JP2013019706A - Method and apparatus for measuring utilization rate of blast furnace gas - Google Patents

Method and apparatus for measuring utilization rate of blast furnace gas Download PDF

Info

Publication number
JP2013019706A
JP2013019706A JP2011151330A JP2011151330A JP2013019706A JP 2013019706 A JP2013019706 A JP 2013019706A JP 2011151330 A JP2011151330 A JP 2011151330A JP 2011151330 A JP2011151330 A JP 2011151330A JP 2013019706 A JP2013019706 A JP 2013019706A
Authority
JP
Japan
Prior art keywords
blast furnace
gas
utilization rate
carbon dioxide
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011151330A
Other languages
Japanese (ja)
Inventor
Tomohiko Ito
友彦 伊藤
Junichi Yotsutsuji
淳一 四辻
Hiroharu Kato
宏晴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011151330A priority Critical patent/JP2013019706A/en
Publication of JP2013019706A publication Critical patent/JP2013019706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring a utilization rate of blast furnace gas capable of accurately measuring the utilization rate of the blast furnace gas in a short time.SOLUTION: The method for measuring the utilization rate of the blast furnace gas includes: deriving blast furnace exhaust gas blowing up from a blast furnace lower part via a gas derivation pipe installed at the top of the blast furnace; transmitting/receiving electromagnetic waves with wavelengths matching the absorption wavelengths of carbon monoxide and carbon dioxide in a mid-flow of a flow path formed of the gas derivation pipe; performing a spectral analysis of the transmission/reception signals and calculating the densities of the carbon monoxide and the carbon dioxide on the basis of changes in signal intensities of the frequencies corresponding to the absorption wavelengths; and obtaining the utilization rate of the blast furnace gas on the basis of the calculated densities of the carbon monoxide and the carbon dioxide.

Description

本発明は、高炉炉頂部における炉内ガスのガス利用率を計測する、高炉内ガスのガス利用率計測方法および装置に関するものである。   The present invention relates to a gas utilization rate measurement method and apparatus for blast furnace gas, which measures the gas utilization rate of the furnace gas at the top of the blast furnace furnace.

鉄鋼の生産設備である高炉では、炉頂から鉄鉱石、焼結鉱、コークスなどの原料を装入し、炉下部に設けられた羽口から熱風を吹き込み、鉄鉱石、焼結鉱とコークスの還元反応によって、銑鉄を生産し、炉底部に溜まった銑鉄およびスラグは出銑孔から順次排出される。   In a blast furnace, which is a steel production facility, raw materials such as iron ore, sintered ore, and coke are charged from the top of the furnace, and hot air is blown from the tuyere provided at the bottom of the furnace, and iron ore, sintered ore and coke are mixed. By the reduction reaction, pig iron is produced, and pig iron and slag accumulated in the bottom of the furnace are sequentially discharged from the tap hole.

炉頂部では、所定の平均粒径をもった所定量の装入原料が所定の位置に積層されるように旋回シュートの動きが制御されている。このとき、装入された原料の上面をストックラインと呼ぶ。装入された原料は炉下部での反応が進むにつれ、炉底部に溜まった溶銑が出銑孔から順次排出されるため徐々にストックラインが下がっていき、その上から新たな原料が装入され、新たなストックラインを形成する。   At the top of the furnace, the movement of the turning chute is controlled so that a predetermined amount of charging material having a predetermined average particle diameter is stacked at a predetermined position. At this time, the upper surface of the charged raw material is called a stock line. As the charged raw material progresses at the bottom of the furnace, the hot metal accumulated in the bottom of the furnace is discharged sequentially from the spout hole, so the stock line gradually falls, and new raw material is charged from there. Form a new stock line.

高炉の操業においては、銑鉄を1t生産するのに必要な還元材としてのコークスの量(コークス比)が重要な因子であり、効率的な還元反応が行えるように原料装入を行ってコークス比を小さくできれば二酸化炭素排出量を抑制することができる。高炉ではコークス比をできるだけ減らすような原料の装入方法が取られているものの、二酸化炭素の排出抑制のためにさらなるコークス比の削減が求められている。   In the operation of a blast furnace, the amount of coke as a reducing material (coke ratio) required to produce 1 ton of pig iron is an important factor, and the raw material is charged so that an efficient reduction reaction can be performed. Can be reduced, the amount of carbon dioxide emissions can be suppressed. In the blast furnace, the raw material charging method is used to reduce the coke ratio as much as possible, but further reduction of the coke ratio is required to suppress the emission of carbon dioxide.

高炉で効率よく銑鉄を生産するためには、炉下部での還元反応が炉の中心に近い部分だけでなく、炉の周辺部(炉壁に近い部分)でも反応が起こることが要求される。羽口から吹き込まれる熱風は炉の中心方向に向けて吹き込まれるため、炉壁に近い部分では炉外に熱を放出してしまい炉の中心に近い部分よりも反応性が低下していると考えられる。そこで、羽口から吹き込まれた熱風が、周辺へも十分行き渡るように装入物の装入方法を制御し、装入後の原料の積層状況に適切な分布を持たせることでコークス比を抑制した上で効率的に高炉操業を行うことが可能となる。なお、逆に周辺へのガス流が多くなるのも操業上問題となる。   In order to efficiently produce pig iron in a blast furnace, the reduction reaction at the lower part of the furnace is required to occur not only in the part near the center of the furnace but also in the peripheral part of the furnace (the part near the furnace wall). Since the hot air blown from the tuyere is blown toward the center of the furnace, it is considered that the part near the furnace wall releases heat to the outside of the furnace and the reactivity is lower than the part near the center of the furnace. It is done. Therefore, the coke ratio is controlled by controlling the charging method so that hot air blown from the tuyere spreads to the surroundings and having an appropriate distribution in the stacking conditions of the raw materials after charging. In addition, the blast furnace can be operated efficiently. On the other hand, an increase in gas flow to the surrounding area is also an operational problem.

装入物分布状況が適切なものであるか否かを確認する方法として、高炉の炉下部から吹き上がってくるガス中の一酸化炭素や二酸化炭素の比(ガス利用率)を計測する方法(例えば、特許文献1)がある。炉底部から吹き上がってくるガスのガス利用率を計測することにより原料の装入方法が適切かどうか、また炉内での還元反応が適切に進行しているかどうかを判断することが可能となる。さらには、炉況が不安定となった場合には、ガス利用率が大きく低下することが知られている。   As a method of confirming whether the charge distribution is appropriate, a method of measuring the ratio (gas utilization) of carbon monoxide and carbon dioxide in the gas blowing from the bottom of the blast furnace ( For example, there is Patent Document 1). By measuring the gas utilization rate of the gas blown from the bottom of the furnace, it is possible to judge whether the raw material charging method is appropriate and whether the reduction reaction in the furnace is proceeding properly. . Furthermore, it is known that when the furnace condition becomes unstable, the gas utilization rate is greatly reduced.

炉底部から吹き上がってくるガスのガス利用率を演算するにあたっては、ガス中の一酸化炭素や二酸化炭素の濃度計測が必要である。例えば、特許文献2には、高炉内ガスのサンプリング装置、サンプリングしたガス中の二酸化炭素の濃度による融着帯位置の判定について開示されている。   In calculating the gas utilization rate of the gas blowing from the furnace bottom, it is necessary to measure the concentration of carbon monoxide and carbon dioxide in the gas. For example, Patent Document 2 discloses a blast furnace gas sampling device and determination of a cohesive zone position based on the concentration of carbon dioxide in the sampled gas.

これまでは、高炉炉頂においてガスをサンプリングし、サンプリングされたガスを分析装置まで導入し、ガスクロマトグラフィによってガス中のCO、CO2成分を定量分析し、この分析結果に基づきガス利用率を算出してプロセスコンピュータに送信・記録していた。 Until now, the gas was sampled at the top of the blast furnace furnace, the sampled gas was introduced to the analyzer, the CO and CO 2 components in the gas were quantitatively analyzed by gas chromatography, and the gas utilization rate was calculated based on the analysis results. Sent to the process computer and recorded.

特開昭61−117208号公報JP 61-117208 A 特開2006−249501号公報JP 2006-249501 A

上述したガス利用率計測方法では、分析装置が精密機器のため粉塵などが多い高炉炉体から遠ざけ、専用の部屋を設けて測定を行っている。ガスのサンプリングを行う場所から分析装置まではガス管によって搬送されるが、距離が長く、またガスクロマトグラフィによる分析にも時間がかかる。ある瞬間にサンプリングされたガスの分析が終了するまでには、数10分程度の時間を要している。このようにガス利用率をリアルタイムに計測できていないため、装入物分布の効果の確認や、炉況悪化を検知するのに時間がかかってしまうという問題があった。   In the gas utilization rate measuring method described above, the analyzer is a precision instrument, so that the analyzer is kept away from the blast furnace body where there is a lot of dust, and a dedicated room is provided for measurement. Although it is transported by gas pipes from the place where gas sampling is performed to the analyzer, the distance is long and analysis by gas chromatography also takes time. It takes several tens of minutes to complete the analysis of the gas sampled at a certain moment. As described above, since the gas utilization rate cannot be measured in real time, there is a problem that it takes time to confirm the effect of the charge distribution and to detect the deterioration of the furnace condition.

なお、炉内で二酸化炭素濃度を直接測定するとした場合には、高炉内部では粉塵が密度濃く飛散しているため、二酸化炭素の吸収スペクトルがある赤外線領域の電磁波は反射されてしまい十分な精度が得られないと考えられる。また、原料からの輻射熱も測定に大きく影響すると考えられる。   If the carbon dioxide concentration is measured directly in the furnace, the dust is scattered with high density inside the blast furnace, so the electromagnetic wave in the infrared region where the absorption spectrum of carbon dioxide is reflected is reflected and sufficient accuracy is obtained. It is thought that it cannot be obtained. In addition, the radiant heat from the raw material is considered to greatly affect the measurement.

本発明では、これら従来技術の問題点に鑑み、短時間にかつ正確に高炉内ガスのガス利用率を計測することができる、高炉内ガスのガス利用率計測方法および装置を提供することを課題とする。   In the present invention, in view of the problems of these conventional techniques, it is an object to provide a gas utilization rate measuring method and apparatus for blast furnace gas that can measure the gas utilization rate of blast furnace gas accurately in a short time. And

上記課題は、以下の発明によって解決できる。   The above problems can be solved by the following invention.

[1] 高炉炉頂部に設置したガス導出管から高炉下部から吹き上がってくる高炉排出ガスを導出し、
前記ガス導出管で形成される流路途中において、一酸化炭素および二酸化炭素の吸収波長に一致する波長の電磁波を送受信し、
該送受信信号のスペクトル解析を行い、前記吸収波長に対応する周波数の信号強度の変化から一酸化炭素および二酸化炭素の濃度を算出し、
算出した一酸化炭素および二酸化炭素の濃度に基づき、高炉排出ガスのガス利用率を求めることを特徴とする高炉内ガスのガス利用率計測方法。
[1] Deriving the blast furnace exhaust gas blowing from the bottom of the blast furnace from the gas outlet pipe installed at the top of the blast furnace furnace,
In the middle of the flow path formed by the gas outlet pipe, electromagnetic waves having a wavelength that matches the absorption wavelength of carbon monoxide and carbon dioxide are transmitted and received,
Performing spectrum analysis of the transmitted / received signal, calculating the concentration of carbon monoxide and carbon dioxide from the change in signal intensity of the frequency corresponding to the absorption wavelength,
A gas utilization rate measurement method for gas in a blast furnace, wherein the gas utilization rate of blast furnace exhaust gas is obtained based on the calculated concentrations of carbon monoxide and carbon dioxide.

[2] 上記[1]に記載の高炉内ガスのガス利用率計測方法において、
一酸化炭素および二酸化炭素の濃度は、下記(1)式に基づき算出し、
高炉排出ガスのガス利用率は、下記(2)式に基づき求めることを特徴とする高炉内ガスのガス利用率計測方法。
[2] In the gas utilization rate measuring method for blast furnace gas according to [1] above,
The concentrations of carbon monoxide and carbon dioxide are calculated based on the following formula (1):
A gas utilization rate measurement method for gas in a blast furnace, wherein the gas utilization rate of blast furnace exhaust gas is obtained based on the following equation (2).

[3] 高炉下部から吹き上がってくる高炉排出ガスを導出する、高炉炉頂部に設置したガス導出管と、
一酸化炭素および二酸化炭素の吸収波長に一致する波長の電磁波を送受信する、前記ガス導出管で形成される流路途中に設置した電磁波送信手段および電磁波受信手段と、
該電磁波送信手段および電磁波受信手段からの送受信信号のスペクトル解析を行うスペクトル解析手段と、
前記吸収波長に対応する周波数の信号強度の変化から一酸化炭素および二酸化炭素の濃度を算出し、算出した一酸化炭素および二酸化炭素の濃度に基づき高炉排出ガスのガス利用率を求める、信号演算手段とを具備することを特徴とする高炉内ガスのガス利用率計測装置。
[3] A gas outlet pipe installed at the top of the blast furnace for extracting the blast furnace exhaust gas blowing from the bottom of the blast furnace;
An electromagnetic wave transmitting means and an electromagnetic wave receiving means installed in the middle of the flow path formed by the gas outlet tube, for transmitting and receiving electromagnetic waves having a wavelength corresponding to the absorption wavelength of carbon monoxide and carbon dioxide;
Spectrum analysis means for performing spectrum analysis of transmission / reception signals from the electromagnetic wave transmission means and electromagnetic wave reception means;
Signal calculating means for calculating concentrations of carbon monoxide and carbon dioxide from changes in signal intensity at a frequency corresponding to the absorption wavelength, and obtaining a gas utilization rate of blast furnace exhaust gas based on the calculated concentrations of carbon monoxide and carbon dioxide And a gas utilization rate measuring device for blast furnace gas.

本発明によれば、装入原料の粒子間を上昇してきた高炉内ガスのガス利用率をリアルタイムに計測できるので、結果を操業への反映を短時間のうちに行うことができる。また、波長の長い電磁波を用いるので、高炉内部の粉塵飛散があっても精度よく計測が行える。   According to the present invention, since the gas utilization rate of the blast furnace gas that has risen between the particles of the charging raw material can be measured in real time, the result can be reflected in the operation in a short time. In addition, since electromagnetic waves having a long wavelength are used, even if there is dust scattering inside the blast furnace, accurate measurement can be performed.

本発明を実施するための1実施形態を示す図である。It is a figure showing one embodiment for carrying out the present invention. 本実施例における装置構成例を示す図である。It is a figure which shows the apparatus structural example in a present Example. 一酸化炭素ガスおよび二酸化炭素ガスの送受信波スペクトルの一例を示す図である。It is a figure which shows an example of the transmission-and-reception wave spectrum of carbon monoxide gas and carbon dioxide gas. 本発明によるガス利用率計測結果の一例を示す図である。It is a figure which shows an example of the gas utilization factor measurement result by this invention.

高炉の炉頂ガスの内、COガスでは回転遷移による吸収が、CO2ガスでは振動遷移による吸収が発生し、遠赤外領域よりも長い波長の電磁波をそれぞれ吸収する。例えば、COガスでは周波数115GHzに吸収スペクトルが、CO2ガスでは波数(周波数)667cm-1、1388cm-1、2349cm-1に吸収スペクトルがあることが知られている。 Among the blast furnace top gas, CO gas absorbs due to rotational transition, and CO 2 gas absorbs due to vibrational transition, and absorbs electromagnetic waves with longer wavelengths than the far infrared region. For example, it is known that CO gas has an absorption spectrum at a frequency of 115 GHz, and CO 2 gas has absorption spectra at wave numbers (frequencies) of 667 cm −1 , 1388 cm −1 , and 2349 cm −1 .

図1は、本発明を実施するための1実施形態を示す図である。1は旋回シュート、2は鉄鉱石、3はコークス、4は高炉排出ガス、5はガス導出管、6は電磁波送信手段、および7は電磁波受信手段をそれぞれ表している。   FIG. 1 is a diagram showing an embodiment for carrying out the present invention. 1 is a turning chute, 2 is iron ore, 3 is coke, 4 is blast furnace exhaust gas, 5 is a gas outlet pipe, 6 is an electromagnetic wave transmitting means, and 7 is an electromagnetic wave receiving means.

高炉炉頂部から旋回シュート1により、主な原料である鉄鉱石2およびコークス3が高炉炉内に積層するように装入されている様子を模式的に示している。高炉の炉壁上にガス導出管5を接続し、ここに高炉の炉下部から吹き上がってくる高炉排出ガス4を導き入れる。   A state in which the iron ore 2 and the coke 3 as main raw materials are charged so as to be stacked in the blast furnace furnace is schematically shown by the turning chute 1 from the top of the blast furnace furnace. A gas outlet pipe 5 is connected to the furnace wall of the blast furnace, and the blast furnace exhaust gas 4 blowing up from the lower part of the blast furnace is introduced into the gas outlet pipe 5.

ガス導出管の抵抗による圧損が大きく十分にガス導出ができない場合は、管径を大きくする、または、ポンプで管にガスを導入することが考えられる。また、既存のゾンデなどを使用することも可能である。そして、管の材質は、金属にしておくことで効率的な信号伝搬が行えるのでより正確な測定が行える。   If the pressure loss due to the resistance of the gas outlet pipe is large and the gas cannot be sufficiently extracted, it is possible to increase the pipe diameter or introduce the gas into the pipe with a pump. It is also possible to use an existing sonde or the like. Since the tube material is made of metal, efficient signal propagation can be performed, so that more accurate measurement can be performed.

ガス導出管5で形成される流路途中に、一酸化炭素測定用と二酸化炭素測定用に電磁波送信手段6と電磁波受信手段7をそれぞれ一対設ける。なお、一酸化炭素測定用の電磁波送受信手段としてはホーンアンテナ、そして二酸化炭素測定用の電磁波送受信手段としては赤外線送受信手段を用いるのがよい。   A pair of electromagnetic wave transmitting means 6 and electromagnetic wave receiving means 7 are provided in the middle of the flow path formed by the gas outlet pipe 5 for measuring carbon monoxide and measuring carbon dioxide. It is preferable to use a horn antenna as the electromagnetic wave transmission / reception means for measuring carbon monoxide and an infrared transmission / reception means as the electromagnetic wave transmission / reception means for measuring carbon dioxide.

発生信号と受信信号には、以下の(1)式で示されるランベルト-ベール則が成り立つ。   The Lambert-Beer law expressed by the following equation (1) holds for the generated signal and the received signal.

(1)式で一酸化炭素ガスおよび二酸化炭素ガスの濃度が求められれば、これらを用いて(2)式でガス利用率が演算される。   If the concentrations of carbon monoxide gas and carbon dioxide gas are obtained by equation (1), the gas utilization rate is calculated by equation (2) using these.

図2は、本実施例における装置構成例を示す図である。図中の8は信号発生手段、9はスペクトル解析手段、10は信号演算手段、および11は記録手段をそれぞれ表し、1〜7の符号は図1と同じである。   FIG. 2 is a diagram illustrating a device configuration example according to the present embodiment. In the figure, 8 is a signal generating means, 9 is a spectrum analyzing means, 10 is a signal calculating means, and 11 is a recording means, and the reference numerals 1 to 7 are the same as those in FIG.

ガス導出管5の途中に、一酸化炭素ガスおよび二酸化炭素ガス用に、それぞれ電磁波送信手段6と電磁波受信手段7を設置した。簡単のため、それぞれの電磁波送信手段と電磁波受信手段は、一直線上になるように設置したが、管を分岐させ並列に配置して測定を行っても、問題はない。   In the middle of the gas outlet pipe 5, an electromagnetic wave transmitting means 6 and an electromagnetic wave receiving means 7 were installed for carbon monoxide gas and carbon dioxide gas, respectively. For simplicity, the electromagnetic wave transmitting means and the electromagnetic wave receiving means are installed so as to be in a straight line, but there is no problem even if the measurement is performed by branching the tubes and arranging them in parallel.

一酸化炭素ガスおよび二酸化炭素ガス用それぞれ電磁波送信手段6には、信号発生手段8がそれぞれ接続され、この信号発生手段では一酸化炭素の吸収周波数である115GHzの正弦波、および二酸化炭素の吸収波数(周波数)667cm-1、1388cm-1、2349cm-1の正弦波をそれぞれ信号生成する。 A signal generating means 8 is connected to each of the electromagnetic wave transmitting means 6 for carbon monoxide gas and carbon dioxide gas. In this signal generating means, a sine wave of 115 GHz which is an absorption frequency of carbon monoxide, and an absorption wave number of carbon dioxide. (frequency) 667cm -1, 1388cm -1, respectively signal generates a sine wave of 2349cm -1.

信号発生手段8および電磁波受信手段7からの発生信号と受信信号は、スペクトル解析手段9に送られ、ここでそれぞれの信号強度が解析され、解析された信号強は信号演算手段10に送られ、前述の(1)および(2)式にてガス利用率が演算される。そして、演算されたガス利用率は、記録手段11で記録される。   The generated signal and the received signal from the signal generating means 8 and the electromagnetic wave receiving means 7 are sent to the spectrum analyzing means 9, where each signal strength is analyzed, and the analyzed signal strength is sent to the signal calculating means 10, The gas utilization rate is calculated by the aforementioned equations (1) and (2). Then, the calculated gas utilization rate is recorded by the recording means 11.

図3は、一酸化炭素ガスおよび二酸化炭素ガスの送受信波スペクトルの一例を示す図である。どちらのガスも送信信号に対して、気体分子による吸収によって受信信号は小さくなっている。   FIG. 3 is a diagram illustrating an example of transmission / reception wave spectra of carbon monoxide gas and carbon dioxide gas. In both gases, the received signal is smaller than the transmitted signal due to absorption by gas molecules.

また、図4は、本発明によるガス利用率計測結果の一例を示す図である。24時間にわたるガス利用率の時間推移例を示しており、これまで数10分程度の時間を要していたのに対して、本発明では数秒で処理が済みほぼリアルタイムでの計測が可能となった。また、これまでの離散的な計測結果と比べても遜色のない測定精度であることも確認できた。これにより、操業への反映を短時間のうちに適切に行うことができた。   Moreover, FIG. 4 is a figure which shows an example of the gas utilization factor measurement result by this invention. The example shows the time transition of the gas utilization rate over 24 hours, and it took about several tens of minutes so far. In the present invention, however, the processing is completed in a few seconds, and almost real time measurement is possible. It was. It was also confirmed that the measurement accuracy is comparable to the previous discrete measurement results. As a result, it was possible to appropriately reflect the operation in a short time.

1 旋回シュート
2 鉄鉱石
3 コークス
4 高炉排出ガス
5 ガス導出管
6 電磁波送信手段
7 電磁波受信手段
8 信号発生手段
9 スペクトル解析手段
10 信号演算手段
11 記録手段
DESCRIPTION OF SYMBOLS 1 Turning chute 2 Iron ore 3 Coke 4 Blast furnace exhaust gas 5 Gas lead-out pipe 6 Electromagnetic wave transmission means 7 Electromagnetic wave reception means 8 Signal generation means 9 Spectrum analysis means 10 Signal calculation means 11 Recording means

Claims (3)

高炉炉頂部に設置したガス導出管から高炉下部から吹き上がってくる高炉排出ガスを導出し、
前記ガス導出管で形成される流路途中において、一酸化炭素および二酸化炭素の吸収波長に一致する波長の電磁波を送受信し、
該送受信信号のスペクトル解析を行い、前記吸収波長に対応する周波数の信号強度の変化から一酸化炭素および二酸化炭素の濃度を算出し、
算出した一酸化炭素および二酸化炭素の濃度に基づき、高炉排出ガスのガス利用率を求めることを特徴とする高炉内ガスのガス利用率計測方法。
Deriving the blast furnace exhaust gas blowing from the bottom of the blast furnace from the gas outlet pipe installed at the top of the blast furnace furnace,
In the middle of the flow path formed by the gas outlet pipe, electromagnetic waves having a wavelength that matches the absorption wavelength of carbon monoxide and carbon dioxide are transmitted and received,
Performing spectrum analysis of the transmitted / received signal, calculating the concentration of carbon monoxide and carbon dioxide from the change in signal intensity of the frequency corresponding to the absorption wavelength,
A gas utilization rate measurement method for gas in a blast furnace, wherein the gas utilization rate of blast furnace exhaust gas is obtained based on the calculated concentrations of carbon monoxide and carbon dioxide.
請求項1に記載の高炉内ガスのガス利用率計測方法において、
一酸化炭素および二酸化炭素の濃度は、下記(1)式に基づき算出し、
高炉排出ガスのガス利用率は、下記(2)式に基づき求めることを特徴とする高炉内ガスのガス利用率計測方法。
In the gas utilization rate measuring method of the gas in a blast furnace according to claim 1,
The concentrations of carbon monoxide and carbon dioxide are calculated based on the following formula (1):
A gas utilization rate measurement method for gas in a blast furnace, wherein the gas utilization rate of blast furnace exhaust gas is obtained based on the following equation (2).
高炉下部から吹き上がってくる高炉排出ガスを導出する、高炉炉頂部に設置したガス導出管と、
一酸化炭素および二酸化炭素の吸収波長に一致する波長の電磁波を送受信する、前記ガス導出管で形成される流路途中に設置した電磁波送信手段および電磁波受信手段と、
該電磁波送信手段および電磁波受信手段からの送受信信号のスペクトル解析を行うスペクトル解析手段と、
前記吸収波長に対応する周波数の信号強度の変化から一酸化炭素および二酸化炭素の濃度を算出し、算出した一酸化炭素および二酸化炭素の濃度に基づき高炉排出ガスのガス利用率を求める、信号演算手段とを具備することを特徴とする高炉内ガスのガス利用率計測装置。
A gas outlet pipe installed at the top of the blast furnace for extracting the blast furnace exhaust gas blowing from the bottom of the blast furnace;
An electromagnetic wave transmitting means and an electromagnetic wave receiving means installed in the middle of the flow path formed by the gas outlet tube, for transmitting and receiving electromagnetic waves having a wavelength corresponding to the absorption wavelength of carbon monoxide and carbon dioxide;
Spectrum analysis means for performing spectrum analysis of transmission / reception signals from the electromagnetic wave transmission means and electromagnetic wave reception means;
Signal calculating means for calculating concentrations of carbon monoxide and carbon dioxide from changes in signal intensity at a frequency corresponding to the absorption wavelength, and obtaining a gas utilization rate of blast furnace exhaust gas based on the calculated concentrations of carbon monoxide and carbon dioxide And a gas utilization rate measuring device for blast furnace gas.
JP2011151330A 2011-07-08 2011-07-08 Method and apparatus for measuring utilization rate of blast furnace gas Pending JP2013019706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011151330A JP2013019706A (en) 2011-07-08 2011-07-08 Method and apparatus for measuring utilization rate of blast furnace gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011151330A JP2013019706A (en) 2011-07-08 2011-07-08 Method and apparatus for measuring utilization rate of blast furnace gas

Publications (1)

Publication Number Publication Date
JP2013019706A true JP2013019706A (en) 2013-01-31

Family

ID=47691294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011151330A Pending JP2013019706A (en) 2011-07-08 2011-07-08 Method and apparatus for measuring utilization rate of blast furnace gas

Country Status (1)

Country Link
JP (1) JP2013019706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117605A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Gas treatment apparatus and operation method using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226109A (en) * 1983-06-07 1984-12-19 Nippon Steel Corp Detection of temperature distribution in blast furnace
JPH01142008A (en) * 1987-11-30 1989-06-02 Nkk Corp Operation of blast furnace
JPH0572130A (en) * 1991-09-18 1993-03-23 Shimadzu Corp Two-component gas analyzer
JPH09178655A (en) * 1995-12-26 1997-07-11 Shimadzu Corp Infrared gas analyzer
JP2000212618A (en) * 1999-01-21 2000-08-02 Nisshin Steel Co Ltd Operation of blast furnace
JP2006153543A (en) * 2004-11-26 2006-06-15 Yazaki Corp Device for supporting optical path length setting, and concentration measuring system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226109A (en) * 1983-06-07 1984-12-19 Nippon Steel Corp Detection of temperature distribution in blast furnace
JPH01142008A (en) * 1987-11-30 1989-06-02 Nkk Corp Operation of blast furnace
JPH0572130A (en) * 1991-09-18 1993-03-23 Shimadzu Corp Two-component gas analyzer
JPH09178655A (en) * 1995-12-26 1997-07-11 Shimadzu Corp Infrared gas analyzer
JP2000212618A (en) * 1999-01-21 2000-08-02 Nisshin Steel Co Ltd Operation of blast furnace
JP2006153543A (en) * 2004-11-26 2006-06-15 Yazaki Corp Device for supporting optical path length setting, and concentration measuring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117605A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Gas treatment apparatus and operation method using same

Similar Documents

Publication Publication Date Title
Huang et al. EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM
TWI643957B (en) Estimation method of phosphorus concentration in molten steel and converter blowing control device
CN109975274A (en) A kind of blast furnace molten iron silicon content on-line quick detection device
CN103582705B (en) Exhaust gas recovery device for converter furnace and method for recovering exhaust gas for converter furnace
KR20070043690A (en) Non-contact exhaust gas measurement by means of ftir spectroscopy on metallurgical plants
JP6897261B2 (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program and recording medium
CN103667740B (en) Automatic control system for copper converter converting
CN101706422A (en) Infrared carbon and sulfur determination analyzer
JP6716893B2 (en) Gas sampling device, gas analysis device, gas sampling method, and gas analysis method
JP2013019706A (en) Method and apparatus for measuring utilization rate of blast furnace gas
JP2019163986A (en) Coke analysis method
JP6825711B2 (en) Molten component estimation device, molten metal component estimation method, and molten metal manufacturing method
CN204479370U (en) The top blowing oxygen device of high frequency infrared ray carbon sulphur analyser
CN109632854B (en) Massive uranium ore multi-element online X fluorescence analyzer with double detection structures
CN103667741B (en) Copper converter converting control system
Zhai et al. Detection of chlorpyrifos on spinach based on surface enhanced Raman spectroscopy with silver colloids
CN201615897U (en) On-line analytical device for inclusion in molten steel
JPH0815153A (en) Method and apparatus for laser emission spectroscopic analysis
JP6160283B2 (en) Slapping prediction method in converter blowing.
JP5482369B2 (en) Gas flow velocity measuring method and gas flow velocity measuring device
TWI796975B (en) Refractory inspection method
CN110632057A (en) Flux addition control system and method based on ultraviolet Raman spectrum analysis
JP7111282B1 (en) Slag component analysis method, slag basicity analysis method and molten iron refining method
Mei et al. Analysis of characteristics of Si in blast furnace pig iron and calibration methods in the detection by laser-induced breakdown spectroscopy
CN109187260B (en) Detection method and detection system for rapidly determining coal-coke ratio in blast furnace dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150303