JPH0456711A - Method for blowing fine powdered coal into blast furnace - Google Patents

Method for blowing fine powdered coal into blast furnace

Info

Publication number
JPH0456711A
JPH0456711A JP16678890A JP16678890A JPH0456711A JP H0456711 A JPH0456711 A JP H0456711A JP 16678890 A JP16678890 A JP 16678890A JP 16678890 A JP16678890 A JP 16678890A JP H0456711 A JPH0456711 A JP H0456711A
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
powdered coal
fine powdered
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16678890A
Other languages
Japanese (ja)
Other versions
JPH079013B2 (en
Inventor
Koichi Shinohara
幸一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16678890A priority Critical patent/JPH079013B2/en
Publication of JPH0456711A publication Critical patent/JPH0456711A/en
Publication of JPH079013B2 publication Critical patent/JPH079013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To accurately control fine powdered coal-blowing rate in a blast furnace by analyzing hydrogen component in furnace top gas in the blast furnace and controlling the fine powdered coal-blowing rate blown in each tuyere based on variable information of this hydrogen component. CONSTITUTION:The fine powdered coal supplied to an injection tank 7 from a service tank 8, is guided into a glowing piping line 14 and blown in the blast furnace 1 from a tuyere 2 through a burner 4. Then the fine powdered coal quantity detected with a load cell 6 is inputted to control computing element 10, and the fine powdered coal blowing rate is calculated. This control computing element 10 corrects the fine powdered coal-blowing rate through a flow rate adjuster 12 fitted to a booster piping line 11. On the other hand, the hydrogen component in the furnace top gas sampled with a gas sampling tube 5 fitted to each uptake tube 15 set to a furnace top part in the blast furnace 1, is analyzed. Pressure in the injection tank 7 is adjusted with a pressure adjuster 13 based on the fine powdered coal-blowing rate and the hydrogen component value in the furnace top gas in the computing element 10, and also flow rate of the booster piping line 11 is adjusted with the flow rate adjuster 12 to restrain unevenness of the fine powdered coal blowing rate into the blast furnace 1.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高炉炉内への微粉炭吹込み量を正確に制御する
ことができるようにした高炉への微粉炭吹込み制御方法
に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for controlling the injection of pulverized coal into a blast furnace, which makes it possible to accurately control the amount of pulverized coal injected into the blast furnace. be.

〈従来の技術さ 従来からよく行われている高炉への微粉炭吹込み制御方
法は、第1図に示すようにサービスタンク8.インジェ
クションタンク7にそれぞれ設置されたロードセル6に
よって微粉炭の重量を測定し、これによって微粉炭の吹
込み量を制御するのを基本としている(特開昭58−7
4426号、特開平1316405号公報参照)、その
補正手段として圧力調整器13によってインジェクショ
ンタンク7の加圧値を調整する補正制御を加味して微粉
炭の吹込み量を制御していた。
<Prior art> A conventional method of controlling the injection of pulverized coal into a blast furnace is as shown in FIG. Basically, the weight of pulverized coal is measured by load cells 6 installed in each injection tank 7, and the amount of pulverized coal injected is controlled based on this.
4426 and Japanese Patent Application Laid-open No. 1316405), the amount of pulverized coal injected was controlled by adding correction control to adjust the pressurization value of the injection tank 7 using the pressure regulator 13 as a correction means.

しかし前記の従来法を用いると、サービスタンク8.イ
ンジェクションタンク7の圧力変化に伴う慣性力の影響
による重量変化に対応するための推定項を加える必要が
あり、精度が悪くなる。またブローパイプ3および羽口
2を介して高炉1内へ吹込まれる送風圧変動等による外
乱からインジェクシ式ンタンク7.各微粉炭吹込み配管
ライン14を介して微粉炭吹込みバーナ4に供給される
微粉炭の量が変化してしまうという問題点があった。
However, if the conventional method described above is used, the service tank 8. It is necessary to add an estimation term to cope with the weight change due to the influence of inertia force accompanying the pressure change of the injection tank 7, which deteriorates accuracy. In addition, the injection type tank 7. There is a problem in that the amount of pulverized coal supplied to the pulverized coal injection burner 4 via each pulverized coal injection piping line 14 changes.

したがって、各吹込み配管ライン14に粉体流量計(図
示せず)を設置し、微粉炭吹込みバーナ4から羽口2内
に吹込まれる微粉炭量を個別に測定しない限り正確な微
粉炭の吹込み量制御は困難である。また羽口2は高炉l
の周壁に多数形成されているので多数の粉体流量針を必
要として不経済であるばかりでなく、粉体流量計の精度
はロードセルに比較すると劣るため必ずしも微粉炭の吹
込み量を正確に制御できることにならないという問題点
があった。
Therefore, unless a powder flow meter (not shown) is installed in each injection piping line 14 and the amount of pulverized coal injected into the tuyere 2 from the pulverized coal injection burner 4 is individually measured, the accuracy of pulverized coal cannot be determined. It is difficult to control the amount of injection. In addition, the tuyere 2 is the blast furnace l.
Since a large number of powder flowmeters are formed on the peripheral wall of the pulverized coal, it is not only uneconomical as it requires a large number of powder flowmeters, but also the accuracy of powder flowmeters is inferior to that of load cells, so it is not always possible to precisely control the amount of pulverized coal injected. The problem was that it was not possible.

〈発明が解決しようとする課題〉 本発明は微粉炭を貯蔵するサービスタンク、インジェク
タぢンタンク等の圧力タンクに設置したロードセルによ
って測定される微粉炭の重量値のみによって高炉への微
粉炭吹込みを制御する問題点すなわち圧力タンク間の慣
性力差や、送風圧変動等に起因する微粉炭吹込量の精度
が低くなるという問題点を改善することができる高炉へ
の微粉炭吹込み制御方法を提供することを目的とするも
のである。
<Problems to be Solved by the Invention> The present invention is capable of injecting pulverized coal into a blast furnace using only the weight value of pulverized coal measured by a load cell installed in a pressure tank such as a service tank or an injector tank for storing pulverized coal. Provides a method for controlling pulverized coal injection into a blast furnace that can improve the control problem, that is, the problem of low precision in the amount of pulverized coal injected due to differences in inertia between pressure tanks, fluctuations in blowing pressure, etc. The purpose is to

く課題を解決するための手段〉 前記の目的を達成するための本発明は、高炉羽目へ吹込
まれる微粉炭をロードセルで測定しつつ吹込むに際し、
高炉炉頂ガスを高炉炉頂部に配設された各々のアンプテ
ークから採取して、その水素成分を分析し、該水素成分
の変化情報に基いて各羽口に吹込む微粉炭の吹込み量を
制御することを特徴とする高炉への微粉炭吹込み制御方
法である。
Means for Solving the Problems> In order to achieve the above object, the present invention has the following features: When pulverized coal is injected into the blast furnace lining while being measured with a load cell,
Blast furnace top gas is collected from each amp take installed at the top of the blast furnace, its hydrogen components are analyzed, and the amount of pulverized coal injected into each tuyere based on the information on changes in the hydrogen components. This is a method for controlling the injection of pulverized coal into a blast furnace.

く作用〉 圧力タンクに設置したロードセルで微粉炭量を測定しな
がら各りの高炉羽口へ吹込むに際し、微粉炭の吹込み量
の測定精度を向上させるため、実際の微粉炭吹込み量に
比例して発生する高炉炉頂ガス中の水素成分を測定する
Effect> When injecting pulverized coal into each blast furnace tuyere while measuring the amount of pulverized coal with a load cell installed in a pressure tank, in order to improve the accuracy of measuring the amount of pulverized coal injected, the actual amount of pulverized coal injected is Measure the hydrogen component in the blast furnace top gas that is generated proportionally.

そして、ロードセルで測定される羽口への微粉炭吹込み
量と炉頂ガス中の水素成分値のバラツキを抑制するよう
に微粉炭の吹込み量を制御する。
Then, the amount of pulverized coal injected is controlled so as to suppress variations in the amount of pulverized coal injected into the tuyere and the hydrogen component value in the furnace top gas, which are measured by the load cell.

すなわち水素成分値のバラツキが小さい場合には、従来
法と同様にロードセルで測定される微粉炭吹込値のみ、
または圧力タンクの加圧値を加味した補正値を用いて微
粉炭吹込み量を制御する。また水素成分値のバラツキが
大きい場合には水素成分値をロードセルによる微粉炭吹
込値に優先して吹込み量を制御する。
In other words, when the variation in hydrogen component values is small, only the pulverized coal injection value measured with a load cell as in the conventional method,
Alternatively, the amount of pulverized coal injected is controlled using a correction value that takes into account the pressurization value of the pressure tank. Further, when the variation in the hydrogen component value is large, the hydrogen component value is given priority over the pulverized coal injection value by the load cell to control the injection amount.

〈実施例〉 以′下、本発明の実施例を図面に基いて説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第1図において、微粉炭はまずサービスタンク8に供給
された後、サービスタンク8からインジェクションタン
ク7に供給される。インジェクションタンク7から吹込
み配管ライン14に導かれた微粉炭はブースタ配管ライ
ン11から供給される高圧窒素ガスと共に微粉炭吹込み
バーナ4を介して羽口2内に導入され、ここでブローパ
イプ3および羽口2を通過する熱風と共に高炉1内に吹
込まれる。
In FIG. 1, pulverized coal is first supplied to a service tank 8 and then supplied from the service tank 8 to an injection tank 7. The pulverized coal led from the injection tank 7 to the blowing piping line 14 is introduced into the tuyere 2 via the pulverized coal blowing burner 4 together with the high pressure nitrogen gas supplied from the booster piping line 11, where it is introduced into the blow pipe 3. It is blown into the blast furnace 1 along with the hot air passing through the tuyeres 2.

加圧タンクである微粉炭サービスタンク8およびインジ
ェクションタンク7に設置された各ロードセル6で検出
される微粉炭量が制御演算器10に入力されるが、ここ
ではインジェクションタンク7のロードセル6で検出さ
れる微粉炭量の信号が制御演算器10に入力されここで
、高炉1内に吹込まれる微粉炭吹込量が演算される。
The amount of pulverized coal detected by each load cell 6 installed in the pulverized coal service tank 8 and the injection tank 7, which are pressurized tanks, is input to the control calculator 10. Here, the amount of pulverized coal detected by the load cell 6 of the injection tank 7 is A signal indicating the amount of pulverized coal is input to the control calculator 10, where the amount of pulverized coal injected into the blast furnace 1 is calculated.

また制御演算器IOへは、インジェクションタンクに取
付けられた圧力調整器13の圧力信号およびブースタ配
管ライン11に取付けられた流量調節器12の流量信号
も入力されており、インジェクションタンク7の加圧値
およびブースタ配管ライン11の窒素ガス流量値を加味
して必要に応じて前記のロードセル6によって検出され
た微粉炭吹込量を補正することができるようになってい
る。
In addition, a pressure signal from a pressure regulator 13 attached to the injection tank and a flow rate signal from a flow regulator 12 attached to the booster piping line 11 are also input to the control calculator IO, and the pressurized value of the injection tank 7 is inputted to the control calculator IO. The amount of pulverized coal injected detected by the load cell 6 can be corrected as necessary by taking into account the nitrogen gas flow rate value of the booster piping line 11.

一方、高炉1の炉頂部に配設されたアップテーク管15
(通常4本)の各々に取付けられたガス採取管5によっ
て採取された炉頂ガスをガスクロマトグラフィー9に導
いて炉頂ガス中の水素成分を分析し、得られた水素成分
値の信号を制御演算器10に入力される。
On the other hand, the uptake pipe 15 installed at the top of the blast furnace 1
The furnace top gas collected by the gas sampling tubes 5 attached to each of the furnace top gases (usually 4 tubes) is guided to the gas chromatography 9 to analyze the hydrogen component in the furnace top gas, and the obtained hydrogen component value signal is It is input to the control calculator 10.

制御演算器10では炉内への微粉炭吹込量および炉頂ガ
スの水素成分値に基いて下記の演算を実施した後、イン
ジェクションタンク7の圧力を圧力m節器I3によって
mwiすると共に、ブースタ配管ライン11の流量を流
量調節器12によって調節し、高炉1への微粉炭吹込み
量のバラツキを抑制するようになっている。
The control calculator 10 performs the following calculations based on the amount of pulverized coal injected into the furnace and the hydrogen component value of the furnace top gas, and then adjusts the pressure in the injection tank 7 to mwi by the pressure moderator I3, and also adjusts the pressure in the injection tank 7 to The flow rate of the line 11 is adjusted by a flow rate regulator 12 to suppress variations in the amount of pulverized coal injected into the blast furnace 1.

本発明においては第2図に示すように高炉1の周壁に形
成された多数の羽口2ごとに配置された微粉炭吹込みバ
ーナ4の各々に接続された微粉炭吹込み配管14群を高
炉1の円周方向に複数に区分、例えば炉頂部の4本のア
ップテーク管15に対応させてA−Dゾーンに4区分し
、この区分単位A〜Dに対応するアンプテーク管15か
ら採取された炉頂ガスの水素成分値に基いて微粉炭吹込
量を制御するものである。
In the present invention, as shown in FIG. 1 is divided into a plurality of zones in the circumferential direction, for example, divided into four zones A to D corresponding to the four uptake pipes 15 at the top of the furnace, and the samples are collected from the uptake pipes 15 corresponding to the division units A to D. The amount of pulverized coal injected is controlled based on the hydrogen content of the top gas.

木実施例では、4木のアップテーク管15からそれぞれ
採取された炉頂ガスの水素成分値の差がなくなるように
A−D区分の各区分を1単位として各ゾーン毎のブース
タ配管ライン11に供給される窒素ガス量を各ゾーン毎
にまとめてそれぞれの流量調節器12によって調整する
ものである。このようにすることによりA−D区分に対
応するアップテーク管15からそれぞれ採取される炉頂
ガス中の水素成分値のバラツキが低減されるようにイン
ジェクションタンク7から微粉炭吹込配管ライン14に
供給される微粉炭量を制御演算器10によって各A−D
区分ごとにまとめて調整するものであり、これによって
各羽目に吹込まれるvIl粉炭量の均一化が達成される
In the wooden embodiment, in order to eliminate the difference in the hydrogen component values of the top gases collected from the uptake pipes 15 of four trees, each section of the A-D section is treated as one unit and the booster piping line 11 of each zone is The amount of nitrogen gas supplied is adjusted for each zone by the respective flow rate regulators 12. By doing this, the pulverized coal is supplied from the injection tank 7 to the pulverized coal injection piping line 14 so as to reduce the variation in the hydrogen component value in the top gas collected from the uptake pipes 15 corresponding to the A-D divisions. A computer 10 controls the amount of pulverized coal produced in each A-D.
The adjustment is made for each section at once, thereby achieving uniformity of the amount of vIl pulverized coal injected into each section.

なお、前記実施例では4区分としたがこれに限定するも
のではなく、より細区分することによりより制御性が向
上するは云うまでもなく、区分数は適宜に選択すればよ
い。
In the above embodiment, the number of divisions is four, but the number of divisions is not limited to this, and it goes without saying that the controllability can be further improved by dividing into smaller divisions, and the number of divisions may be selected as appropriate.

本発明の高炉への微粉炭吹込み制御方法の基本的考え方
は次の通りである。
The basic concept of the method of controlling pulverized coal injection into a blast furnace of the present invention is as follows.

通常、高炉1の炉頂から採取したガス中の水素成分値は
2.5〜2.7%であり、炉内への微粉炭吹込みを開始
すると微粉炭吹込量70kg/ t−pigでは水素成
分値は3,5%程度に上昇する。このように微粉炭吹込
みによって上昇する炉頂ガスの安定成分である水素成分
値を基準とするため、各アップテーク管15から炉頂ガ
スを採取した後、ガスクロマトグラフィー9によって水
素成分を分析し、得られた水素成分値を微粉炭吹込量の
変化として把え、この水素成分値の差を解消するように
微粉炭の吹込量を増減するもので、具体的には水素成分
値が低ければ微粉炭の吹込量を増加し、高ければ減少さ
せて吹込量の均一化を図る。
Normally, the hydrogen component value in the gas sampled from the top of the blast furnace 1 is 2.5 to 2.7%, and when the injection of pulverized coal into the furnace is started, the hydrogen content is 70 kg/t-pig. The component value increases to about 3.5%. In order to use the hydrogen component value, which is a stable component of the top gas that rises due to pulverized coal injection, as a reference, after collecting the top gas from each uptake pipe 15, the hydrogen component is analyzed by gas chromatography 9. Then, the obtained hydrogen component value is understood as a change in the amount of pulverized coal injected, and the amount of pulverized coal injected is increased or decreased to eliminate this difference in the hydrogen component value. Specifically, if the hydrogen component value is low, For example, the amount of pulverized coal injected is increased, and if it is high, it is decreased to equalize the amount of pulverized coal injected.

微粉炭吹込量制御のためのブースタ配管ライン■1への
窒素ガスの供給については次の考え方による。
The supply of nitrogen gas to the booster piping line ■1 for controlling the amount of pulverized coal injection is based on the following concept.

(1)各羽口2へ供給される微粉炭吹込み配管ライン1
4の圧損を一定としてインジェクションタンク7から供
給される微粉炭量を一定になるようにしておくこと、 (2)微粉炭吹込み配管ライン14中ヘブースタ配管ラ
イン11を接続し、ブースタガス(窒素ガス)の供給に
より配管抵抗を変化させて′?I!粉炭吹込量を制御す
ること、 (3)  m粉炭吹込み配管ライン14を数区分に分け
て、各区分を単位としてブースタ配管ラインに供給する
ブースタガス量をまとめて変化させ、区分毎にまとめて
微粉炭吹込量を調整させること、 (4)または前記(1)の圧損をブースタガスを加えて
円節して各ラインに均等にガスが流れるようにしておき
、その各ブースタガス量に加えて前記(2)の操作を加
えること。
(1) Pulverized coal injection piping line 1 supplied to each tuyere 2
(2) Connect the booster piping line 11 to the pulverized coal injection piping line 14 and inject booster gas (nitrogen gas) into the pulverized coal injection piping line 14. ) by changing the piping resistance by supplying ′? I! (3) Divide the pulverized coal injection piping line 14 into several sections, and collectively change the amount of booster gas supplied to the booster piping line for each section; Adjust the amount of pulverized coal injected, (4) or reduce the pressure loss in (1) above by adding booster gas to make the gas flow evenly through each line, and add it to each booster gas amount. Adding the operation (2) above.

さらに水素値を制御値として制御するに際しては、例え
ば微粉炭吹込みによりアップテーク管15における炉頂
ガスの水素成分値は3.5%になるが、この時、各アッ
プテーク管15の水素成分値が3.5%を基準にして±
0.3%以上離れた値にバラツクときに°゛偏差り”と
して微粉炭吹込み量の制御を行うようにする。0.3%
より小さいバラツキでは高炉内の送風の脈動、高炉内へ
の原料装入人時の変動を拾い微粉炭吹込量制御の外乱に
なり好ましくない。
Furthermore, when controlling the hydrogen value as a control value, for example, the hydrogen component value of the furnace top gas in the uptake pipe 15 becomes 3.5% due to pulverized coal injection. ± based on the value of 3.5%
When the value differs by 0.3% or more, the amount of pulverized coal injection is controlled as a deviation.0.3%
A smaller variation is undesirable because it picks up the pulsation of air in the blast furnace and fluctuations in the number of people charging raw materials into the blast furnace, which disturbs the control of the amount of pulverized coal injected.

また微粉炭吹込量の変化を把握するためには分析により
得られた水素成分値の直前の平均値に基いて判定する。
In addition, in order to understand changes in the amount of pulverized coal injected, judgment is made based on the immediately preceding average value of hydrogen component values obtained by analysis.

原料装入時の変動をもろに拾わぬようにするため所定時
間内の平均値を用いるものであり、高炉の実操業上は直
前の10分間の平均値を用いるのが好ましく、例えば9
0秒毎に炉頂ガス中の水素成分値を分析し、直前1o分
間の平均水素値が1%以上変化したときに本発明による
制御を開始する。
In order to avoid picking up fluctuations during raw material charging, the average value within a predetermined period of time is used.In actual operation of a blast furnace, it is preferable to use the average value for the immediately preceding 10 minutes.For example, 9.
The hydrogen component value in the furnace top gas is analyzed every 0 seconds, and the control according to the present invention is started when the average hydrogen value for the previous 10 minutes changes by 1% or more.

本発明法の実施効果を炉頂ガス中の水素値(H2%)お
よび微粉炭吹込み速度(kg/5in)の経時変化によ
り従来法と比較して第3図に示す、第3図に示すように
本発明によれば従来法に比較して微粉炭吹込量のオフセ
ット量が減少するばかりでなく、従来法では制御するこ
とができなかった慣性力支配時間帯での微粉炭吹込量の
精度が向上するため炉頂ガス中のH,(%)のバラツキ
が激減していることが明らかである。
Figure 3 shows the effect of implementing the method of the present invention compared with the conventional method by looking at changes over time in the hydrogen value (H2%) in the furnace top gas and the pulverized coal injection rate (kg/5in). As can be seen, the present invention not only reduces the offset amount of the pulverized coal injection amount compared to the conventional method, but also improves the accuracy of the pulverized coal injection amount during the inertial force dominated time period, which could not be controlled with the conventional method. It is clear that the variation in H (%) in the furnace top gas has been drastically reduced due to the improvement in H.

本発明の制御を5日間、同一操業条件下で実施したとこ
ろ第1表に示すように誇高炉操業データについてもバラ
ツキ低減効果が現われ、本発明法が効果的であることが
証明された。
When the control of the present invention was carried out for 5 days under the same operating conditions, as shown in Table 1, the effect of reducing variations in blast furnace operation data also appeared, proving that the method of the present invention is effective.

〈発明の効果〉 以上説明したように本発明によれば高炉羽目から吹込ま
れる微粉炭吹込量の均一化が達成されるので、高炉操業
が安定し、特に高炉操業の燃料比低減に著しい効果を奏
することができる。
<Effects of the Invention> As explained above, according to the present invention, it is possible to equalize the amount of pulverized coal injected from the blast furnace lining, so that the blast furnace operation is stabilized, and in particular, it has a remarkable effect on reducing the fuel ratio in the blast furnace operation. can be played.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施例に係る装置の概略配置を示す
側面図、第2図は第1図に関連する装置の概略配置を示
す平面図、第3図は炉頂ガス中のH,(%)および微粉
炭吹込み速度(kg / m i n )の高炉操業中
における経時変化を本発明法と従来法について比較して
示すwAvである。 1・・・高炉、      2・・・羽口、3・・・ブ
ローバイブ、 4・・・微粉炭吹込みバーナー 5・・・炉頂ガスサンプリング管、 6・・・ロードセル、 7・・・インジェクシロンタンク、 8・・・サービスタンク、 9・・・ガスクロマトグラフィー 10・・・吹込み制御演算器、 11・・・ブースタ配管ライン、 12・・・流量調節器、  13・・・圧力調節器、1
4・・・微粉炭吹込み配管ライン、 15・・・アップテーク管。 第1図
Fig. 1 is a side view showing a schematic arrangement of an apparatus according to an embodiment of the method of the present invention, Fig. 2 is a plan view showing a schematic arrangement of an apparatus related to Fig. 1, and Fig. 3 shows H , (%) and pulverized coal injection rate (kg/min) over time during blast furnace operation for the method of the present invention and the conventional method. 1... Blast furnace, 2... Tuyere, 3... Blow vibe, 4... Pulverized coal injection burner 5... Furnace top gas sampling pipe, 6... Load cell, 7... Injector Chiron tank, 8... Service tank, 9... Gas chromatography 10... Blow control calculator, 11... Booster piping line, 12... Flow rate regulator, 13... Pressure regulator ,1
4...Pulverized coal injection piping line, 15...Uptake pipe. Figure 1

Claims (1)

【特許請求の範囲】[Claims]  高炉羽口へ供給される微粉炭量をロードセルで測定し
つつ吹込むに際し、高炉炉頂ガスを高炉炉頂部に配設さ
れた各々のアップテークから採取して、その水素成分を
分析し、該水素成分の変化情報に基いて各羽口に吹込む
微粉炭の吹込み量を制御することを特徴とする高炉への
微粉炭吹込み制御方法。
When blowing while measuring the amount of pulverized coal supplied to the blast furnace tuyeres with a load cell, blast furnace top gas is collected from each uptake installed at the top of the blast furnace, its hydrogen components are analyzed, and the A method for controlling the injection of pulverized coal into a blast furnace, characterized by controlling the amount of pulverized coal injected into each tuyere based on information on changes in hydrogen components.
JP16678890A 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace Expired - Fee Related JPH079013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16678890A JPH079013B2 (en) 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16678890A JPH079013B2 (en) 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace

Publications (2)

Publication Number Publication Date
JPH0456711A true JPH0456711A (en) 1992-02-24
JPH079013B2 JPH079013B2 (en) 1995-02-01

Family

ID=15837689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16678890A Expired - Fee Related JPH079013B2 (en) 1990-06-27 1990-06-27 Control method of pulverized coal injection into blast furnace

Country Status (1)

Country Link
JP (1) JPH079013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101857909B1 (en) * 2017-02-20 2018-05-14 현대제철 주식회사 Neutral hydrogen gas injection amount control method of blast furnace

Also Published As

Publication number Publication date
JPH079013B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US4687020A (en) Fluid mass flow controller
US8858123B2 (en) Injection system for solid particles
CA1078614A (en) System for gasifying fuels in fine grain form
JP2008038175A (en) Method for injecting powdery material
CN109035059A (en) Ferrous Metallurgy yield measuring method under a kind of blast furnace operating condition
JPH0456711A (en) Method for blowing fine powdered coal into blast furnace
JP6139763B1 (en) Powder parallel blowing system and powder parallel blowing method
KR20110133003A (en) Control systems and methods for controlling a dry feed system to convey a solid fuel
CN102477467A (en) Method for determining coal injection quantity of coal injection system of blast furnace
JP4537953B2 (en) Control method of pulverized coal injection to blast furnace and its control device
JPH11333280A (en) Process and device for flowing type feeder for desired concentration mixed gas formed of two kinds of gases
JP2742001B2 (en) Pulverized coal injection control method
JPH01230706A (en) Method for blowing powdered coal into blast furnace
JPS61159143A (en) Adjusting device for calorific value of natural gas
KR20040011190A (en) Apparatus for controling pressure and air flow of feed hopper for feeding pulverizer coal
JP2000309812A (en) Method for controlling pulverized fine coal level in coal bin in pulverized fine coal blowing equipment in blast furnace
KR101587660B1 (en) Apparatus for controlling pulverized coal injection
CN116700377A (en) Optimized control method for natural gas mixed with mixed gas
CN117568069A (en) Dry pulverized coal pressurized gasification device, coal line coal feeding amount evaluation and correction method and system
JP2001059108A (en) Method for controlling exhaust pressure
JPH02170907A (en) Operational method for blowing powder in blast furnace
JP2668486B2 (en) Blast furnace operation method using hydrogen gas utilization rate
CN104099435B (en) For sleeve pipe coal spouting gun provides oxygen enriching process and the device of the adjustable nitrogen oxygen atmosphere of concentration
JPS6056968B2 (en) Low oxygen combustion method for gaseous fuel
RU2281337C2 (en) Converter melting process automatic control apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees