the pulverized coal is controlled so as to suppress the variation in the amount of the pulverized coal injected into the tuyere measured by the load cell and the hydrogen component value in the furnace top gas. That is, when the variation in the hydrogen component value is small, the pulverized coal injection amount is controlled using only the pulverized coal injection value measured by the load cell as in the conventional method, or using a correction value that takes into account the pressure value of the pressure tank. To do. When the variation of the hydrogen component value is large, the hydrogen component value is prioritized over the pulverized coal blowing value by the load cell to control the blowing amount.

〈実施例〉 以下、本発明の実施例を図面に基いて制御する。第1図
において、微粉炭はまずサービスタンク8に供給された
後、サービスタンク8からインジェクションタンク7に
供給される。インジェクションタンク7から吹込み配管
ライン14に導かれた微粉炭はブースタ配管ライン11から
供給される高圧窒素ガスと共に微粉炭吹込みバーナ4を
介して羽口2内に導入され、ここでブローパイプ3およ
び羽口2を通過する熱風と共に高炉1内に吹込まれる。
<Example> Hereinafter, an example of the present invention will be controlled with reference to the drawings. In FIG. 1, pulverized coal is first supplied to the service tank 8 and then supplied from the service tank 8 to the injection tank 7. The pulverized coal introduced from the injection tank 7 to the blowing pipe line 14 is introduced into the tuyere 2 through the pulverized coal blowing burner 4 together with the high-pressure nitrogen gas supplied from the booster piping line 11, where the blow pipe 3 And it is blown into the blast furnace 1 together with the hot air passing through the tuyere 2.

加圧タンクである微粉炭サービスタンク8およびインジ
ェクションタンク7に設置された各ロードセル6で検出
される微粉炭量が制御演算器10に入力されるが、ここで
はインジェクションタンク7のロードセル6で検出され
る微粉炭量の信号が制御演算器10に入力されここで、高
炉1内に吹込まれる微粉炭吹込量が演算される。
The amount of pulverized coal detected by each load cell 6 installed in the pulverized coal service tank 8 and the injection tank 7, which are pressurized tanks, is input to the control calculator 10. Here, it is detected by the load cell 6 of the injection tank 7. The signal of the amount of pulverized coal is input to the control calculator 10, where the amount of pulverized coal injected into the blast furnace 1 is calculated.

また制御演算器10へは、インジェクションタンクに取付
けられた圧力調整器13の圧力信号およびブースタ配管ラ
イン11に取付けられた流量調節器12の流量信号も入力さ
れており、インジェクションタンク7の加圧値およびブ
ースタ配管ライン11の窒素ガス流量値を加味して必要に
応じて前記のロードセル6によって検出された微粉炭吹
込量を補正することができるようになっている。
In addition, the pressure signal of the pressure regulator 13 attached to the injection tank and the flow rate signal of the flow regulator 12 attached to the booster piping line 11 are also input to the control arithmetic unit 10, and the pressure value of the injection tank 7 is increased. Also, the amount of pulverized coal injection detected by the load cell 6 can be corrected, if necessary, by adding the nitrogen gas flow rate value of the booster piping line 11.

一方、高炉1の炉頂部に配設されたアップテーク管15
(通常4本)の各々に取付けられたガス採取管5によっ
て採取された炉頂ガスをガスクロマトグラフィー9に導
いて炉頂ガス中の水素成分を分析し、得られた水素成分
値の信号を制御演算器10に入力される。
On the other hand, an uptake pipe 15 arranged at the top of the blast furnace 1
The furnace top gas collected by the gas collection pipes 5 attached to each (normally four) is guided to the gas chromatography 9 to analyze the hydrogen component in the furnace top gas, and a signal of the obtained hydrogen component value is obtained. It is input to the control calculator 10.

制御演算器10では炉内への微粉炭吹込量および炉頂ガス
の水素成分値に基いて下記の演算を実施した後、インジ
ェクションタンク7の圧力を圧力調節器13によって調節
すると共に、ブースタ配管ライン11の流量を流量調節器
12によって調節し、高炉1への微粉炭吹込み量のバラツ
キを抑制するようになっている。
The control calculator 10 performs the following calculation based on the amount of pulverized coal injected into the furnace and the hydrogen component value of the furnace top gas, and then adjusts the pressure of the injection tank 7 with the pressure adjuster 13 and the booster piping line. 11 flow rate controller
It is adjusted by 12 to suppress variations in the amount of pulverized coal injected into the blast furnace 1.

本発明においては第2図に示すように高炉1の周壁に形
成された多数の羽口2ごとに配設された微粉炭吹込みバ
ーナ4の各々に接続された微粉炭吹込み配管14群を高炉
1の円周方向に複数に区分、例えば炉頂部の4本のアッ
プテーク管15に対応させてA〜Dゾーンに4区分し、こ
の区分単位A〜Dに対応するアップテーク管15から採取
された炉頂ガスの水素成分値に基いて微粉炭吹込量を制
御するものである。
In the present invention, as shown in FIG. 2, a group of pulverized coal injection pipes 14 connected to each of the pulverized coal injection burners 4 provided for each of a number of tuyere 2 formed on the peripheral wall of the blast furnace 1 is provided. The blast furnace 1 is divided into a plurality of sections in the circumferential direction, for example, 4 sections are divided into zones A to D corresponding to the four uptake tubes 15 at the top of the furnace, and collected from the uptake tubes 15 corresponding to the division units A to D. The amount of pulverized coal injected is controlled based on the hydrogen component value of the furnace top gas thus obtained.

本実施例では、4本のアップテーク管15からそれぞれ採
取された炉頂ガスの水素成分値の差がなくなるようにA
〜D区分の各区分を1単位として各ゾーン毎のブースタ
配管ライン11に供給される窒素ガス量を各ゾーン毎にま
とめてそれぞれの流量調節器12によって調整するもので
ある。このようにすることによりA〜D区分に対応する
アップテーク管15からそれぞれ採取される炉頂ガス中の
水素成分値のバラツキが低減されるようにインジェクシ
ョンタンク7から微粉炭吹込配管ライン14に供給される
微粉炭量を制御演算器10によって各A〜D区分ごとにま
とめて調整するものであり、これによって各羽口に吹込
まれる微粉炭量の均一化が達成される。
In this embodiment, A is adjusted so that there is no difference in the hydrogen component value of the furnace top gas sampled from each of the four uptake tubes 15.
The amount of nitrogen gas supplied to the booster piping line 11 for each zone is collectively adjusted for each zone by each flow rate controller 12 with each section of D to D as one unit. By doing so, the hydrogen is supplied from the injection tank 7 to the pulverized coal injection piping line 14 so that the variation in the hydrogen component value in the furnace top gas collected from the uptake pipes 15 corresponding to the sections A to D is reduced. The amount of pulverized coal to be generated is collectively adjusted by the control calculator 10 for each of A to D categories, and thereby the amount of pulverized coal blown to each tuyere is made uniform.

なお、前記実施例では4区分としたがこれに限定するも
のではなく、より細区分することによりより制御性が向
上するは云うまでもなく、区分数は適宣に選択すればよ
い。
In the above-mentioned embodiment, the number of sections is not limited to this, but it is needless to say that subdivision further improves controllability, and the number of sections may be appropriately selected.

本発明の高炉への微粉炭吹込み制御方法の基本的考え方
は次の通りである。
The basic idea of the method for controlling pulverized coal injection into the blast furnace of the present invention is as follows.

通常、高炉1の炉頂から採取したガス中の水素成分値は
2.5〜2.7%であり、炉内への微粉炭吹込みを開始すると
微粉炭吹込量70kg/t−pigでは水素成分値は3.5%程度に
上昇する。このように微粉炭吹込みによって上昇する炉
頂ガスの安定成分である水素成分値を基準とするため、
各アップテーク管15から炉頂ガスを採取した後、ガスク
ロマトグラフィー9によって水素成分を分析し、得られ
た水素成分値を微粉炭吹込量の変化として把え、この水
素成分値の差を解消するように微粉炭の吹込量を増減す
るもので、具体的には水素成分値が低ければ微粉炭の吹
込量を増加し、高ければ減少させて吹込量の均一化を図
る。
Normally, the hydrogen component value in the gas sampled from the top of the blast furnace 1 is
It is 2.5 to 2.7%, and when the injection of pulverized coal into the furnace is started, the hydrogen component value rises to about 3.5% when the pulverized coal injection amount is 70 kg / t-pig. In this way, since the hydrogen component value, which is the stable component of the furnace top gas that rises due to the injection of pulverized coal, is the standard,
After collecting the furnace top gas from each uptake pipe 15, analyze the hydrogen component by gas chromatography 9, grasp the obtained hydrogen component value as a change in the amount of pulverized coal injected, and eliminate the difference in this hydrogen component value. As described above, the blowing amount of pulverized coal is increased or decreased. Specifically, if the hydrogen component value is low, the blowing amount of pulverized coal is increased, and if it is high, it is decreased to make the blowing amount uniform.

微粉炭吹込量制御のためのブースタ配管ライン11への窒
素ガスの供給については次の考え方による。
The supply of nitrogen gas to the booster piping line 11 for controlling the injection amount of pulverized coal is based on the following concept.

(1)各羽口2へ供給される微粉炭吹込み配管ライン14
の圧損を一定としてインジェクションタンク7から供給
される微粉炭量を一定になるようにしておくこと、 (2)微粉炭吹込み配管ライン14中へブースタ配管ライ
ン11を接続し、ブースタガス(窒素ガス)の供給により
配管抵抗を変化させて微粉炭吹込量を制御すること、 (3)微粉炭吹込み配管ライン14を数区分に分けて、各
区分を単位としてブースタ配管ラインに供給するブース
タガス量をまとめて変化させ、区分毎にまとめて微粉炭
吹込量を調整させること、 (4)または前記(1)の圧損をブースタガスを加えて
調節して各ラインに均等にガスが流れるようにしてお
き、その各ブースタガス量に加えて前記(2)の操作を
加えること。
(1) Pulverized coal injection piping line 14 supplied to each tuyere 2
(2) Connect the booster piping line 11 into the pulverized coal injection piping line 14 to make the booster gas (nitrogen gas) ) To control the pulverized coal injection amount by changing the pipe resistance. (3) The pulverized coal injection pipe line 14 is divided into several sections, and the booster gas amount supplied to the booster piping line in units of each section. To adjust the amount of pulverized coal injected collectively for each category, and adjust the pressure loss of (4) or (1) by adding booster gas so that the gas flows evenly in each line. Then, in addition to each booster gas amount, perform the operation of (2) above.

さらに水素値を制御値として制御するに際しては、例え
ば微粉炭吹込みによりアップテーク管15における炉頂ガ
スの水素成分値は3.5%になるが、この時、各アップテ
ーク管15の水素成分値が3.5%を基準にして±0.3%以上
離れた値にバラツクときに“偏差あり”として微粉炭吹
込み量の制御を行うようにする。0.3%より小さいバラ
ツキでは高炉内の送風の脈動、高炉内への原料装入入時
の変動を拾い微粉炭吹込量制御の外乱になり好ましくな
い。
Further, when controlling the hydrogen value as a control value, for example, by blowing pulverized coal, the hydrogen component value of the furnace top gas in the uptake pipe 15 becomes 3.5%, but at this time, the hydrogen component value of each uptake pipe 15 is When there is a deviation of ± 0.3% or more with 3.5% as the standard, the amount of pulverized coal injection is controlled as "There is a deviation". If the variation is less than 0.3%, the pulsation of the air blown into the blast furnace and the fluctuations at the time of charging the raw material into the blast furnace are picked up, which is a disturbance of the pulverized coal injection control, which is not preferable.

また微粉炭吹込量の変化を把握するためには分析により
得られた水素成分値の直前の平均値に基いて判定する。
原料装入時の変動をもろに拾わぬようにするため所定時
間内の平均値を用いるものであり、高炉の実操業上は直
前の10分間の平均値を用いるのが好ましく、例えば90秒
毎に炉頂ガス中の水素成分値を分析し、直前10分間の平
均水素値が1%以上変化したときに本発明による制御を
開始する。
Further, in order to grasp the change in the pulverized coal injection amount, the judgment is made based on the immediately preceding average value of the hydrogen component values obtained by the analysis.
The average value within a predetermined time is used so as not to pick up any fluctuations during raw material charging.In actual operation of the blast furnace, it is preferable to use the average value for the last 10 minutes, for example, every 90 seconds. First, the hydrogen component value in the furnace top gas is analyzed, and the control according to the present invention is started when the average hydrogen value in the immediately preceding 10 minutes changes by 1% or more.

本発明法の実施効果を炉頂ガス中の水素値(H2%)およ
び微粉炭吹込み速度(kg/min)の経時変化により従来法
と比較して第3図に示す。第3図に示すように本発明に
よれば従来法に比較して微粉炭吹込量のオフセット量が
減少するばかりでなく、従来法では制御することができ
なかった慣性力支配時間帯での微粉炭吹込量の精度が向
上するため炉頂ガス中のH2(%)のバラツキが激減して
いることが明らかである。
The effect of carrying out the method of the present invention is shown in FIG. 3 by comparing the hydrogen value (H 2 %) in the furnace top gas and the pulverized coal blowing rate (kg / min) with time as compared with the conventional method. As shown in FIG. 3, according to the present invention, not only the pulverized coal injection amount offset amount decreases as compared with the conventional method, but also the fine powder in the inertial force control time zone which cannot be controlled by the conventional method. It is clear that the variation of H 2 (%) in the furnace top gas is drastically reduced because the accuracy of the amount of charcoal injected is improved.

本発明の制御を5日間、同一操業条件下で実施したとこ
ろ第1表に示すように諸高炉操業データについてもバラ
ツキ低減効果が現われ、本発明法が効果的であることが
証明された。
When the control of the present invention was carried out for 5 days under the same operating conditions, the effect of reducing variations in various blast furnace operating data also appeared as shown in Table 1, demonstrating that the method of the present invention is effective.

〈発明の効果〉 以上説明したように本発明によれば高炉羽口から吹込ま
れる微粉炭吹込量の均一化が達成されるので、高炉操業
が安定し、特に高炉操業の燃料比低減に著しい効果を奏
することができる。
<Effects of the Invention> As described above, according to the present invention, the amount of pulverized coal blown from the tuyere of the blast furnace is made uniform, so that the blast furnace operation is stable, and particularly the fuel ratio in the blast furnace operation is significantly reduced. It is possible to exert an effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法の実施例に係る装置の概略配置を示す
側面図、第2図は第1図に関連する装置の概略配置を示
す平面図、第3図は炉頂ガス中のH2(%)および微粉炭
吹込み速度(kg/min)の高炉操業中における経時変化を
本発明法と従来法について比較して示す線図である。 1……高炉、2……羽口、3……ブローパイプ、4……
微粉炭吹込みバーナー、5……炉頂ガスサンプリング
管、6……ロードセル、7……インジェクションタン
ク、8……サービスタンク、9……ガスクロマトグラフ
ィー、10……吹込み制御演算器、11……ブースタ配管ラ
イン、12……流量調節器、13……圧力調節器、14……微
粉炭吹込み配管ライン、15……アップテーク管。
FIG. 1 is a side view showing a schematic arrangement of an apparatus according to an embodiment of the method of the present invention, FIG. 2 is a plan view showing a schematic arrangement of the apparatus related to FIG. 1, and FIG. FIG. 3 is a diagram showing changes in 2 (%) and pulverized coal blowing rate (kg / min) during blast furnace operation in comparison between the method of the present invention and the conventional method. 1 ... Blast furnace, 2 ... Tuyere, 3 ... Blow pipe, 4 ...
Pulverized coal injection burner, 5 ... furnace top gas sampling tube, 6 ... load cell, 7 ... injection tank, 8 ... service tank, 9 ... gas chromatography, 10 ... injection control calculator, 11 ... … Booster piping line, 12 …… Flow controller, 13 …… Pressure controller, 14 …… Pulverized coal injection piping line, 15 …… Uptake pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高炉羽口へ供給される微粉炭量をロードセ
ルで測定しつつ吹込むに際し、高炉炉頂ガスを高炉炉頂
部に配設された各々のアップテークから採取して、その
水素成分を分析し、該水素成分の変化情報に基いて各羽
口に吹込む微粉炭の吹込み量を制御することを特徴とす
る高炉への微粉炭吹込み制御方法。
1. When the amount of pulverized coal supplied to the tuyere of a blast furnace is measured while being blown by a load cell, the top gas of the blast furnace is sampled from each uptake arranged at the top of the blast furnace, and its hydrogen component is collected. And controlling the blowing amount of the pulverized coal blown into each tuyere based on the change information of the hydrogen component.
JP16678890A 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace Expired - Fee Related JPH079013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16678890A JPH079013B2 (en) 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16678890A JPH079013B2 (en) 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace

Publications (2)

Publication Number Publication Date
JPH0456711A JPH0456711A (en) 1992-02-24
JPH079013B2 true JPH079013B2 (en) 1995-02-01

Family

ID=15837689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16678890A Expired - Fee Related JPH079013B2 (en) 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace

Country Status (1)

Country Link
JP (1) JPH079013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857909B1 (en) * 2017-02-20 2018-05-14 현대제철 주식회사 Neutral hydrogen gas injection amount control method of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857909B1 (en) * 2017-02-20 2018-05-14 현대제철 주식회사 Neutral hydrogen gas injection amount control method of blast furnace

Also Published As

Publication number Publication date
JPH0456711A (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JP5087879B2 (en) Powder injection method
KR101452814B1 (en) Injection system for solid particles
CN109307437B (en) Optimized combustion control system and method for heat accumulating type industrial heating furnace
US2625386A (en) Method and apparatus for controlling blast furnaces
US4758117A (en) Method for the transportation of a particulate material at controlled rate
CN109306385B (en) Blast furnace top pressure stability control system and control method thereof
CN111151367A (en) Coal mill and method for analyzing primary air volume thereof
CN104419799A (en) Method for online prediction of carbon content of high-carbon steel during converter smelting process
JPH079013B2 (en) Control method of pulverized coal injection into blast furnace
CN210420008U (en) Blast furnace iron notch oxygen enrichment device
CN110331245B (en) Oxygen-enriching device for blast furnace iron notch
CN103017529A (en) Method and system for controlling air quantity of main draft fan of sintering machine
CN103017533A (en) Method and system for controlling air quantity of main draft fan of sintering machine
Staib et al. On-line computer control for the blast furnace: Part II. Control of furnaces with sinter and complex burdens
CN210037744U (en) Gas calorific value detection device based on gas content detection
CN209210838U (en) A kind of blast furnace top pressure stabilizing control system
JPS5881907A (en) Control process for blowing powder coal
JP2002302707A (en) Method for correcting influence coefficient applied into measured weight correction in parallel bunkers for bell-less blast furnace
JP3731101B2 (en) Powder injection control method
KR20000013061U (en) Pulverized coal feeder proportional to air flow
JP2006077267A (en) Facility for injecting powdery material
SU821495A1 (en) Device for measuring blasting material amount in tuyere apparatus rf blast furnace
JP2668486B2 (en) Blast furnace operation method using hydrogen gas utilization rate
JPS59157420A (en) Combustion controlling method utilizing mixed gas fuel
CN115684267A (en) Blast furnace gas dew point temperature detection device and detection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees