JPH01140444A - Production of thin film for magneto-optical recording - Google Patents

Production of thin film for magneto-optical recording

Info

Publication number
JPH01140444A
JPH01140444A JP29896087A JP29896087A JPH01140444A JP H01140444 A JPH01140444 A JP H01140444A JP 29896087 A JP29896087 A JP 29896087A JP 29896087 A JP29896087 A JP 29896087A JP H01140444 A JPH01140444 A JP H01140444A
Authority
JP
Japan
Prior art keywords
film
cobalt ferrite
single crystal
thin film
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29896087A
Other languages
Japanese (ja)
Other versions
JP2636860B2 (en
Inventor
Shinichiro Hatta
八田 真一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62298960A priority Critical patent/JP2636860B2/en
Publication of JPH01140444A publication Critical patent/JPH01140444A/en
Application granted granted Critical
Publication of JP2636860B2 publication Critical patent/JP2636860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain strong uniaxial anisotropy at room temp. by using a target formed of powder of cobalt ferrite and growing a perpendicularly magnetized film of the cobalt ferrite on a substrate consisting of an MgO single crystal. CONSTITUTION:Sputtering is executed in an argon-oxygen atmosphere by using the substrate 5 consisting of the MgO single crystal having the extremely resembling crystal structure as the substrate for the thin film and using the target formed of the powder of the cobalt ferrite as the target. The transparent perpendicularly magnetized film of the cobalt ferrite which is the thin single crystal film having the strong uniaxial anisotropy at room temp. is thereby obtd. Grain boundaries do not exist in this film and the film exhibits large coercive force and strong Faraday effect. The film is suitable for both as a perpendicular magnetic recording material and magneto-optical recording material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、大きな光磁気効果を持つ、コバルトフェライ
) (CoFe204)垂直磁化膜による光磁気記録用
薄膜の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thin film for magneto-optical recording using a perpendicularly magnetized cobalt ferrite (CoFe204) film having a large magneto-optical effect.

従来の技術 ]バルトフエライトは、入= 5oooへの波長の光に
対して、ファラデー回転角は厚さ1μあたり約2°、光
吸収係数は1o/pmであって、経時変化も少く光磁気
記録材料として長年注目されていた。この材料を垂直光
磁気記録材料として利用しようとしたとき、その磁気異
方性と膜質が問題となる。
[Prior art] Baltic ferrite has a Faraday rotation angle of about 2 degrees per 1 μm of thickness and a light absorption coefficient of 1 o/pm for light with a wavelength of input = 5 ooo, and has little change over time, making it suitable for magneto-optical recording. It has been attracting attention as a material for many years. When attempting to use this material as a perpendicular magneto-optical recording material, problems arise with its magnetic anisotropy and film quality.

コバルトフェライトは、スピネル構造を持ち結晶学的に
は一軸異方性が存在しないが、これまでに、M膜とその
基板との熱膨張率の差を利用して、薄2¥に引張り応力
を与え、磁歪現象を通して膜面垂直磁気異方性を得てい
た。この最初の試みは、CVD法を使用し、MgO単結
晶基板を用いて行われた(文献; N、 N、 Evt
ihievet al、  IEEE Trans。
Cobalt ferrite has a spinel structure and does not have uniaxial anisotropy crystallographically, but so far, the difference in thermal expansion coefficient between the M film and its substrate has been used to apply tensile stress to a thin film of 2 yen. The magnetic anisotropy perpendicular to the film plane was obtained through the magnetostriction phenomenon. This first attempt was made using a CVD method and with MgO single crystal substrates (ref; N, N, Evt
ihievet al, IEEE Trans.

Mag、  MAG−12(1976) 773)。こ
の方法では、強い一軸異方性を持つコバルトフェライト
の単結晶膜が得られた。
Mag, MAG-12 (1976) 773). Using this method, a single crystal film of cobalt ferrite with strong uniaxial anisotropy was obtained.

発明が解決しようとする問題点 しかし、強い一軸異方性を持つコバルトフエライトの単
結晶膜の製造方法として、CVD法を用いているために
、本質的に900″Cの異常高温プロセスとなり、製造
の過程が複雑となり、かつコストが高くついていた。こ
の欠点を克服しようとして、コバルトクロムフェライト
薄膜をスパッタ法で作製し、基板としてアルミニウム基
板を使用し、やはり熱膨張率の差を利用して垂直磁気異
方性を得ようとする試みがなされた(文献;日本応用磁
気学会誌VO119,NO2,1985,133)。シ
カシ、得られた一軸磁気異方性は比較的小さく、保磁力
HCが低くなり、また多結晶薄膜であったため、多数の
粒界が存在して記録雑音も多くなり、光磁気記録材料と
しては問題点があった。
Problems to be Solved by the Invention However, since the CVD method is used as a manufacturing method for a single crystal film of cobalt ferrite that has strong uniaxial anisotropy, it is essentially an abnormally high temperature process of 900"C, which makes the manufacturing process difficult. The process was complicated and the cost was high.In an attempt to overcome this drawback, we fabricated a cobalt chromium ferrite thin film by sputtering, used an aluminum substrate as the substrate, and also utilized the difference in thermal expansion coefficient to vertically An attempt was made to obtain magnetic anisotropy (Reference: Journal of the Japanese Society of Applied Magnetics VO119, NO2, 1985, 133).The obtained uniaxial magnetic anisotropy was relatively small, and the coercive force HC was low. Moreover, since it was a polycrystalline thin film, there were many grain boundaries, which caused a lot of recording noise, which was a problem as a magneto-optical recording material.

本発明は上記問題点を解決しようとするものであり、比
較的簡単な低温プロセスで、−軸異方性を持つコバルト
フェライトの単結晶膜による光磁気記録用薄膜の製造方
法を提供することを目的とするものである。
The present invention aims to solve the above-mentioned problems and provides a method for manufacturing a thin film for magneto-optical recording using a single crystal film of cobalt ferrite having -axis anisotropy using a relatively simple low-temperature process. This is the purpose.

問題点を解決するための手段 上記問題点を解決するため本発明は、コバルトフェライ
トの粉末により形成されたターゲットを用い、MgO単
結晶基板上にスパッタ法によりコバルトフェライト垂直
磁化膜を成長させるようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a target made of cobalt ferrite powder to grow a perpendicularly magnetized cobalt ferrite film on an MgO single crystal substrate by sputtering. This is what I did.

作用 上記構成により、薄膜用の基板として結晶(A造が酷似
したMgO単結晶の基板を用い、ターゲットとして、コ
バルトフェライトの粉末により形成したものを用い、ア
ルゴン酸素雰囲気中でスパッタすることにより、室温に
おいて強い一軸異方性を持つ単結晶簿膜の透明なコバル
トフェライト垂直磁化膜が得られた。この膜は粒界が存
在せず、保磁力が大きく、強いファラデー効果を示し垂
直磁気記録材料としても、光磁気記録材料としても極め
て有望な薄膜となった。
Effect With the above configuration, a crystal (MgO single crystal substrate closely resembling Structure A) is used as a thin film substrate, a target made of cobalt ferrite powder is used, and sputtering is performed in an argon oxygen atmosphere at room temperature. A transparent single-crystal cobalt ferrite perpendicularly magnetized film with strong uniaxial anisotropy was obtained in the process.This film has no grain boundaries, has a large coercive force, and exhibits a strong Faraday effect, making it suitable as a perpendicular magnetic recording material. The thin film has also become extremely promising as a magneto-optical recording material.

実施例 以下、本発明の一実施例を図面に基づいて説明する。Example Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明で使用する高周波スパッタ装置の概略構
成図である。このスパッタ装置1は放電プラズマ2を安
定化させるためスパッタ方式をマグネトロンタイプとし
ている。第1図において、3はコバルトフェライト(C
oF204)の粉末を水で固めて、ターゲットホルダー
4の上で乾燥させたターゲットであり、このターゲット
3はターゲット3の位置に存在する強いマグネトロン(
図示せず)の磁場に対して安定している。5は薄膜形成
用のMgO単結晶基板であり、求めるコバルトフェライ
ト薄膜のスピネル型の結晶構造に対してこの■IgO単
結晶基板5のMgOはNaCl型の結晶格子を持ち、格
子定数が5.94人であり、エピタキシャル結晶成長の
ための基板として適していると予想される。
FIG. 1 is a schematic diagram of a high frequency sputtering apparatus used in the present invention. This sputtering apparatus 1 uses a magnetron type sputtering method in order to stabilize the discharge plasma 2. In Figure 1, 3 is cobalt ferrite (C
oF204) is hardened with water and dried on the target holder 4, and this target 3 is a strong magnetron (
It is stable against magnetic fields (not shown). Reference numeral 5 denotes an MgO single crystal substrate for thin film formation, and in contrast to the spinel type crystal structure of the desired cobalt ferrite thin film, the MgO of this IgO single crystal substrate 5 has a NaCl type crystal lattice and a lattice constant of 5.94. is expected to be suitable as a substrate for epitaxial crystal growth.

また、コバルトフェライトの磁化容易軸は[100]方
向であるので、使用するMgO単結晶基板5の基板面を
(100)面としている。
Furthermore, since the axis of easy magnetization of cobalt ferrite is in the [100] direction, the substrate surface of the MgO single crystal substrate 5 used is the (100) plane.

アルゴン酸素雰囲気中で高周波電源6により放電プラズ
マ2を形成し、コバルトフェライトにより形成したター
ゲット3を20分間スパッタし、これをMgO単結晶基
板5にたい積し、MgO単結晶基板5に膜厚約1000
人のコバルトフェライト薄膜を得た。MgO単結晶基板
5の温度が室温のときはコバルトフェライト薄膜はコバ
ルトフェライトの多結晶相を含む多相膜となり、この基
板5の温度が300’C以上となると酸素なしのアルゴ
ン雰囲気だけで単結晶となる。第1図において、7はス
パッタガス導入口、8は排気口である。
A discharge plasma 2 is formed by a high frequency power supply 6 in an argon oxygen atmosphere, and a target 3 made of cobalt ferrite is sputtered for 20 minutes, and this is deposited on an MgO single crystal substrate 5 to a film thickness of about 1000.
A human cobalt ferrite thin film was obtained. When the temperature of the MgO single crystal substrate 5 is room temperature, the cobalt ferrite thin film becomes a multiphase film containing a polycrystalline phase of cobalt ferrite, and when the temperature of this substrate 5 exceeds 300'C, it becomes a single crystal film only in an argon atmosphere without oxygen. becomes. In FIG. 1, 7 is a sputtering gas inlet, and 8 is an exhaust port.

次に第2図に単結晶のコバルトフェライト薄膜のX線回
折図を示す。(400)ピーク9を除いて他の回折ピー
クは見られない。たtごし、この薄膜では、コバルトフ
ェライトの(400)ピークと1雌Oの(200)ピー
クが、はぼ重なっているので、区別はできない。この試
料では膜面垂直方向が磁化容易軸の[100]軸となり
、かつ大きな負の磁歪を示す。
Next, FIG. 2 shows an X-ray diffraction diagram of a single crystal cobalt ferrite thin film. Except for (400) peak 9, no other diffraction peaks are observed. However, in this thin film, the (400) peak of cobalt ferrite and the (200) peak of 1 female O overlap so much that they cannot be distinguished. In this sample, the direction perpendicular to the film surface is the [100] axis of easy magnetization, and exhibits large negative magnetostriction.

コバルトフェライトは、MgO単結晶基板5に成膜する
と、室温では引張り応力膜となり、負の磁歪定数を通し
て膜面垂直方向に強い磁気異方性が誘起される。
When cobalt ferrite is formed into a film on the MgO single crystal substrate 5, it becomes a tensile stress film at room temperature, and strong magnetic anisotropy is induced in the direction perpendicular to the film surface through a negative magnetostriction constant.

第3図に、MgO単結晶基板5の温度475℃,アルゴ
ン分圧5X10−’ torr 、および放xm力15
0Wのスパッタ条件で成膜したコバルトフェライト膜の
ヒステリシス曲線を示す。第3図において、10は膜面
平行磁化曲線、11は膜面垂直磁化曲線であり、コバル
トフェライト膜は典型的な垂直磁化膜となっている。こ
の薄膜は、 飽和磁化力 Ms 萱200 emu/cc保磁力Hc
 = 4KOe 残留磁化力 Mr = 10o emu/ccであり、
可視光に対してはうすい茶色でほぼ透明である。
In FIG. 3, the temperature of the MgO single crystal substrate 5 is 475°C, the argon partial pressure is 5X10-' torr, and the radiation force is 15.
A hysteresis curve of a cobalt ferrite film formed under 0W sputtering conditions is shown. In FIG. 3, 10 is a magnetization curve parallel to the film surface, and 11 is a magnetization curve perpendicular to the film surface, and the cobalt ferrite film is a typical perpendicular magnetization film. This thin film has a saturation magnetization force Ms 萱200 emu/cc coercive force Hc
= 4KOe residual magnetizing force Mr = 10o emu/cc,
It is pale brown and almost transparent to visible light.

単結晶のコバルトフェライト膜の磁性は、基板温度、放
[雰囲気中の酸素濃度、放電のパワー、スパッタ後の空
気中アニールなどの諸条件によって大きく変化する。そ
れぞれの条件を変化させて最適値を探った結果、IVI
gO単結晶基板5の温度500”C以上のたとえばSO
O℃1スパッタガス雰囲気5X10’torrにてアル
ゴンガスに対する酸素濃度10%以上50%以下のたと
えば30%、放電電力200Wのとき、最も強い垂直磁
気異方性を示し、かつ優れたヒステリシスの角型特性を
示した。なお、この他の条件で作製した場合も、同様の
効果が認められ、応用デバイスとして使用できる。
The magnetism of a single-crystal cobalt ferrite film varies greatly depending on various conditions such as substrate temperature, oxygen concentration in the discharge atmosphere, discharge power, and air annealing after sputtering. As a result of searching for the optimal value by changing each condition, IVI
For example, when the temperature of the gO single crystal substrate 5 is 500"C or more, SO
A square shape with the strongest perpendicular magnetic anisotropy and excellent hysteresis when the oxygen concentration with respect to argon gas is 10% to 50%, for example 30%, and the discharge power is 200 W in a sputtering gas atmosphere of 5 x 10' torr at O ℃ 1. The characteristics were shown. Note that even when fabricated under other conditions, similar effects are observed and it can be used as an applied device.

また、このコバルトフェライト薄膜は、磁化特性のみな
らず、大きな光磁気効果を有しており、特に、この透明
磁性体を、直線偏光している光が通過するとき、大きな
ファラデー回転角を示す。
In addition, this cobalt ferrite thin film has not only magnetization properties but also a large magneto-optical effect, and particularly exhibits a large Faraday rotation angle when linearly polarized light passes through this transparent magnetic material.

−例として、半導体レーザの780nm波長の光に対し
て、?−4γμmのファラデー回転が得られた。なお、
このときの外部磁界は20 KOeであり、外部磁化が
零のときでも、残留磁化により飽和値の約50%のファ
ラデー回転角が得られた。
-For example, what about 780 nm wavelength light from a semiconductor laser? A Faraday rotation of −4γμm was obtained. In addition,
The external magnetic field at this time was 20 KOe, and even when the external magnetization was zero, a Faraday rotation angle of about 50% of the saturation value was obtained due to residual magnetization.

このように、室温において一軸異方性を有し、粒界が存
在せず、保磁力が大きく、経時変化が少なく、強いファ
ラデー効果を有するコバルトフェライト垂直磁化膜を得
ることができる。
In this way, it is possible to obtain a perpendicularly magnetized cobalt ferrite film that has uniaxial anisotropy at room temperature, has no grain boundaries, has a large coercive force, has little change over time, and has a strong Faraday effect.

発明の効果 以上のように本発明によれば、比較的簡単な低温プロセ
スにてMgO単結晶基板上にコバルトフェライト垂直磁
化膜を形成することができる。この膜は・、室温におい
て強い一軸異方性を持ち、粒界が存在せず、保磁力が大
きく、経時変化が少なく、強いファラデー効果を示し、
垂直磁気記録膜、光磁気記録膜としての工業的価値は大
きい。
Effects of the Invention As described above, according to the present invention, a perpendicularly magnetized cobalt ferrite film can be formed on an MgO single crystal substrate using a relatively simple low-temperature process. This film has strong uniaxial anisotropy at room temperature, no grain boundaries, large coercive force, little change over time, and strong Faraday effect.
It has great industrial value as a perpendicular magnetic recording film and a magneto-optical recording film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の光磁気記録用薄膜の製造方
法に使用するスパッタ装置の概略構成図、第2図は同製
造方法により作製された単結晶のコバルトフェライト膜
のX線回折図、第3図は同製造方法により作製された単
結晶のコバルトフェライト膜の磁化曲線図である。 1・・・スパッタ装置、2・・・放?[プラズマ、3・
・・ターゲット、5・・・MgO単結晶基板。
FIG. 1 is a schematic diagram of a sputtering apparatus used in a method for producing a magneto-optical recording thin film according to an embodiment of the present invention, and FIG. 2 is an X-ray diffraction diagram of a single-crystal cobalt ferrite film produced by the same method. 3 are magnetization curve diagrams of a single-crystal cobalt ferrite film produced by the same manufacturing method. 1... Sputtering equipment, 2... Radiation? [Plasma, 3.
...Target, 5...MgO single crystal substrate.

Claims (3)

【特許請求の範囲】[Claims] 1.コバルトフェライトの粉末により形成されたターゲ
ットを用い、MgO単結晶基板上にスパッタ法によりコ
バルトフェライト垂直磁化膜を成長させる光磁気記録用
薄膜の製造方法。
1. A method for manufacturing a thin film for magneto-optical recording, in which a cobalt ferrite perpendicular magnetization film is grown by a sputtering method on an MgO single crystal substrate using a target formed from cobalt ferrite powder.
2.MgO単結晶基板面を(100)面とする特許請求
の範囲第1項記載の光磁気記録用薄膜の製造方法。
2. 2. The method for producing a magneto-optical recording thin film according to claim 1, wherein the MgO single crystal substrate surface is a (100) plane.
3.MgO単結晶基板の温度を500℃以上とし、スパ
ッタ用ガス雰囲気として、アルゴンに対する酸素の濃度
を10%以上50%以下とする特許請求の範囲第1項記
載の光磁気記録用薄膜の製造方法。
3. The method for manufacturing a thin film for magneto-optical recording according to claim 1, wherein the temperature of the MgO single crystal substrate is 500° C. or higher, and the sputtering gas atmosphere has a concentration of oxygen relative to argon of 10% to 50%.
JP62298960A 1987-11-26 1987-11-26 Method for manufacturing thin film for magneto-optical recording Expired - Lifetime JP2636860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62298960A JP2636860B2 (en) 1987-11-26 1987-11-26 Method for manufacturing thin film for magneto-optical recording

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62298960A JP2636860B2 (en) 1987-11-26 1987-11-26 Method for manufacturing thin film for magneto-optical recording

Publications (2)

Publication Number Publication Date
JPH01140444A true JPH01140444A (en) 1989-06-01
JP2636860B2 JP2636860B2 (en) 1997-07-30

Family

ID=17866410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62298960A Expired - Lifetime JP2636860B2 (en) 1987-11-26 1987-11-26 Method for manufacturing thin film for magneto-optical recording

Country Status (1)

Country Link
JP (1) JP2636860B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019678A (en) * 1997-03-06 2000-02-01 Matsushita Seiko Company, Ltd. Ventilation fan for duct and method of installation thereof
CN113235159A (en) * 2021-04-07 2021-08-10 兰州大学 Method for preparing single crystal nickel ferrite film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150248A (en) * 1984-01-13 1985-08-07 Ricoh Co Ltd Photomagnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150248A (en) * 1984-01-13 1985-08-07 Ricoh Co Ltd Photomagnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019678A (en) * 1997-03-06 2000-02-01 Matsushita Seiko Company, Ltd. Ventilation fan for duct and method of installation thereof
CN113235159A (en) * 2021-04-07 2021-08-10 兰州大学 Method for preparing single crystal nickel ferrite film
CN113235159B (en) * 2021-04-07 2022-07-01 兰州大学 Method for preparing single crystal nickel ferrite film

Also Published As

Publication number Publication date
JP2636860B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US5607781A (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
Morisako et al. Iron nitride thin films prepared by facing targets sputtering
Morisako et al. Magnetic anisotropy and soft magnetism of iron nitride thin films prepared by facing‐target sputtering
Ching et al. Magnetic properties and structure of Mn4N films on glass substrates
JPH01140444A (en) Production of thin film for magneto-optical recording
Negusse et al. Magnetically Induced Enhanced Exchange Spring Effect in CoFe₂O₄/CoFe₂/CoFe₂O₄ Films
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JP3773899B2 (en) Magnetic semiconductor material and manufacturing method thereof
Acharya et al. Sputter deposited strontium ferrite films with c‐axis oriented normal to the film plane
Borrelli et al. Magnetic and optical properties of thin films in the system 1-xFe 3 O 4· xFe 8/3 O 4
Okamura et al. Sputter epitaxy of cerium yttrium iron garnet films on neodymium gallium garnet substrates
Kim et al. Crystallographic and magnetic properties of CoAl/sub 0.2/Fe/sub 1.8/O/sub 4/thin films prepared by a sol-gel method
Park et al. Chemical composition, microstructure and magnetic characteristics of yttrium iron garnet (YIG, Ce: YIG) thin films grown by rf magnetron sputter techniques
Tanaka Nonequilibrium strain and Curie temperature in as-deposited Mn ferrite thin films by RF sputtering
JPH0721544A (en) Magnetic recording medium and its production
JPH1031112A (en) Faraday rotator which shows square hysteresis
JPH0354454B2 (en)
JPH0558251B2 (en)
Ignatova et al. Structural and magnetic characterization of epitaxial $\mathrm {V} _ {2}\mathrm {O} _ {3}/\text {Ni} _ {80}\text {Fe} _ {20} $ hybrid magnetic structures
Chen et al. Magnetic properties and magneto-optical Kerr effect of Mn/Sb multilayer films on various substrates
JPS63266626A (en) Magnetic recording medium
JPH06163303A (en) Manufacture of single-crystal magnetic thin film
JPS60200887A (en) Manufacture of magnetic film
JP2615847B2 (en) Perpendicular magnetic recording film
JP2752199B2 (en) Magnetic head