JPH0815153A - Method and apparatus for laser emission spectroscopic analysis - Google Patents
Method and apparatus for laser emission spectroscopic analysisInfo
- Publication number
- JPH0815153A JPH0815153A JP14345394A JP14345394A JPH0815153A JP H0815153 A JPH0815153 A JP H0815153A JP 14345394 A JP14345394 A JP 14345394A JP 14345394 A JP14345394 A JP 14345394A JP H0815153 A JPH0815153 A JP H0815153A
- Authority
- JP
- Japan
- Prior art keywords
- lance
- laser
- laser emission
- melt sample
- emission spectroscopic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レーザ発光分光分析方
法及びその装置に関し、詳しくはレーザ照射用ランス先
端部と分析対象試料である溶融金属等の溶融物試料表面
との距離を自動調整しながら分析する方法及びその方法
を実施する装置に係わる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser emission spectroscopic analysis method and an apparatus therefor, and more specifically, it automatically adjusts the distance between a laser irradiation lance tip and the surface of a melt sample such as molten metal which is a sample to be analyzed. However, the present invention relates to a method for analysis and an apparatus for performing the method.
【0002】[0002]
【従来の技術】溶融金属等溶融物中の元素、例えば溶鋼
中のマンガン、炭素、硫黄、燐等、を発光分光分析する
方法としては、従来より該溶融金属の一部を採取し、急
冷凝固させた所謂固体試料をアーク、スパーク、グロー
などの放電現象を利用して分析するものや高周波誘導プ
ラズマを利用するものが知られている。しかし、それら
の方法では精錬工程においてオンラインで早急に成分情
報を得るには分析所要時間が長く不都合であり、溶融状
態にある試料で直接発光分光分析する方法の研究開発も
盛んに行われ、現在はアーク放電、スパーク放電、酸素
火点やレーザ等を利用する方法が提案されている。2. Description of the Related Art As a method for emission spectroscopic analysis of elements in a molten material such as molten metal, for example, manganese, carbon, sulfur, phosphorus in molten steel, a part of the molten metal has been conventionally collected and rapidly solidified. There are known ones that analyze a so-called solid sample made by utilizing discharge phenomena such as arc, spark, and glow, and one that uses high-frequency induction plasma. However, these methods are inconvenient because the analysis time is long and inconvenient to obtain the component information immediately in the refining process online, and the research and development of the method for direct emission spectroscopic analysis on the sample in the molten state have been actively conducted. Has proposed a method using arc discharge, spark discharge, oxygen fire point, laser, or the like.
【0003】その中で、レーザ発光分光分析法は、特開
昭58−219439号公報に開示されているように、
溶銑、溶鋼、溶融亜鉛めっき等の溶融金属中、また、溶
融スラグ等の溶融物中の成分のオンラインでの連続分析
法として注目されている。その理由は、アーク放電、ス
パーク放電、酸素火点等に比べて定量下限が低い利点を
有するためである。Among them, the laser emission spectral analysis method is disclosed in Japanese Patent Application Laid-Open No. 58-219439.
It has attracted attention as an online continuous analysis method for components in molten metals such as hot metal, molten steel and hot dip galvanizing, and in molten materials such as molten slag. The reason is that it has an advantage that the lower limit of quantification is lower than that of arc discharge, spark discharge, oxygen fire point and the like.
【0004】ところが、該レーザ発光分光分析法には、
照射レーザのエネルギー密度や発光したスペクトル線の
強度を一定に保つため、即ち分析精度の向上のために、
前記レーザ照射用ランス(以下、ランスという)と溶融
物試料表面との間の距離を調整することが非常に重要で
あり、従来は、分析の際には、一旦レーザ発振と分析・
測定を停止し、目視によって上記距離を測定して調整す
る作業を必要とする欠点があった。例えば、鋼板の溶融
亜鉛めっき操業においては、めっき液の経時的消費で亜
鉛インゴットの補給が必要でめっき浴面が連続的に変動
するので、オンラインで分析する場合は頻繁に上記ラン
スと浴面間の距離を一定に保つ作業をしなければなら
ず、分析作業が非常に煩雑であった。However, in the laser emission spectroscopic analysis method,
In order to keep the energy density of the irradiation laser and the intensity of the emitted spectral lines constant, that is, in order to improve the analysis accuracy,
It is very important to adjust the distance between the laser irradiation lance (hereinafter referred to as “lance”) and the surface of the melt sample. Conventionally, during analysis, laser oscillation and analysis /
There is a drawback that it is necessary to stop the measurement and visually measure and adjust the distance. For example, in the hot dip galvanizing operation of steel sheets, the zinc bath is continuously replenished due to the consumption of the plating solution over time, and the plating bath surface changes continuously. It was necessary to keep the distance between the two constant, and the analysis work was very complicated.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記従来技
術の有する問題を解決し、上記ランス先端と溶融金属等
の溶融物試料表面間の距離を自動的に調整しつつ分析す
るレーザ発光分光分析方法及びその方法の実施に利用で
きる装置の提供を目的としている。DISCLOSURE OF THE INVENTION The present invention solves the problems of the above-mentioned prior art, and laser emission spectroscopy for analyzing while automatically adjusting the distance between the lance tip and the surface of a melt sample such as molten metal. It is an object of the present invention to provide an analytical method and a device that can be used for carrying out the method.
【0006】[0006]
【課題を解決するための手段】発明者は、上記目的を達
成するため、非接触方式の距離測定器を利用して上記距
離を自動調整することに着眼し、距離測定器としては超
音波距離計を採用した。非接触方式の距離測定器として
は、音波の他に光を利用するものもあるが、光式距離計
は応答時間が短い利点が精度の良すぎる装置を要求し、
製作に際してはコストが掛かる欠点となる。上記目的達
成のためには、音波による応答速度で十分であるので、
本発明では超音波距離計を選択した。In order to achieve the above-mentioned object, the inventor has focused on automatically adjusting the above distance using a non-contact type distance measuring device. Adopted the total. As a non-contact distance measuring device, there are some that use light in addition to sound waves, but the optical distance meter requires a device with too good accuracy because of its short response time.
This is a disadvantage in that it is costly to manufacture. In order to achieve the above purpose, since the response speed by sound waves is sufficient,
In the present invention, an ultrasonic range finder is selected.
【0007】ところが、通常、溶銑、溶鋼、溶融亜鉛め
っき浴をオンラインで分析する場所は高温で、また雰囲
気温度の変動も激しい。そのため、実際に超音波距離計
で上記距離を測定してみると、雰囲気温度の変化による
超音波速度の変動があった。すなわち、溶融試料上の雰
囲気温度が100℃程度変動しても超音波の速度は変動
し、その結果、みかけの測定距離が変動し、その値に基
づき該距離を調整すると、溶融物試料面でのレーザのエ
ネルギー密度が異なり、レーザ発光分光分析の分析値に
変動を与えた。そこで、発明者は、上記温度変動を是正
することに鋭意努力し、後述の補正方法を考え、本発明
を完成させたのである。すなわち、本発明は、レーザ照
射用ランスを介して、レーザ光を溶融物試料面に照射
し、発生したプラズマの発光を分光させて得たスペクト
ル線の強度を測定して該溶融物試料中に含まれる元素を
分析するレーザ発光分光分析方法において、上記溶融物
試料面に超音波を別途照射し、その反射波を検出して該
溶融物試料面高さを測定し、上記レーザ照射用ランス先
端と溶融物試料面間の距離を一定に保つことを特徴とす
るレーザ発光分光分析方法である。また、本発明は、上
記レーザ照射用ランス先端と溶融物試料面間の距離Lを
自動的にL±0.05L以内で一定に保つことを特徴と
する請求項1記載のレーザ発光分光分析方法でもあり、
さらに、該溶融物試料面上方の雰囲気温度変化に起因す
る超音波速度の変動を補正することを特徴とする請求項
2記載のレーザ発光分光分析方法である。However, the place where hot metal, molten steel, and hot dip galvanizing bath are analyzed online is usually at a high temperature and the ambient temperature fluctuates greatly. Therefore, when the above distance was actually measured with an ultrasonic range finder, there was a change in the ultrasonic velocity due to a change in ambient temperature. That is, even if the ambient temperature on the molten sample fluctuates by about 100 ° C., the speed of the ultrasonic wave fluctuates, and as a result, the apparent measurement distance fluctuates. The energy density of the laser was different, and the analysis value of the laser emission spectroscopic analysis was changed. Therefore, the inventor made diligent efforts to correct the above-mentioned temperature fluctuation, and considered the correction method described later to complete the present invention. That is, the present invention irradiates the melt sample surface with laser light through a laser irradiation lance and measures the intensity of a spectral line obtained by dispersing the emission of the generated plasma to measure in the melt sample. In the laser emission spectroscopic analysis method for analyzing the contained elements, the melt sample surface is separately irradiated with ultrasonic waves, the reflected wave is detected to measure the melt sample surface height, and the laser irradiation lance tip is used. Is a laser emission spectroscopic analysis method characterized in that the distance between the melt sample surface and the melt sample surface is kept constant. Further, according to the present invention, the distance L between the laser irradiation lance tip and the melt sample surface is automatically kept constant within L ± 0.05 L. But also
The laser emission spectral analysis method according to claim 2, further comprising: correcting a change in ultrasonic velocity due to a change in ambient temperature above the surface of the melt sample.
【0008】上記方法の実施に利用できる装置としての
本発明は、レーザ発振器、集光レンズを内部に備えたレ
ーザ照射用ランス、分光器、測光器、及び計算機からな
るレーザ発光分光分析装置において、上記溶融物試料高
さを測定する超音波発生・受信器と、その測定値に基づ
き上記レーザ照射用ランス位置の修正量を求める演算手
段と、その演算結果で該ランスを自動的に上下に移動さ
せる昇降手段とを配設したことを特徴とするレーザ発光
分光分析装置である。The present invention, which is an apparatus that can be used for implementing the above method, provides a laser emission spectroscopic analysis apparatus comprising a laser oscillator, a laser irradiation lance having a condenser lens inside, a spectroscope, a photometer, and a computer. An ultrasonic wave generator / receiver for measuring the height of the melt sample, a calculation means for obtaining a correction amount of the lance position for laser irradiation based on the measured value, and the lance is automatically moved up and down based on the calculation result. A laser emission spectroscopic analysis device is characterized in that it is provided with a raising and lowering means.
【0009】また、本発明は、上記ランス位置の移動手
段に代え、上記集光レンズの移動機構を備えたことを特
徴とする請求項4記載のレーザ発光分光分析装置でもあ
り、さらに、上記レーザ発光分光分析装置に、温度検出
器と、その温度測定値に基づき超音波の速度変動を補正
する演算手段とを配設したことを特徴とする請求項4又
は5記載のレーザ発光分光分析装置でもある。The present invention is also the laser emission spectroscopic analyzer according to claim 4, characterized in that a moving mechanism for the condenser lens is provided in place of the moving means for the lance position. The laser emission spectrum analyzer according to claim 4 or 5, wherein the emission spectrum analyzer is provided with a temperature detector and an arithmetic means for correcting the velocity fluctuation of the ultrasonic wave based on the temperature measurement value. is there.
【0010】この場合、超音波発信・受信器、温度検出
器は、上記ランスに直接取付けても、あるいは別途離れ
た一定位置に設けても良い。なお、本発明は、溶鋼、溶
融亜鉛めっき等の溶融金属、溶融スラグ等溶融物のオン
ライン分析に用いられるが、特に湯面及び/又は雰囲気
温度が変動する溶融物のオンライン分析に好適に用いら
れる。また、本発明は、前記溶融亜鉛めっき等以外に
も、溶鋼のRH真空脱ガス等の高度な二次吹錬における
溶鋼のオンライン分析にも好適に用いることができる。
これは、真空吸引で湯面が経時的に変動したり、熱源が
ないため溶鋼温度が低下して雰囲気温度が変動しても、
本発明はそれらの変動に対処できるからである。In this case, the ultrasonic transmitter / receiver and the temperature detector may be directly attached to the lance or may be separately provided at fixed positions. The present invention is used for online analysis of molten steel, molten metal such as hot dip galvanizing, molten slag and other molten materials, and is particularly preferably used for online analysis of molten materials in which the molten metal surface and / or the ambient temperature fluctuates. . In addition to the hot dip galvanizing and the like, the present invention can be suitably used for on-line analysis of molten steel in advanced secondary blowing such as RH vacuum degassing of molten steel.
This is because even if the molten steel temperature changes due to vacuum suction or the molten steel temperature decreases due to the lack of a heat source and the ambient temperature changes,
This is because the present invention can deal with those variations.
【0011】さらに、本発明は、高炉の溶銑樋における
溶銑のオンライン分析、高炉スラグあるいは転炉スラグ
処理現場でのオンライン分析にも好適に用いることがで
きる。溶銑樋を流れる溶銑は、出銑量が経時的に変化し
湯面や温度が変動し、高炉スラグ、転炉スラグの処理現
場でも同様の現象が起きても、上記同様に本発明で分析
可能なのである。Further, the present invention can be preferably used for on-line analysis of hot metal in hot metal gutter of blast furnace and online analysis at blast furnace slag or converter slag processing site. The hot metal flowing through the hot metal gutter can be analyzed by the present invention in the same manner as described above even if the amount of hot metal changes with time and the level and temperature of the molten metal change That is why.
【0012】特に、本発明が溶融物の分析に好適に用い
られる理由は、溶融物の場合、破壊検査の一種であるレ
ーザ発光分光分析を適用しても、鋼板等のように、固体
へ傷をつけるという問題が生じないからである。In particular, the reason why the present invention is suitably used for analysis of a melt is that in the case of a melt, even if a laser emission spectroscopic analysis, which is a kind of destructive inspection, is applied, it is possible to scratch a solid such as a steel plate. This is because the problem of turning on does not occur.
【0013】[0013]
【作用】本発明では、レーザ照射用ランスを介して、レ
ーザ光を溶融金属等の溶融物試料面に照射し、発生した
プラズマの発光を分光させて得たスペクトル線の強度を
測定して該溶融物試料中に含まれる元素を分析するレー
ザ発光分光分析方法において、上記溶融物試料面に超音
波を別途照射し、その反射波を検出して該溶融物試料面
高さを測定し、上記レーザ照射用ランス先端又はランス
内部の集光レンズと溶融物試料面間の距離を一定に保つ
ようにし、具体的には上記距離Lを自動的にL±0.0
5L以内にし、さらに雰囲気の温度変化を検出し雰囲気
の温度変化による超音波の速度の変動を補正しするよう
にしたので、分析精度が従来より著しく向上した。ま
た、本発明では、レーザ発振器、集光レンズを内部に備
えたレーザ照射用ランス、分光器、測光器、及び計算機
からなるレーザ発光分光分析装置において、上記溶融物
試料高さを測定する超音波発生・受信器と、その測定値
に基づき上記レーザ照射用ランス位置の修正量を求める
演算手段と、その演算結果で該ランスを自動的に上下に
移動させる昇降手段とを配設するようにし、さらに、上
記ランス位置の移動手段に代え、上記集光レンズ位置の
移動機構を備えるようにしたり、上記レーザ発光分光分
析装置に、温度検出器と、その温度測定値に基づき超音
波の速度変動を補正する演算手段とを配設するようにし
たので、上記方法の実施が一人の作業者で円滑に行われ
るようになり、分析時間の短縮、省力化が達成された。According to the present invention, the surface of a melt sample such as a molten metal is irradiated with a laser beam through a laser irradiation lance, and the intensity of a spectral line obtained by dispersing the emission of the generated plasma is measured. In the laser emission spectroscopic analysis method for analyzing the elements contained in the melt sample, the melt sample surface is separately irradiated with ultrasonic waves, the reflected wave is detected to measure the melt sample surface height, and The distance between the laser irradiation lance tip or the condenser lens inside the lance and the melt sample surface is kept constant. Specifically, the distance L is automatically set to L ± 0.0.
The accuracy of analysis was remarkably improved as compared with the conventional method because the temperature was changed to 5 L or less and the change in the temperature of the atmosphere was detected to correct the fluctuation of the ultrasonic velocity due to the change in the temperature of the atmosphere. Further, in the present invention, in a laser emission spectroscopic analyzer comprising a laser oscillator, a laser irradiation lance having a condenser lens inside, a spectroscope, a photometer, and a computer, an ultrasonic wave for measuring the melt sample height is used. A generator / receiver, an arithmetic means for obtaining a correction amount of the lance position for laser irradiation based on the measured value, and an elevating means for automatically moving the lance up and down according to the arithmetic result are provided. Further, instead of the moving means for moving the lance position, a moving mechanism for moving the condensing lens position may be provided, or the laser emission spectroscopic analyzer may be provided with a temperature detector and a speed variation of ultrasonic waves based on the temperature measurement value. Since the correction means is provided, the above method can be smoothly performed by one operator, and the analysis time and labor can be reduced.
【0014】この場合、上記Lを±0.05L以内に限
定した理由は、この範囲であれば、湯面がレーザ集光径
の最小となる位置(通称、ビームウエスト)から大きく
ずれることがなく、従ってレーザエネルギー密度の変動
も少ないからである。また、補正が必要な理由を下記に
具体的に示す。雰囲気温度が、T0 =1600℃からT
1 =1530℃へと変動し、L=1500mmであった
場合の例である。各温度での音速は、それぞれC0 =8
67.76m/sec,C1 =851.40m/sec
であるから、超音波の往復時間はそれぞれt0 =3.4
57msec,t1 =3.524msecとなる。In this case, the reason why L is limited to within ± 0.05 L is that, within this range, the molten metal surface does not largely deviate from the position (commonly called beam waist) where the laser focused diameter is the minimum. Therefore, the fluctuation of the laser energy density is small. Further, the reason why the correction is necessary will be specifically shown below. The ambient temperature is from T 0 = 1600 ° C. to T
This is an example of the case where the temperature fluctuates to 1 = 1530 ° C. and L = 1500 mm. The speed of sound at each temperature is C 0 = 8
67.76 m / sec, C 1 = 851.40 m / sec
Therefore, the round trip time of the ultrasonic wave is t 0 = 3.4.
57 msec, t 1 = 3.524 msec.
【0015】従って、T0 =1600℃における音速を
用いて計算した場合、T1 =1530℃においては、見
掛け上、LはL1 =1529mmとして観測され、29
mm分の補正が必要である。そこで、本発明は、雰囲気
温度が変動した場合、図4のフローに従い真の距離Lを
下記式で求め、ランス位置またはランス内の集光レンズ
の位置を自動的に調整するようにしたのである。Therefore, when calculation is performed using the sound velocity at T 0 = 1600 ° C., at T 1 = 1530 ° C., L is apparently observed as L 1 = 1529 mm, and 29
A correction for mm is necessary. Therefore, according to the present invention, when the ambient temperature changes, the true distance L is obtained by the following equation according to the flow of FIG. 4, and the lance position or the position of the condenser lens in the lance is automatically adjusted. .
【0016】LT =(a√T/2t)×1000mm ここで、LT :温度T(K)における真の距離,t:温
度Tでの超音波の往復時間(sec),a:定数 以下、実施例において、図1〜3に基づき、本発明の内
容を詳細に説明する。L T = (a√T / 2t) × 1000 mm where L T : true distance at temperature T (K), t: round-trip time (sec) of ultrasonic wave at temperature T, a: below constant In the examples, the contents of the present invention will be described in detail with reference to FIGS.
【0017】[0017]
【実施例】図1は、本発明に係るレーザー発光分光分析
方法の実施に利用した装置の一例を示す全体構成図であ
る。図1において、1はランス、2は溶融金属試料で、
3は超音波発生・受信器、4は超音波測定装置、5は温
度検出器、6は演算手段、7は昇降手段である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram showing an example of an apparatus used for carrying out a laser emission spectral analysis method according to the present invention. In FIG. 1, 1 is a lance, 2 is a molten metal sample,
Reference numeral 3 is an ultrasonic wave generator / receiver, 4 is an ultrasonic wave measuring device, 5 is a temperature detector, 6 is an arithmetic means, and 7 is an elevating means.
【0018】超音波発生・受信器3を用いてランス1の
位置を確認しながら、昇降手段7を用いてランス1を所
定の位置に設置する。そこで、レーザ光発振器11から
レーザ光LBが出力されると、レーザ光LBは集光用レ
ンズ8で集光され、分析対象の溶融金属試料2に照射さ
れる。このとき、溶融金属試料2の表面にプラズマPが
発生され、プラズマPが放出する連続スペクトルSPを
分光器9を介して各元素の固有スペクトル線に区分し分
析する。While confirming the position of the lance 1 by using the ultrasonic wave generator / receiver 3, the elevating means 7 is used to install the lance 1 at a predetermined position. Therefore, when the laser light LB is output from the laser light oscillator 11, the laser light LB is condensed by the condensing lens 8 and is applied to the molten metal sample 2 to be analyzed. At this time, plasma P is generated on the surface of the molten metal sample 2, and the continuous spectrum SP emitted by the plasma P is divided into the characteristic spectral lines of each element through the spectroscope 9 and analyzed.
【0019】しかし、該分析中に溶融金属試料2の表面
高さが変動した場合、超音波の往復時間の変化を超音波
発生・受信器3で検出して、超音波測定装置4、演算手
段6を介して昇降手段7にフィードバックし、ランス1
を自動的に最適位置に設置する。同様に、該分析中に雰
囲気の温度が変動した場合、温度検出器5で検出して、
補正を演算手段6で行い、その情報でランス位置を制御
する。これにより、ランス1と溶融金属試料2面との距
離を所定の距離に保つことができる。なお、ランス1は
溶融金属試料2中へ漬ける所謂浸漬ランス式でもよい。
また、演算手段6は、集光用レンズと溶融金属試料面と
の距離変動に対する集光レンズの位置調整や温度変動に
対する補正演算の機能をも有する。さらに、ランスの昇
降方式による位置調整は、本発明ではランス内の集光レ
ンズの位置調整方式と随意に切り替えることもできる。However, when the surface height of the molten metal sample 2 fluctuates during the analysis, a change in the round-trip time of the ultrasonic wave is detected by the ultrasonic wave generator / receiver 3, and the ultrasonic wave measuring device 4 and calculation means are used. Feedback to the elevating means 7 via 6 and the lance 1
Is automatically installed at the optimum position. Similarly, when the temperature of the atmosphere fluctuates during the analysis, it is detected by the temperature detector 5,
The correction is performed by the calculation means 6, and the lance position is controlled by the information. Thereby, the distance between the lance 1 and the surface of the molten metal sample 2 can be maintained at a predetermined distance. The lance 1 may be a so-called immersion lance type, which is soaked in the molten metal sample 2.
Further, the calculating means 6 also has a function of adjusting the position of the condenser lens with respect to a change in the distance between the condenser lens and the surface of the molten metal sample and a correction calculation with respect to a temperature change. Further, the position adjustment by the raising / lowering method of the lance can be optionally switched to the position adjusting method of the condenser lens in the lance in the present invention.
【0020】図2は、溶融亜鉛めっき浴中のAl濃度を
連続分析したときの時間と発光スペクトル線の強度比
(Al/Zn)との関係を示したものである。図2から
明らかなように、本発明に係る方法によりランス位置を
1±0.05L以内で自動制御した場合は分析値が一定
であるのに対し、従来通りの方法に従いランス位置を目
視で合わせた場合は分析値の変動が大きいことがわか
る。図2で得られた発光スペクトル線の強度比は、あら
かじめ標準試料を用いて作成した図3に示す検量線を利
用してAl濃度に換算する。他の元素についても同様に
上記強度比と検量線を作成しておけば、各元素について
その濃度の時間変化も連続的に求まることになる。な
お、本発明により、従来3名で行っていた分析作業が1
名にと低減できた。FIG. 2 shows the relationship between the time and the intensity ratio (Al / Zn) of the emission spectrum line when the Al concentration in the hot dip galvanizing bath was continuously analyzed. As is apparent from FIG. 2, when the lance position is automatically controlled within 1 ± 0.05 L by the method according to the present invention, the analysis value is constant, while the lance position is visually aligned according to the conventional method. It can be seen that the fluctuation of the analysis value is large in the case of. The intensity ratio of the emission spectrum line obtained in FIG. 2 is converted into Al concentration using the calibration curve shown in FIG. 3 prepared using a standard sample in advance. If the intensity ratio and the calibration curve are similarly created for the other elements, the change with time of the concentration of each element can be continuously obtained. According to the present invention, the analysis work conventionally performed by three people is
It was reduced to a name.
【0021】[0021]
【発明の効果】以上説明したように、本発明によれば、
超音波発生・受信器を利用して、超音波を溶融金属等の
溶融物試料面に照射し、その反射波を検出し、さらに雰
囲気の温度変化を検出し雰囲気温度の変化に起因する超
音波速度の変動を補正するようにしたので、レーザ照射
先端部あるいは集光レンズと溶融物試料面間の距離Lを
自動的にL±0.05L(5%)以内で一定に保つこと
ができ、分析精度の向上を図ることができた。その結
果、以前のように分析作業を中断することなく、溶融物
試料の分析を行うことができ、分析作業の能率向上が達
成できた。As described above, according to the present invention,
An ultrasonic wave is generated by irradiating an ultrasonic wave on the surface of a molten material sample such as molten metal using an ultrasonic wave generator / receiver, detecting the reflected wave, and further detecting the temperature change in the atmosphere Since the fluctuation of the velocity is corrected, the distance L between the laser irradiation tip or the condenser lens and the melt sample surface can be automatically kept constant within L ± 0.05 L (5%). We were able to improve the analysis accuracy. As a result, it was possible to analyze the melt sample without interrupting the analysis work as before, and the efficiency of the analysis work was improved.
【図1】本発明に係るレーザー発光分光分析方法を実施
した装置の1例を示す縦断面図である。FIG. 1 is a vertical sectional view showing an example of an apparatus for carrying out a laser emission spectral analysis method according to the present invention.
【図2】本発明に係るレーザ発光分光分析方法と従来法
とで溶融亜鉛めっき浴中のアルミニュウムを連続分析し
た分析例である。FIG. 2 is an analysis example in which aluminum in a hot dip galvanizing bath is continuously analyzed by a laser emission spectral analysis method according to the present invention and a conventional method.
【図3】標準試料による検量線の一例を示す図である。FIG. 3 is a diagram showing an example of a calibration curve of a standard sample.
【図4】温度補正の手順を定めたフローである。FIG. 4 is a flow defining a procedure for temperature correction.
1 ランス 2 溶融物試料 3 超音波発生・受信器 4 超音波測定装置 5 温度検出器 6 演算手段 7 昇降手段 8 集光レンズ 9 分光器 10 測光装置 11 レーザ発振器 LB レーザ光 P プラズマ SP スペクトル 1 Lance 2 Melt Sample 3 Ultrasonic Wave Generator / Receiver 4 Ultrasonic Measuring Device 5 Temperature Detector 6 Computing Means 7 Elevating / Means 8 Condensing Lens 9 Spectrometer 10 Photometric Device 11 Laser Oscillator LB Laser Light P Plasma SP Spectrum
Claims (6)
を溶融物試料面に照射し、発生したプラズマの発光を分
光させて得たスペクトル線の強度を測定して該溶融物試
料中に含まれる元素を分析するレーザ発光分光分析方法
において、 上記溶融物試料面に超音波を別途照射し、その反射波を
検出して該溶融物試料面高さを測定し、上記レーザ照射
用ランス先端と溶融物試料面間の距離を一定に保つこと
を特徴とするレーザ発光分光分析方法。1. A melt sample surface is irradiated with a laser beam through a laser irradiation lance, and the intensity of a spectrum line obtained by dispersing the emitted light of the generated plasma is measured to be included in the melt sample. In the laser emission spectroscopic analysis method for analyzing the element to be generated, the melt sample surface is separately irradiated with ultrasonic waves, the reflected wave is detected to measure the melt sample surface height, and the laser irradiation lance tip and A laser emission spectral analysis method, characterized in that the distance between the melt sample surfaces is kept constant.
料面間の距離Lを自動的にL±0.05L以内で一定に
保つことを特徴とする請求項1記載のレーザ発光分光分
析方法。2. The laser emission spectral analysis method according to claim 1, wherein the distance L between the laser irradiation lance tip and the melt sample surface is automatically kept constant within L ± 0.05 L.
起因する超音波速度の変動を補正することを特徴とする
請求項2記載のレーザ発光分光分析方法。3. The laser emission spectroscopic analysis method according to claim 2, wherein fluctuations in ultrasonic velocity due to changes in ambient temperature above the surface of the melt sample are corrected.
たレーザ照射用ランス、分光器、測光器、及び計算機か
らなるレーザ発光分光分析装置において、 溶融物試料高さを測定する超音波発生・受信器と、その
測定値に基づき上記レーザ照射用ランス位置の修正量を
求める演算手段と、その演算結果で該ランスを自動的に
上下に移動させる昇降手段とを配設したことを特徴とす
るレーザ発光分光分析装置。4. A laser emission spectroscopic analyzer comprising a laser oscillator, a laser irradiation lance equipped with a condenser lens inside, a spectroscope, a photometer, and a computer. It is characterized in that a receiver, an arithmetic means for obtaining a correction amount of the laser irradiation lance position based on the measured value, and an elevating means for automatically moving the lance up and down according to the arithmetic result are provided. Laser emission spectroscopy analyzer.
集光レンズ位置の移動機構を備えたことを特徴とする請
求項4記載のレーザ発光分光分析装置。5. The laser emission spectroscopic analyzer according to claim 4, further comprising a moving mechanism for moving the condenser lens, in place of the moving means for moving the lance position.
出器と、その温度測定値に基づき超音波の速度変動を補
正する演算手段とを配設したことを特徴とする請求項4
又は5記載のレーザ発光分光分析装置。6. The laser emission spectroscopic analyzer is provided with a temperature detector and an arithmetic means for correcting the velocity fluctuation of the ultrasonic wave based on the temperature measurement value.
Alternatively, the laser emission spectral analyzer according to item 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14345394A JPH0815153A (en) | 1994-06-24 | 1994-06-24 | Method and apparatus for laser emission spectroscopic analysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14345394A JPH0815153A (en) | 1994-06-24 | 1994-06-24 | Method and apparatus for laser emission spectroscopic analysis |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0815153A true JPH0815153A (en) | 1996-01-19 |
Family
ID=15339060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14345394A Withdrawn JPH0815153A (en) | 1994-06-24 | 1994-06-24 | Method and apparatus for laser emission spectroscopic analysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0815153A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007010371A (en) * | 2005-06-28 | 2007-01-18 | Kenji Yasuda | Harmful substance detecting system, detection method of harmful wood, and waste wood treatment system |
JP2010216913A (en) * | 2009-03-16 | 2010-09-30 | Nippon Steel Corp | Method and device for continuously monitoring molten steel |
JP2010216915A (en) * | 2009-03-16 | 2010-09-30 | Nippon Steel Corp | Method and device for continuously monitoring molten steel |
JP2011102778A (en) * | 2009-11-11 | 2011-05-26 | Nippon Steel Corp | Element analysis method and element analyzer using laser |
JP2016145405A (en) * | 2015-01-29 | 2016-08-12 | Jfeスチール株式会社 | Refining method for molten iron, and method of and device for analyzing composition of high-temperature material |
JP2019060831A (en) * | 2017-09-28 | 2019-04-18 | 株式会社島津製作所 | Laser induced analyzer and laser induced analytical method |
KR20200038790A (en) * | 2018-10-04 | 2020-04-14 | 한국원자력연구원 | Portable laser induced breakdown spectroscopy and method for controlling the same |
JP2022541873A (en) * | 2019-05-31 | 2022-09-28 | ディーティーイー イーエイチエフ | Non-immersion method and apparatus for quantitative analysis of liquid metals and alloys |
-
1994
- 1994-06-24 JP JP14345394A patent/JPH0815153A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007010371A (en) * | 2005-06-28 | 2007-01-18 | Kenji Yasuda | Harmful substance detecting system, detection method of harmful wood, and waste wood treatment system |
JP2010216913A (en) * | 2009-03-16 | 2010-09-30 | Nippon Steel Corp | Method and device for continuously monitoring molten steel |
JP2010216915A (en) * | 2009-03-16 | 2010-09-30 | Nippon Steel Corp | Method and device for continuously monitoring molten steel |
JP2011102778A (en) * | 2009-11-11 | 2011-05-26 | Nippon Steel Corp | Element analysis method and element analyzer using laser |
JP2016145405A (en) * | 2015-01-29 | 2016-08-12 | Jfeスチール株式会社 | Refining method for molten iron, and method of and device for analyzing composition of high-temperature material |
JP2017193784A (en) * | 2015-01-29 | 2017-10-26 | Jfeスチール株式会社 | Refining method of molten iron, and composition analysis method of slag |
JP2019060831A (en) * | 2017-09-28 | 2019-04-18 | 株式会社島津製作所 | Laser induced analyzer and laser induced analytical method |
KR20200038790A (en) * | 2018-10-04 | 2020-04-14 | 한국원자력연구원 | Portable laser induced breakdown spectroscopy and method for controlling the same |
JP2022541873A (en) * | 2019-05-31 | 2022-09-28 | ディーティーイー イーエイチエフ | Non-immersion method and apparatus for quantitative analysis of liquid metals and alloys |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645342A (en) | Method of laser emission spectroscopic analysis of steel and apparatus therefor | |
Hemmerlin et al. | Application of vacuum ultraviolet laser-induced breakdown spectrometry for steel analysis—comparison with spark-optical emission spectrometry figures of merit | |
JP2853261B2 (en) | Metal analysis method and analyzer | |
JP2001523818A (en) | Method and apparatus for sensing off-gas composition | |
EP0215483B1 (en) | Method of spectroscopically determining the composition of molten iron | |
CN109975274A (en) | A kind of blast furnace molten iron silicon content on-line quick detection device | |
JPH0815153A (en) | Method and apparatus for laser emission spectroscopic analysis | |
US4652128A (en) | Method of performing continuous on-line laser emission spectroscopic analysis on a flowing fluid sample by laser and apparatus therefor | |
JPS6146773B2 (en) | ||
EP0711413B1 (en) | Method for direct chemical analysis of molten metal | |
JP7064836B2 (en) | Metal scrap discrimination method using laser inductive plasma emission spectrometry, metal scrap discrimination device and metal scrap sorting system | |
JP2006300819A (en) | Method and analyzer for laser emission spectrochemical analysis for molten metal | |
JPS61140842A (en) | Continuous analyzing device for metal and insulator in fluid state | |
JP3736427B2 (en) | Method and apparatus for analyzing components in molten metal | |
JPS61181947A (en) | Direct laser emission spectrochemical analyzer for molten metal | |
JP3058043B2 (en) | Probe and method for laser emission spectroscopy of molten metal | |
JPS60219538A (en) | Inert gas blow-in type fine particle recovering and molten metal analytical method and apparatus therefor | |
JP4788089B2 (en) | Molten metal component measuring device | |
JPS6212843A (en) | Continuous analysis of molten iron component by laser emission spectrochemical analysis | |
CA1225844A (en) | Method of continuously analyzing fluidized body by laser and apparatus therefor | |
JP3198841B2 (en) | Method and apparatus for atomic absorption analysis of suspended particles in gas | |
Ancona et al. | Optical sensor for real-time weld defect detection | |
JPS6314903B2 (en) | ||
JPH07128237A (en) | Method and device for rapidly analyzing steel component | |
JPS6214773B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010904 |