JPH01140095A - Method of controlling feed water temperature of fast breeder reactor - Google Patents

Method of controlling feed water temperature of fast breeder reactor

Info

Publication number
JPH01140095A
JPH01140095A JP62298666A JP29866687A JPH01140095A JP H01140095 A JPH01140095 A JP H01140095A JP 62298666 A JP62298666 A JP 62298666A JP 29866687 A JP29866687 A JP 29866687A JP H01140095 A JPH01140095 A JP H01140095A
Authority
JP
Japan
Prior art keywords
feed water
water temperature
turbine
temperature
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62298666A
Other languages
Japanese (ja)
Inventor
Iwao Sakama
坂間 巌
Masanori Sakuragi
桜木 正範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP62298666A priority Critical patent/JPH01140095A/en
Publication of JPH01140095A publication Critical patent/JPH01140095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To hold feed water temperature at prescribed temperature and allow attemperation of thermal shock of a steam generator feed water nozzle part by selecting low value of a control signal based on the control signal and feed water temperature information according to mean difference pressure information of a feed water flow regulating valve and controlling feed water temperature at the time of load loss. CONSTITUTION:In the case where turbine load loss or a turbine governor opening low signal is generated, a main control signal made according to the mean pressure difference information of a feed water flow regulating valve is compared with another main control signal made according to steam generator feed water temperature information and feed water temperature is controlled by the control signal selecting lower output value between them. In other words, the discharge of a feed water pump can be controlled so as to be prescribed feed water temperature by regulating a turbine extracted steam governor and controlling a drive turbine 27 by a control circuit 27 from selected control signals. Therefore, since steam generator feed water temperature is maintained at prescribed temperature, thermal shock of a steam generator feed water nozzle part can be attempered.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、高速増殖炉の給水温度制御方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for controlling the feed water temperature of a fast breeder reactor.

(従来の技術) 高速増殖炉では、2次ナトリウム系と熱交換して発生し
た主蒸気はタービン加減弁を経て、タービンで発電に供
された後、復水器で水に戻されて給水加熱器に送られ、
ここで加熱された後、再び蒸気発生器へと送られる。
(Prior technology) In a fast breeder reactor, the main steam generated by heat exchange with the secondary sodium system passes through the turbine control valve and is used in the turbine to generate electricity, and then is returned to water in the condenser to heat the feed water. sent to the vessel,
After being heated here, it is sent to the steam generator again.

ところで、このような高速増殖炉では、タービンバイパ
ス系のタービンバイパス弁やタービン加減弁の弁開度を
タービン速度制御系(以下、EtlC:Electro
  tlydraulic Controller )
によりコントロールしており、負荷喪失が発生し、発電
機負荷とタービン出力との間に所定の値以上の差、例え
ば(40%710ミリ秒)以上の差が生じた場合に、こ
のEHCの作動によりパワー/ロードアンバランスリレ
ー(以下、PLUR−)が■き、タービン加減弁を瞬時
に例えば数ミリ秒で全閉とし、タービンへ流入する蒸気
を急速遮断する。
By the way, in such a fast breeder reactor, the valve openings of the turbine bypass valve and the turbine control valve in the turbine bypass system are controlled by the turbine speed control system (hereinafter referred to as EtlC).
tlydraulic Controller)
This EHC is activated when a load loss occurs and a difference of more than a predetermined value occurs between the generator load and the turbine output, for example (40% 710 milliseconds) or more. This activates the power/load unbalance relay (hereinafter referred to as PLUR-), which instantaneously fully closes the turbine control valve within a few milliseconds, rapidly shutting off steam flowing into the turbine.

その後、PLURの解除により、発電所内負荷相当の出
力を保持するように運用される。
Thereafter, by canceling PLUR, the power plant is operated to maintain the output equivalent to the load within the power plant.

ところで、給水加熱器は一般にタービン抽気蒸気を加熱
源としているため、上述したPLtJR作動中により、
発電所内負荷相当の出力状態となった場合には、タービ
ン排気圧力の低下による器内圧の低下を招き、蒸気発生
器給水温度が低下してしまう。
By the way, since feed water heaters generally use turbine extracted steam as a heating source, during the above-mentioned PLtJR operation,
When the output state corresponds to the internal load of the power plant, the internal pressure of the turbine decreases due to a decrease in the turbine exhaust pressure, resulting in a decrease in the steam generator feed water temperature.

これを防止するため、発電所内負荷相当時の出力運転状
態では、気水分離器からのドレン水を利用し、フラッシ
ュタンクを介して給水加熱器の加熱源の確保を図り、給
水温度を所定値に保持する制御方法が採用されていた。
To prevent this, in the output operation state equivalent to the load in the power plant, drain water from the steam water separator is used to secure a heating source for the feed water heater via a flash tank, and the feed water temperature is maintained at a predetermined value. A control method was adopted to maintain the

(発明が解決しようとする問題点) しかしながら、上述した従来の給水温度制御方法では、
また気水分離器ドレン弁の固着や各給水加熱器圧力制御
系の故障等が発生した場合や、フラッシュタンクの発生
蒸気が給水加熱器へ導入される間の時間は、給水加熱器
は加熱源を喪失したままの状態となり、プラント運用上
要求される温度条件を満たすことができなくなり、蒸気
発生器給水ノズル部にコールドショックを招く恐れがあ
った。
(Problems to be Solved by the Invention) However, in the conventional feed water temperature control method described above,
In addition, if the drain valve of the steam separator becomes stuck or a malfunction occurs in the pressure control system of each feedwater heater, or during the time when the steam generated in the flash tank is introduced to the feedwater heater, the feedwater heater becomes a heating source. As a result, the temperature conditions required for plant operation could not be met, and there was a risk of cold shock in the water supply nozzle of the steam generator.

本発明は上述した問題点を解決するためになされたもの
で、高速増殖炉発電プラントにおいて、負荷喪失時の給
水温度低下により発生する、蒸気発生器給水ノズル部の
熱衝撃を緩和できる高速増殖炉の給水温度制御方法を提
供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and is a fast breeder reactor capable of mitigating the thermal shock of the steam generator feed water nozzle section that occurs due to a drop in feed water temperature during load loss in a fast breeder reactor power plant. The purpose of the present invention is to provide a method for controlling the temperature of water supply.

[発明の構成] (問題点を解決するための手Vi) 本発明の高速増殖炉の給水温度制御方法は、高速増殖炉
発電所の負荷喪失後における負荷相当出力運転時に給水
加熱器からの給水温度を制御する方法において、蒸気発
生器給水温度情報から蒸気発生器給水温度を制御するた
めの第1の制御信号を作成し、一方給水流量調節弁の平
均差圧情報から給水温度を制御するための第2の信号を
作成手段とし、前記作成された第1および第2の制御信
号出力値を比較して低い方の信号出力値を選択し、この
選択された制御信号に基づいて前記給水温度が所定の温
度となるように給水ポンプの吐出量を制御することを特
徴とする。
[Structure of the Invention] (Measures for Solving the Problems Vi) The method for controlling the feed water temperature of a fast breeder reactor of the present invention is to control the feed water temperature from the feed water heater during the load equivalent output operation after the load loss of the fast breeder reactor power plant. In the method for controlling temperature, a first control signal for controlling the steam generator feed water temperature is created from the steam generator feed water temperature information, and a first control signal for controlling the feed water temperature is generated from the average differential pressure information of the feed water flow rate control valve. The second signal is used as a generating means, the first and second control signal output values generated are compared, the lower signal output value is selected, and the feed water temperature is adjusted based on the selected control signal. It is characterized by controlling the discharge amount of the water supply pump so that the water reaches a predetermined temperature.

(作 用) 負荷喪失発生時において、蒸気発生器への給水温度情報
に基づいて作成された給水温度制御信号の出力値と、給
水流量調節弁の平均差圧情報に基づいて作成された給水
温度制御信号出力値とを比較して、低い方の出力値によ
り給水流量を調節することにより、蒸気発生器給水温度
を所定の温度に保持できるので、蒸気発生器給水ノズル
部の熱衝撃を緩和できる。また、制御信号の切換えをバ
ンプレスに行うことができる。
(Function) When a load loss occurs, the output value of the feed water temperature control signal created based on the feed water temperature information to the steam generator and the feed water temperature created based on the average differential pressure information of the feed water flow rate control valve. By comparing the control signal output value and adjusting the feed water flow rate using the lower output value, the steam generator feed water temperature can be maintained at a predetermined temperature, which can alleviate thermal shock at the steam generator water feed nozzle. . Furthermore, control signals can be switched bumplessly.

(実施例) 以下、本発明の一実施例について第1図および第2図を
参照して説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は、高速増殖炉発電プラントの概略構成を示すも
ので、蒸発器1内で、2次ナトリウム系と熱交換を行っ
て発生した主蒸気は、気水分離器2を通った後、過熱器
3を経て、タービン加減弁4を介在した主蒸気配管5を
流通してタービン6に導入され、発電に供される。
FIG. 1 shows a schematic configuration of a fast breeder reactor power plant. Main steam generated by exchanging heat with a secondary sodium system in an evaporator 1 passes through a steam separator 2, and then The steam passes through a superheater 3, flows through a main steam pipe 5 with a turbine control valve 4 interposed therebetween, is introduced into a turbine 6, and is used for power generation.

タービン6を回転させた後の蒸気は、復水器7で水に戻
され、脱気器8で蒸気分を取り除かれた後、ポンプ駆動
用タービン9に駆動される給水ポンプ10によって給水
加熱器11に送られ、ここで加熱された後、再び蒸発器
1へと送られる。上記ポンプ駆動用タービン9は、プラ
ント運転時はタービン抽気蒸気により駆動されており、
起動時には図示を省略したモータ駆動の給水ポンプによ
り駆動されるように構成されている。
After rotating the turbine 6, the steam is returned to water in a condenser 7, and the steam is removed in a deaerator 8.Then, the steam is sent to a feed water heater by a feed water pump 10 driven by a pump driving turbine 9. 11, where it is heated, and then sent to the evaporator 1 again. The pump driving turbine 9 is driven by turbine extraction steam during plant operation,
At startup, it is configured to be driven by a motor-driven water supply pump (not shown).

また、気水分離器2は、ドレン弁11を介してフラッシ
ュタンク12に接続されており、該フラッシュタンク1
2に導入された蒸気は復水器7、脱気器8、給水加熱器
11に夫々送られる。
Further, the steam/water separator 2 is connected to a flash tank 12 via a drain valve 11.
The steam introduced into 2 is sent to a condenser 7, a deaerator 8, and a feed water heater 11, respectively.

一方、主蒸気配管5には、タービン加減弁4上流側から
分岐して、復水器7に接続されるタービンバイパス弁1
3を介在したタービンバイパス系が構成されており、そ
のタービンバイパス容量は、例えば50Xとされている
On the other hand, the main steam pipe 5 has a turbine bypass valve 1 branched from the upstream side of the turbine control valve 4 and connected to the condenser 7.
A turbine bypass system is constructed with a turbine 3 interposed therebetween, and its turbine bypass capacity is, for example, 50X.

ところで、給水加熱器11は通常、タービン6からの抽
気蒸気により給水を例えば240℃程度に加熱している
ため、負荷喪失時における負荷相当運転時には、タービ
ン排気圧力の低下により器内圧の低下を招き、蒸気発生
器給水温度が低下してしまう。
By the way, since the feedwater heater 11 normally heats the feedwater to, for example, about 240° C. using extracted steam from the turbine 6, during load-equivalent operation at the time of load loss, the turbine exhaust pressure decreases, causing a decrease in the internal pressure. , the steam generator feed water temperature will drop.

そこで、このような場合に蒸気発生器給水温度の低下を
防止する給水温度制御が行われる。
Therefore, in such a case, feed water temperature control is performed to prevent the steam generator feed water temperature from decreasing.

第2図は本実施例の給水温度制御方法を示す図で、通常
運転時における給水温度の制御は、給水流量調節弁14
の平均差圧情報21に基づいて作成された制御信号と、
蒸気発生器給水温度情報22に基づいて作成された制御
信号とを主制御信号とし、給水ポンプ回転数23を補助
制御信号として、タービン抽気蒸気加減弁1うを調節す
ることにより、タービン駆動用蒸気を制御している。そ
して、タービン負荷喪失またはタービン加減弁開度低信
号が発生した場合には、低値選択回路(LVG)24に
より、給水流量調節弁の平均差圧情報に基づいて作成さ
れた主制御信号と蒸気発生器給水温度情報に基づいて作
成された主制御信号とを比較し、低い方の出力値を選択
して選択した制御信号により給水温度を制御する。
FIG. 2 is a diagram showing the feed water temperature control method of this embodiment, in which the feed water temperature is controlled by the feed water flow rate control valve 14 during normal operation.
A control signal created based on the average differential pressure information 21 of
The control signal created based on the steam generator feed water temperature information 22 is used as the main control signal, and the feed water pump rotation speed 23 is used as the auxiliary control signal to adjust the turbine extraction steam control valve 1. is under control. When a turbine load loss or a low turbine control valve opening signal occurs, a low value selection circuit (LVG) 24 generates a main control signal and steam The main control signal created based on the generator feed water temperature information is compared, the lower output value is selected, and the feed water temperature is controlled by the selected control signal.

即ち、上記選択された制御信号により、制御回路25に
よりタービン抽気蒸気加減弁26を調節して駆動タービ
ン27の制御を行うことにより、所定の給水温度となる
ように給水ポンプの吐出量を制御できる。
That is, by controlling the drive turbine 27 by adjusting the turbine extraction steam control valve 26 by the control circuit 25 in accordance with the selected control signal, the discharge amount of the water supply pump can be controlled so that a predetermined feed water temperature is achieved. .

このとき、タービン駆動用給水ポンプへの駆動用蒸気と
して、タービン抽気蒸気だけでは不足な場合には、高圧
側の生蒸気を生蒸気加減弁を介して使用すればよい。
At this time, if the turbine extracted steam alone is insufficient as driving steam to the turbine-driving water supply pump, live steam on the high pressure side may be used via a live steam control valve.

このようにタービン負荷喪失時に、蒸気発生器への給水
温度情報に基づいて作成された給水温度制御信号の出力
値と、給水流量調節弁の平均差圧情報に基づいて作成さ
れた給水温度制御信号出力値とを比較して、低い方の出
力値により給水流量を調節することにより、蒸気発生器
給水温度を所定の温度に保持できるので、蒸気発生器給
水ノズル部の熱衝撃を緩和できる。また、制御信号の切
換えをバンプレスに行うことができる。
In this way, when the turbine load is lost, the output value of the feed water temperature control signal is created based on the feed water temperature information to the steam generator, and the feed water temperature control signal is created based on the average differential pressure information of the feed water flow rate control valve. By comparing the output values and adjusting the feed water flow rate using the lower output value, the steam generator feed water temperature can be maintained at a predetermined temperature, so that thermal shock at the steam generator water feed nozzle portion can be alleviated. Furthermore, control signals can be switched bumplessly.

[発明の効果] 以上説明したように本発明の給水温度制御方法によれば
、負荷喪失時において、給水温度制御を給水流量調節弁
の平均差圧情報に基づいた制御信号と給水温度情報に基
づいた制御信号を低値選択して制御するので、給水温度
を所定値に保持でき、蒸気発生器給水ノズル部の熱衝撃
を緩和できる。
[Effects of the Invention] As explained above, according to the feed water temperature control method of the present invention, at the time of load loss, the feed water temperature is controlled based on the control signal based on the average differential pressure information of the feed water flow rate control valve and the feed water temperature information. Since the control signal is controlled by selecting a low value, the temperature of the feed water can be maintained at a predetermined value, and the thermal shock of the water supply nozzle portion of the steam generator can be alleviated.

また、上記制御系の切換えをバンプレスに行うことがで
きる。
Furthermore, the control system can be switched bumplessly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を説明するための高速増
殖炉発電プラントの構成を示す図、第2図は実施例方法
を説明する給水流量制御系の構成を示す図である。 1・・・・・・・・・蒸発器 2・・・・・・・・・気水分離器 4・・・・・・・・・主蒸気加減弁 6・・・・・・・・・タービン 9・・・・・・・・・ポンプ駆動タービン10・・・・
・・・・・給水ポンプ 11・・・・・・・・・給水加熱器 12・・・・・・・・・フラッシュタンク14・・・・
・・・・・給水流I調節弁24・・・・・・・・・低値
選択回路 出願人      日本原子力事業株式会社同    
   株式会社 東芝 代理人 弁理士  須 山 佐 −
FIG. 1 is a diagram showing the configuration of a fast breeder reactor power plant for explaining an embodiment of the method of the present invention, and FIG. 2 is a diagram showing the configuration of a feed water flow rate control system for explaining the embodiment method. 1...... Evaporator 2... Steam water separator 4... Main steam control valve 6... Turbine 9...Pump drive turbine 10...
...Water pump 11 ...Water heater 12 ...Flash tank 14 ...
・・・・・・Feed water flow I control valve 24 ・・・・・・・・・Low value selection circuit Applicant: Japan Atomic Energy Corporation
Toshiba Corporation Representative Patent Attorney Sasa Suyama −

Claims (2)

【特許請求の範囲】[Claims] (1)高速増殖炉発電所の負荷喪失後における負荷相当
出力運転時に給水加熱器からの給水温度を制御する方法
において、 蒸気発生器給水温度情報から蒸気発生器給水温度を制御
するための第1の制御信号を作成し、一方給水流量調節
弁の平均差圧情報から給水温度を制御するための第2の
信号を作成手段とし、前記作成された第1および第2の
制御信号出力値を比較して低い方の信号出力値を選択し
、この選択された制御信号に基づいて前記給水温度が所
定の温度となるように給水ポンプの吐出量を制御するこ
とを特徴とする高速増殖炉の給水温度制御方法。
(1) In the method of controlling the feed water temperature from the feed water heater during load equivalent output operation after load loss in a fast breeder reactor power plant, the first step is to control the steam generator feed water temperature from steam generator feed water temperature information. A control signal is created, and a second signal for controlling the feed water temperature is created from the average differential pressure information of the water supply flow rate control valve as a creation means, and the output values of the created first and second control signals are compared. A feed water supply for a fast breeder reactor, characterized in that the lower signal output value is selected based on the selected control signal, and the discharge amount of the feed water pump is controlled so that the temperature of the feed water becomes a predetermined temperature. Temperature control method.
(2)給水ポンプ吐出量の制御は、給水ポンプ駆動用タ
ービンを駆動するタービン抽気蒸気の供給配管に介在し
たタービン抽気蒸気加減弁の弁開度操作より行うことを
特徴とする特許請求の範囲第1項記載の高速増殖炉の給
水温度制御方法。
(2) The discharge amount of the feedwater pump is controlled by controlling the opening degree of a turbine extraction steam control valve interposed in a turbine extraction steam supply pipe that drives a turbine for driving the water supply pump. The method for controlling the feed water temperature of a fast breeder reactor according to item 1.
JP62298666A 1987-11-26 1987-11-26 Method of controlling feed water temperature of fast breeder reactor Pending JPH01140095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62298666A JPH01140095A (en) 1987-11-26 1987-11-26 Method of controlling feed water temperature of fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62298666A JPH01140095A (en) 1987-11-26 1987-11-26 Method of controlling feed water temperature of fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH01140095A true JPH01140095A (en) 1989-06-01

Family

ID=17862695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62298666A Pending JPH01140095A (en) 1987-11-26 1987-11-26 Method of controlling feed water temperature of fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH01140095A (en)

Similar Documents

Publication Publication Date Title
JPS5923004A (en) Method and device for controlling generator facility of steam turbine
JPS61152914A (en) Starting of thermal power plant
JPS61105003A (en) Method and device for connecting boiler to pressurized steamsupply line in fluid manner
CN113638776A (en) Steam extraction back pressure type steam turbine thermodynamic system and control method thereof
US4277943A (en) Method and apparatus for supplying steam to a turbine
JPH01140095A (en) Method of controlling feed water temperature of fast breeder reactor
JPH0221296A (en) Controlling of fast breeder reactor system
JPH01140096A (en) Feed water temperature control method of fast breeder reactor
JPH0384301A (en) Naturally circulating waste heat recovery boiler
JPH0212098A (en) Method for controlling fast breeder reactor plant
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JPH05322105A (en) Device for heating feedwater for boiler
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
JP2971629B2 (en) Waste heat recovery boiler
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
JP2531755B2 (en) Water supply control device
JP2625487B2 (en) Hot start method of boiler
JPH0135244B2 (en)
JPH09304586A (en) Boiling water nuclear power plant
JPS618413A (en) Turbine for power plant
JP2708406B2 (en) Startup control method for thermal power plant
JPH02130202A (en) Combined plant
JPS62131104A (en) Steam generator plant
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPH0377402B2 (en)