JPH09304586A - Boiling water nuclear power plant - Google Patents

Boiling water nuclear power plant

Info

Publication number
JPH09304586A
JPH09304586A JP8147869A JP14786996A JPH09304586A JP H09304586 A JPH09304586 A JP H09304586A JP 8147869 A JP8147869 A JP 8147869A JP 14786996 A JP14786996 A JP 14786996A JP H09304586 A JPH09304586 A JP H09304586A
Authority
JP
Japan
Prior art keywords
feed water
steam
heater
reactor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8147869A
Other languages
Japanese (ja)
Inventor
Koji Hiraiwa
宏司 平岩
Kazuyuki Udagawa
一幸 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8147869A priority Critical patent/JPH09304586A/en
Publication of JPH09304586A publication Critical patent/JPH09304586A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a boiling water nuclear power plant capable of propecly performing daily load follow-up operation without varying the thermal efficiency of turbine. SOLUTION: In the case of performing short time daily load follow-up operation for a few hours to one day, reactivity control is done at first with control rods, then the steam extraction rate at a steam extractor 16 is controlled with a steam extraction controller 17 to respond to the fluctuation of reactivity due to the fluctuation of xenon so that the steam flow supplied to the turbine 4 is specific one according to the target load. According to this steam extraction rate, feed water temperature is raised with a feed water heater 18 for controlling feed water temperature and power control operation is attained by controlling this feed water temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉における制
御棒の挿入位置を調節して反応度調節を行い日負荷追従
連転を行うようにした沸騰水型原子力発電プラントに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling water nuclear power plant in which the control rod insertion position in a nuclear reactor is adjusted to adjust the reactivity so as to perform daily load following continuous rotation.

【0002】[0002]

【従来の技術】一般に、沸騰水型原子力発電プラント
は、図5に示すように構成されている。原子炉3の炉心
2で発生した主蒸気は高圧タービン4に導かれ、高圧タ
ービン4で仕事を終えた蒸気は、その下流に設置される
湿分分離加熱器5を通って低圧タービン6に導かれる。
発電機7は高圧タービン4及び低圧タービン6により駆
動力を与えられて発電する。低圧タービン6で仕事を終
えた蒸気は復水器8にて凝縮され水に戻される。
2. Description of the Related Art Generally, a boiling water nuclear power plant is constructed as shown in FIG. The main steam generated in the core 2 of the nuclear reactor 3 is guided to the high-pressure turbine 4, and the steam that has finished its work in the high-pressure turbine 4 is guided to the low-pressure turbine 6 through the moisture separation heater 5 installed downstream thereof. Get burned.
The generator 7 is given a driving force by the high-pressure turbine 4 and the low-pressure turbine 6 to generate electricity. The steam that has finished its work in the low-pressure turbine 6 is condensed in the condenser 8 and returned to water.

【0003】復水器8からの水は復水ポンプ9で復水タ
ンク10に導かれ、さらに複数台の低圧給水加熱器11
a〜11d、給水ポンプ12、複数台の高圧給水加熱器
13a、13bを通って原子炉3に給水される。高圧給
水加熱器13は高圧タービン4から抽気された蒸気及び
湿分分離加熱器5の排水を熱源として給水を加熱する。
また、低圧給水加熱器11は低圧タービン6から抽気さ
れた蒸気を熱源として、高圧給水加熱器13の上流の給
水を加熱する。また、給水ポンプ12は、低圧の給水を
加圧して原子炉圧力まで高めるものである。
Water from the condenser 8 is guided to a condensate tank 10 by a condensate pump 9, and further a plurality of low pressure feed water heaters 11 are provided.
Water is supplied to the reactor 3 through a to 11d, the water supply pump 12, and a plurality of high-pressure water supply heaters 13a and 13b. The high-pressure feed water heater 13 heats the feed water using the steam extracted from the high-pressure turbine 4 and the waste water of the moisture separation heater 5 as a heat source.
The low-pressure feed water heater 11 heats the feed water upstream of the high-pressure feed water heater 13 using the steam extracted from the low-pressure turbine 6 as a heat source. Further, the feed water pump 12 pressurizes the low-pressure feed water to raise the pressure to the reactor pressure.

【0004】高圧タービン4及び低圧タービン6から一
部の蒸気を抽出して、給水の温度を高めることにより、
復水器8に捨てられる熱量を減少させる。これにより、
熱効率が高められる。このような熱サイクルは再生サイ
クルと呼ばれ、沸騰水型原子力発電プラントでは普通に
用いられている。このような熱サイクルでは、出力運転
時に給水の温度を一定に保つような制御が行われてい
る。
By extracting a part of the steam from the high pressure turbine 4 and the low pressure turbine 6 to raise the temperature of the feed water,
The amount of heat dissipated in the condenser 8 is reduced. This allows
Thermal efficiency is improved. Such a thermal cycle is called a regeneration cycle and is commonly used in boiling water nuclear power plants. In such a heat cycle, control is performed to keep the temperature of the feed water constant during the output operation.

【0005】また、沸騰水型原子力発電プラントでは、
1日に1回から数回程度の出力調節(以下日負荷追従運
転)を行うことがある。その日負荷追従運転を行う場
合、通常の方式では目標出力となる制御棒パターンを決
め、その制御捧パターンとなるように数分程度の比較的
短時間で制御棒を操作する。その後、原子炉3内でのキ
セノンが平衡濃度となるまでは、そのキセノンの影響に
よる出力調整を炉心再循環流量の調節で行っている。
In a boiling water nuclear power plant,
Output adjustment (hereinafter referred to as daily load following operation) may be performed once to several times a day. When performing the daily load follow-up operation, in a normal method, a control rod pattern that is a target output is determined, and the control rod is operated in a relatively short time of about several minutes so as to obtain the control dedicated pattern. After that, until the equilibrium concentration of xenon in the reactor 3 is reached, the output adjustment due to the influence of the xenon is performed by adjusting the core recirculation flow rate.

【0006】例えば、原子炉出力を増加させた場合は当
初キセノン濃度が低くなり、炉心の反応度が増加する。
その後、キセノン濃度が平衡濃度まで増加すると反応度
が減少する。このようなキセノン効果が生じ原子炉出力
が変動するので、その調節を炉心再循環流量の調節で行
っている。
For example, when the reactor power is increased, the xenon concentration initially becomes low, and the reactivity of the core increases.
After that, when the xenon concentration increases to the equilibrium concentration, the reactivity decreases. Since such a xenon effect occurs and the reactor output fluctuates, the adjustment is performed by adjusting the core recirculation flow rate.

【0007】[0007]

【発明が解決しようとする課題】ところが、日負荷運転
の度に出力調整が必要であり、キセノン効果の影響によ
る再循環流量の調整を考慮することが必要となるので、
再循環流量の制御が複雑となる。特に自然循環型沸騰水
型原子力発電プラントについては、原子炉の冷却材を再
循環させるための再循環装置がないため、一般に出力調
整は制御棒のみによることとなる。
However, since it is necessary to adjust the output every day load operation and it is necessary to consider the adjustment of the recirculation flow rate due to the influence of the xenon effect.
Controlling the recirculation flow rate becomes complicated. In particular, in a natural circulation type boiling water nuclear power plant, since there is no recirculation device for recirculating the coolant of the reactor, the output adjustment is generally made only by the control rods.

【0008】自然循環型沸騰水型原子炉において日負荷
追従運転を行う場合、制御棒のみで出力調整を行う必要
があるので、キセノンの増減に伴う反応度の増減も含め
た制御を6〜8時間程度の長時間に渡って連続的に行う
ことは困難である。すなわち、制御棒の調整制御のため
に細かい位置調節能力が必要になると共に、連続的に位
置を制御しなければならない。したがって、運転がきわ
めて複雑にならざるを得なかった。また、この場合、細
かい位置調整ができるコストの高い制御棒駆動装置が必
須となる問題もある。
When performing daily load follow-up operation in a natural circulation type boiling water reactor, it is necessary to adjust the output only with control rods. Therefore, the control including the increase / decrease in reactivity due to the increase / decrease in xenon should be 6-8. It is difficult to carry out continuously over a long period of time. That is, a fine position adjusting capability is required for adjusting the control rod, and the position must be controlled continuously. Therefore, driving had to be extremely complicated. Further, in this case, there is a problem that a costly control rod drive device capable of fine position adjustment is essential.

【0009】一方、特開昭62−138794号公報に
は、自然循環型原子力発電プラントにおいて、給水温度
による負荷追従が可能なことが記載されている。すなわ
ち、給水温度により出力制御を行うようにしたものであ
り、タービン抽気によって給水温度を制御して反応度を
調節し負荷追従運転を行う。しかしながら、この方法で
は、タービン途中からの抽気を使用するため、再熱量が
変化して復水器に捨てられる熱量が変動して電気出力ま
でも変動してしまう。このため、給水温度制御を行うこ
とが電気出力の変動原因となり、出力制御をより複雑な
ものにしてしまう問題があった。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 62-138794 discloses that a natural circulation type nuclear power plant can follow a load depending on the feed water temperature. That is, the output control is performed by the feed water temperature, and the feed water temperature is controlled by the turbine bleed air to adjust the reactivity and the load following operation is performed. However, in this method, since the bleed air from the middle of the turbine is used, the reheat amount changes, the heat amount discarded in the condenser fluctuates, and the electric output also fluctuates. Therefore, there is a problem that the control of the feed water temperature causes a variation in the electric output, which makes the output control more complicated.

【0010】本発明の目的は、タービンの熱効率を変動
させることなく、適切に日負荷追従運転を行うことがで
きる沸騰水型原子力発電プラントを得ることである。
An object of the present invention is to obtain a boiling water nuclear power plant that can appropriately perform daily load following operation without changing the thermal efficiency of the turbine.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、原子
炉からタービンに供給される主蒸気の一部を抽気する抽
気装置と、抽気装置からの抽気により原子炉に供給され
る給水を加熱する給水温度制御用給水加熱器と、タービ
ンに供給される蒸気流量が目標負荷に対応した一定の蒸
気流量となるように抽気装置での抽気量を制御する抽気
制御装置とを備えたものである。
According to the invention of claim 1, there is provided an extraction device for extracting a part of main steam supplied from the reactor to the turbine, and a feed water supplied to the reactor by extraction from the extraction device. It is equipped with a feed water heater for controlling the feed water temperature to be heated, and an extraction control device that controls the extraction amount in the extraction device so that the flow rate of steam supplied to the turbine becomes a constant steam flow rate corresponding to the target load. is there.

【0012】請求項1の発明では、数時間から1日程度
の短時間の日負荷追従連転を行う場合に、初めに制御棒
で反応度調節を行い、その後のキセノンの増減に伴う反
応度の増減については、タービンに供給される蒸気流量
を目標負荷に対応した一定の蒸気流量となるように抽気
装置での抽気量を制御することにより、給水温度による
調節を行って出力調節運転を行う。
According to the first aspect of the present invention, when the daily load follow-up continuous rotation for a short time of several hours to about one day is performed, the reactivity is first adjusted by the control rod, and the reactivity is subsequently increased / decreased with the increase of xenon. For the increase and decrease of, the amount of air extracted by the air extraction device is controlled so that the flow rate of steam supplied to the turbine becomes a constant flow rate of steam corresponding to the target load, and the output adjustment operation is performed by adjusting the supply water temperature. .

【0013】請求項2の発明は、請求項1の発明におい
て、日負荷追従運転時における制御棒の挿入単位を燃料
有効部の1/20以上とし、原子炉の冷却材の循環は自
然循環で行うようにしたものである。
According to a second aspect of the present invention, in the first aspect of the invention, the unit for inserting the control rod during the daily load following operation is 1/20 or more of the effective fuel portion, and the circulation of the coolant in the reactor is natural circulation. It's something that you do.

【0014】請求項2の発明では、制御捧挿入単位が燃
料有効部の1/20以上として構造を簡単化し、制御捧
駆動装置のコストを削減する。
According to the second aspect of the present invention, the control unit insertion unit is set to 1/20 or more of the fuel effective portion to simplify the structure and reduce the cost of the control unit driving device.

【0015】請求項3の発明は、請求項1又は請求項2
の発明において、1台又は複数台の給水温度制御用給水
加熱器を設け、最上流段の給水温度制御用給水加熱器の
みを給水と抽気蒸気とが直接混合される方式の混合型給
水加熱器とし、それ以外の給水温度制御用給水加熱器を
給水と抽気蒸気とが非接触で熱交換する熱交換型給水加
熱器としたものである。
[0015] The invention of claim 3 is claim 1 or claim 2.
In one embodiment, one or a plurality of feed water temperature control water heaters are provided, and only the uppermost stage feed water temperature control water feed heater is a mixed-type feed water heater in which feed water and extraction steam are directly mixed. Other than that, the feed water heater for controlling the feed water temperature is a heat exchange type feed water heater in which the feed water and the extracted steam exchange heat in a non-contact manner.

【0016】請求項3の発明では、給水温度制御用給水
加熱器のうち少なくとも1台は、給水と抽気蒸気とが直
接混合される方式の混合給水加熱器とし、抽気蒸気の熱
エネルギーを効率的にすべて給水に戻して熱のロスがな
いようにし、また、タービン側の再熱量に影響を与えな
いようにする。
In the invention of claim 3, at least one of the feed water heaters for controlling the feed water temperature is a mixed feed water heater of a type in which the feed water and the extracted steam are directly mixed, and the heat energy of the extracted steam is efficiently supplied. In order to prevent heat loss by returning all to the water supply, and not to affect the reheat amount on the turbine side.

【0017】請求項4の発明は、請求項1又は請求項2
の発明において、1台又は複数台の給水温度制御用給水
加熱器を設け、給水温度制御用給水加熱器は給水と袖気
蒸気とが非接触で熱交換する熱交換型給水加熱器であ
り、最上流段の給水温度制御用給水加熱器からのドレン
水をドレンポンプにより給水に混合するようにしたもの
である。
According to a fourth aspect of the present invention, there is provided the first or second aspect.
In the invention of, one or a plurality of water supply temperature control water supply heater is provided, the water supply temperature control water supply heater is a heat exchange type water supply heater in which the water supply and sleeve steam are non-contact heat exchange, The drain water from the feed water heater for controlling the feed water temperature at the most upstream stage is mixed with the feed water by the drain pump.

【0018】請求項4の発明では、最終段の熱交換型給
水加熱器のドレン水をドレンポンプにより給水に混合
し、抽気蒸気の熱エネルギーを効率的にすべて給水に戻
して熱のロスがないようにすると共に、タービン側の再
熱量に影響を与えないようにする。
In the invention of claim 4, the drain water of the heat exchange type feed water heater at the final stage is mixed with the feed water by the drain pump, and all the heat energy of the extracted steam is efficiently returned to the feed water without heat loss. And the amount of reheat on the turbine side is not affected.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の第1の実施の形態を示す構成図で
ある。この第1の実施の形態は、図5に示した従来例の
ものに対し、原子炉3からタービン4に供給される主蒸
気の一部を抽気する抽気装置16と、抽気装置16から
の抽気により原子炉3に供給される給水を加熱する給水
温度制御用給水加熱器18と、タービン4に供給される
蒸気流量が目標負荷に対応した一定の蒸気流量となるよ
うに抽気装置16での抽気量を制御する抽気制御装置1
7とを備えたものである。その他の構成は、図5に示し
た従来例と同一であるので、同一要素には同一符号を付
しその説明は省略する。
Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram showing a first embodiment of the present invention. The first embodiment is different from the conventional example shown in FIG. 5 in that a bleed device 16 for bleeding part of the main steam supplied from the reactor 3 to the turbine 4 and a bleed air from the bleed device 16. The feed water temperature control feed water heater 18 for heating the feed water supplied to the reactor 3 by means of the bleeding device 16 so that the steam flow rate supplied to the turbine 4 will be a constant steam flow rate corresponding to the target load. Extraction control device 1 for controlling the amount
7 is provided. Other configurations are the same as those of the conventional example shown in FIG. 5, and therefore, the same components are denoted by the same reference numerals and description thereof will be omitted.

【0020】図1において、原子炉3の出口と高圧ター
ビン4との間に抽気装置16を設置し、高圧タービン4
に注入される主蒸気が日負荷で定まる目標値となるよう
抽気量を抽気制御装置17により制御する。
In FIG. 1, an extraction device 16 is installed between the outlet of the nuclear reactor 3 and the high pressure turbine 4, and the high pressure turbine 4
The extraction amount is controlled by the extraction control device 17 so that the main steam injected into the exhaust gas reaches a target value determined by the daily load.

【0021】抽気された主蒸気は、抽気配管19を通っ
て給水温度制御用給水加熱器18に供給される。給水温
度制御用給水加熱器18は、最終段の高圧給水加熱器1
3bの下流と原子炉3の入口との間に設置され、給水と
抽気蒸気とが直接混合される方式の混合型給水加熱器を
使用している。すなわち、給水温度制御用給水加熱器1
8において、最終段の高圧給水加熱器13bからの給水
と抽気された主蒸気とが混合され、給水がさらに昇温さ
れる。そして、昇温された給水は原子炉2に給水され
る。なお、この給水温度制御用給水加熱器18としてス
チームインジェクターを用いることもできる。
The extracted main steam is supplied to the feed water temperature control feed water heater 18 through the extraction pipe 19. The feed water heater 18 for controlling the feed water temperature is the high-pressure feed water heater 1 at the final stage.
A mixed feed water heater of a type installed between the downstream of 3b and the inlet of the nuclear reactor 3 and in which feed water and extracted steam are directly mixed is used. That is, the feed water heater 1 for controlling the feed water temperature
In 8, the feed water from the high pressure feed water heater 13b at the final stage is mixed with the extracted main steam, and the feed water is further heated. Then, the heated water supply is supplied to the nuclear reactor 2. A steam injector may be used as the feed water heater 18 for controlling the feed water temperature.

【0022】ここで、出力運転時の原子炉3の蒸気圧力
は約70気圧に制御されており、原子炉出口の主蒸気温
度は70気圧の飽和温度の約280℃となっている。そ
こで、給水温度制御用給水加熱器18の出口の温度上限
を燃料集合体出力が限界出力を超過しないよう設定す
る。つまり、給水温度増加により原子炉3の限界出力が
減少するので、原子炉3の出力密度、炉心流量、燃料の
限界出力特性等を考慮して、燃料集合体出力が限界出力
を超過しないよう設定する。その条件温度は、例えば従
来と同様に約220℃とする。
Here, the steam pressure of the reactor 3 during the output operation is controlled to about 70 atm, and the main steam temperature at the reactor outlet is about 280 ° C., which is the saturation temperature of 70 atm. Therefore, the upper temperature limit at the outlet of the feed water temperature control feed water heater 18 is set so that the fuel assembly output does not exceed the limit output. That is, the limit output of the reactor 3 decreases as the feed water temperature increases. Therefore, the fuel assembly output is set so as not to exceed the limit output in consideration of the power density of the reactor 3, the core flow rate, the limit output characteristic of fuel, and the like. To do. The condition temperature is, for example, about 220 ° C. as in the conventional case.

【0023】給水温度制御用給水加熱器18の出口の温
度下限は、負荷追従必要な反応度調整幅に対応した値に
設定する。100%出力時のキセノンの反応度は3%Δ
k程度であり、10%の負荷増加すなわち10%の電気
出力増加に対してはキセノン反応度の増減幅はせいぜい
0.5%Δk程度となる。給水温度の変化による炉心反
応度の変化の感度は0.01%Δk/℃となることから
給水温度の制御幅はせいぜい50℃とすればよく、従っ
てこの場合の温度下限は170℃となる。
The lower limit of the temperature of the outlet of the feed water heater 18 for controlling the feed water temperature is set to a value corresponding to the reactivity adjustment width required to follow the load. The reactivity of xenon at 100% output is 3% Δ
It is about k, and the increase and decrease range of the xenon reactivity becomes about 0.5% Δk at most for a load increase of 10%, that is, for an electric output increase of 10%. Since the sensitivity of the change in the core reactivity due to the change in the feed water temperature is 0.01% Δk / ° C, the control range of the feed water temperature may be at most 50 ° C, and the lower limit of the temperature in this case is 170 ° C.

【0024】次に、数時間から1日程度の短時間の日負
荷追従連転を行う場合について説明する。図2は、日負
荷追従として出力を10%増加した場合の制御捧操作に
対しての各プロセス量の変化を示す特性図である。
Next, the case where the daily load follow-up continuous rotation is performed for a short time of several hours to about one day will be described. FIG. 2 is a characteristic diagram showing a change in each process amount with respect to a control operation when the output is increased by 10% as the daily load tracking.

【0025】原子炉出力(熱出力)は、出力増加前は一
定となっており、発電機7の電気出力も一定となってい
る。日負荷追従制御により制御棒を目標反応度となるま
で急速に引き抜くと、制御棒操作後の原子炉出力は短時
間で立ち上がる。タービン4への蒸気は原子炉出力の立
ち上がりの速度と同程度の速度で増加させる。給水量に
ついても原子炉出力の立ち上がり速度と同程度の速度で
増加させる。その結果、給水温度制御のために抽気され
る抽気蒸気量も原子炉出力の立ち上がりの速度と同程度
の速度で立ち上がる。
The reactor output (heat output) is constant before the output is increased, and the electric output of the generator 7 is also constant. When the control rod is rapidly pulled out to the target reactivity by the daily load follow-up control, the reactor output after operating the control rod rises in a short time. The steam to the turbine 4 is increased at the same speed as the rising speed of the reactor output. The amount of water supply will also be increased at the same speed as the rising speed of the reactor output. As a result, the amount of extracted steam extracted for controlling the feed water temperature also rises at the same speed as the rising speed of the reactor output.

【0026】原子炉出力が比較的短時間に立ち上がった
後、キセノンの濃度変化は、原子炉出力増加後はキセノ
ンの親核種であるヨウ素の濃度が平衡濃度より低くかつ
キセノンの消滅速度が早まるため、その後一時的に濃度
が減少する。そして、極小値となった後に次第に増加に
転じ、出力増加以前よりも濃度が高い状態で平衡とな
る。このキセノン変化の時間はおよそ6時間程度とな
る。キセノンによる負の反応度の変化はキセノンの濃度
と比例関係となる。
After the reactor power rises for a relatively short time, the xenon concentration changes because the concentration of iodine, which is the parent nuclide of xenon, is lower than the equilibrium concentration and the xenon disappearance speed increases after the reactor power increases. , Then the concentration temporarily decreases. Then, after reaching the minimum value, it gradually increases, and equilibrium is achieved in a state where the concentration is higher than before the output increase. This xenon change time is about 6 hours. The negative change in reactivity due to xenon is proportional to the xenon concentration.

【0027】キセノン濃度が変化している区間での原子
炉出力は、抽気による給水温度制御によってほぼ一定に
保たれる。この間、キセノンの反応度をちょうど打ち消
すだけの給水温度変化が与えられている。すなわち、キ
セノンの反応度が正の場合は給水温度は高く、負の場合
は低くなっている。また、この間の抽気蒸気の流量はキ
セノン反応度が正となっている間は抽気が平衡値より大
きく、原子炉3の出口エンタルピーが増加している。原
子炉3から見た給水温度はこの時上昇しており給水のエ
ンタルピーが大きくなっている。原子炉3の熱出力はほ
ぼ一定であり、したがって原子炉3の出口のエンタルピ
ーと給水のエンタルピーとの差は一定で推移している。
The reactor output in the section where the xenon concentration is changing is kept substantially constant by the feed water temperature control by extraction air. During this time, a change in the feed water temperature is given to just cancel the reactivity of xenon. That is, when the reactivity of xenon is positive, the feed water temperature is high, and when it is negative, it is low. Further, the flow rate of the extracted steam during this period is such that the extracted air is larger than the equilibrium value while the xenon reactivity is positive, and the outlet enthalpy of the reactor 3 increases. The feedwater temperature seen from the reactor 3 is rising at this time, and the enthalpy of feedwater is increasing. The heat output of the nuclear reactor 3 is almost constant, so that the difference between the enthalpy at the outlet of the nuclear reactor 3 and the enthalpy of feed water is constant.

【0028】すなわち、負荷追従のための制御捧操作を
行うと、その後のキセノン濃度の過渡的な変動により数
時間に渡り炉心反応度が変動する。例えば、出力を増加
させた場合は、当初はキセノン濃度が低下して正の反応
度が生じ、次第にキセノン濃度が出力変更以前よりも高
い平衡濃度に近づき負の反応が加わる。この時、タービ
ン4にいく蒸気を一定に保つ抽気制御を行った場合、過
渡的な出力増加による主蒸気量の増加分は抽気蒸気の増
加となり、抽気温度制御用給水加熱器18の熱入力が増
加して給水温度を増加させる。
That is, when the control operation for load following is performed, the core reactivity changes for several hours due to the subsequent transient fluctuation of the xenon concentration. For example, when the output is increased, the xenon concentration initially decreases and a positive reactivity occurs, and the xenon concentration gradually approaches the equilibrium concentration higher than before the output change, and a negative reaction is added. At this time, when the extraction control for keeping the steam going to the turbine 4 constant is performed, the increase in the main steam amount due to the transient output increase increases the extraction steam, and the heat input of the extraction water temperature control feed water heater 18 increases. Increase to increase the feedwater temperature.

【0029】給水温度が増加すると原子炉3に負の反応
度が加わり、原子炉出力は自律的にタービン4側にいく
蒸気量に対応した熱出力に落ちつくことになる。キセノ
ン濃度変化が時間的に連続的に変化してもタービン4側
への蒸気は一定で原子炉出力と電気出力とを一定に保つ
ように変化するため、キセノン濃度の過渡的変動に対す
る制御棒による反応度調節は不要となる。なお、出力を
低下させる場合についても、作用が逆となるたけであ
り、キセノン濃度変動に対する制御捧操作は不要であ
る。
When the feed water temperature increases, a negative reactivity is added to the nuclear reactor 3, and the nuclear reactor output autonomously settles down to a thermal output corresponding to the amount of steam going to the turbine 4 side. Even if the xenon concentration change continuously changes with time, the steam to the turbine 4 side is constant and changes so as to keep the reactor output and the electric output constant. No reactivity adjustment is required. Even when the output is decreased, the action is only reversed, and the control operation for the fluctuation of the xenon concentration is unnecessary.

【0030】この第1の実施の形態によれば、発電機7
の電気出力を増加させるためには、制御棒を出力変化に
合致した分だけ最初に操作して以後操作せず、その後は
タービン4に供給する蒸気流量を一定となるよう抽気蒸
気を制御するのみでよい。このように、タービン熱効率
に影響のない給水温度制御系を持つ原子炉において、特
に再循環系のない自然循環型の原子炉では制御棒操作を
最小限にして負荷追従が可能である。なお、強制循環炉
においても同様な系統を設けることによって、同じよう
な制御が可能なことはいうまでもない。
According to the first embodiment, the generator 7
In order to increase the electric output of the control rod, the control rod is first operated by the amount corresponding to the output change and is not operated thereafter, and thereafter, only the extraction steam is controlled so that the steam flow rate supplied to the turbine 4 is constant. Good. As described above, in a reactor having a feedwater temperature control system that does not affect the turbine thermal efficiency, particularly in a natural circulation type reactor that does not have a recirculation system, control rod operation can be minimized to follow the load. Needless to say, similar control can be performed in the forced circulation furnace by providing a similar system.

【0031】また、制御棒の操作が最小限となってお
り、炉心の出力分布を歪ませる影響が小さく熱的余裕を
大きく取った運転が可能である。負荷追従時に、制御捧
操作以後必要な操作は抽気量の調節のみであり、制御棒
と比較すると制御すべきパラメータが大幅に減少してお
り制御が容易となるのは明らかである。これによって運
転員の操作が容易となり負担が減少する。
Further, since the operation of the control rod is minimized, the influence of distorting the power distribution of the core is small and the operation with a large thermal margin is possible. At the time of load following, it is clear that the only operation required after the control operation is the adjustment of the bleed air amount, and the parameters to be controlled are greatly reduced compared to the control rod, which facilitates the control. This facilitates operator's operation and reduces the burden.

【0032】以上のように、第1の実施の形態では、タ
ービン入口以前の主蒸気の一部を抽気してタービン4へ
の供給蒸気を一定に調節すると共に、抽気した蒸気を給
水温度制御用給水加熱器18に注入して給水温度を調節
する。つまり、数時間から1日程度の短時間の負荷追従
運転を行う場合には、初めに制御棒で反応度調節を行
い、その後のキセノンの増減に伴う反応度の増減につい
ては給水温度制御用給水加熱器による調節を行って出力
を一定に維持する運転を行う。
As described above, in the first embodiment, part of the main steam before the turbine inlet is extracted to regulate the supply steam to the turbine 4 at a constant level, and the extracted steam is used for controlling the feed water temperature. It is injected into the feed water heater 18 to adjust the feed water temperature. That is, when performing load follow-up operation for a short time of several hours to about one day, first adjust the reactivity with the control rod, and then increase or decrease the reactivity with the increase or decrease of xenon. Perform the operation to maintain the output constant by adjusting with the heater.

【0033】したがって、タービンの熱効率を変動させ
ることなく数時間から1日程度の短時間の負荷追従運転
を行うことが可能となり、簡素で運転の容易な出力調節
運転を行うことができる。
Therefore, it is possible to perform a load following operation for a short time of several hours to about one day without changing the thermal efficiency of the turbine, and it is possible to perform a simple and easy output adjusting operation.

【0034】次に、本発明の第2の実施の形態を説明す
る。この第2の実施の形態は、日負荷追従運転時におけ
る制御棒の挿入単位を、燃料有効部の1/20以上とし
たものである。これにより、自然循環方式で原子炉を冷
却しかつ強制循環型原子炉と同程度の冷却材流量を確保
する。
Next, a second embodiment of the present invention will be described. In the second embodiment, the insertion unit of the control rod during the daily load following operation is set to 1/20 or more of the effective fuel portion. As a result, the reactor is cooled by the natural circulation system, and the coolant flow rate equivalent to that of the forced circulation reactor is secured.

【0035】日負荷追従運転時の出力変動時の制御棒操
作は、出力調整の初めの時点だけとする。さらに再循環
装置のある強制循環型沸騰水型原子炉と同程度の制御捧
駆動装置により反応度制御を行う。強制循環型沸騰水型
原子炉では通常炉心有効長のせいぜい1/25程度以上
の位置決め能力で十分実用的であり、自然循環炉では通
常、炉心有効長さが強制循環炉の80%程度となってい
ることから、自然循環炉に適用する場合は1/20程度
で十分制御が可能となる。
The control rod operation at the time of output fluctuation during daily load following operation is performed only at the beginning of output adjustment. Furthermore, the reactivity is controlled by a control drive device that is similar to the forced circulation type boiling water reactor with a recirculation device. In a forced circulation type boiling water reactor, a positioning ability of at least about 1/25 of the normal core effective length is sufficiently practical, and in a natural circulation reactor, the effective core length is usually about 80% of that of the forced circulation reactor. Therefore, when applied to a natural circulation furnace, it is possible to achieve sufficient control at about 1/20.

【0036】すなわち、この第2の実施の形態では、原
子炉を自然循環炉方式で冷却するものとする。この場
合、冷却材の循環を水位による水頭差のみで行うため、
炉心有効高さを削減して炉心2での圧力損失を減らすこ
とによって十分な冷却材流量を維持するための設計を適
用する。
That is, in the second embodiment, the reactor is cooled by the natural circulation reactor system. In this case, since the coolant is circulated only by the head difference due to the water level,
A design is applied to maintain a sufficient coolant flow rate by reducing the core effective height to reduce the pressure loss in the core 2.

【0037】この第2の実施の形態では、炉心2の高さ
を強制循環炉で用いられている高さの約80%とし、循
環流量は強制循環で用いられる流量とほぼ同じ流量を確
保する。したがって、自然循環炉とした場合の炉心有効
高さを強制循環炉で用いられている約3.7mの80%
の約3mとする。また、この場合、負荷追従は第1の実
施の形態で示したと同様な制御棒と給水温度の両方で行
う。必要な制御棒挿入単位長さは従来の再循環型原子炉
で使用する制御棒挿入単位と同程度でよく、約15cm
程度とすればよい。したがって、炉心2の有効高さを3
mとした場合は、挿入単位は炉心有効高さの1/20程
度で十分出力制御が可能である。
In the second embodiment, the height of the core 2 is set to about 80% of the height used in the forced circulation furnace, and the circulation flow rate is secured to be almost the same as the flow rate used in the forced circulation. . Therefore, the effective core height of a natural circulation reactor is 80% of the 3.7 m used in the forced circulation reactor.
Of about 3 m. Further, in this case, the load following is performed by both the control rod and the feed water temperature similar to those shown in the first embodiment. The required control rod insertion unit length is about the same as the control rod insertion unit used in the conventional recirculation reactor, about 15 cm.
It should be about. Therefore, the effective height of the core 2 is 3
In the case of m, the insertion unit is about 1/20 of the effective core height, and sufficient output control is possible.

【0038】このように、制御捧駆動装置については制
御捧挿入単位が燃料有効部の1/20以上として、構造
を簡単化して制御捧駆動装置のコストを削減する。
As described above, with respect to the control drive unit, the control drive insertion unit is set to 1/20 or more of the fuel effective portion to simplify the structure and reduce the cost of the control drive unit.

【0039】次に、本発明の第3の実施の形態を説明す
る。図3は本発明の第3の実施の形態を示すプラント構
成図である。この第3の実施の形態は、図1に示す第1
の実施の形態に対し、3台の給水温度制御用給水加熱器
31、32、33を設け、最上流段の給水温度制御用給
水加熱器31のみを給水と抽気蒸気とが直接混合される
方式の混合型給水加熱器とし、それ以外の給水温度制御
用給水加熱器32、33を給水と抽気蒸気とが非接触で
熱交換する熱交換型給水加熱器としたものである。
Next, a third embodiment of the present invention will be described. FIG. 3 is a plant configuration diagram showing a third embodiment of the present invention. The third embodiment is the same as the first embodiment shown in FIG.
In the embodiment, three feed water temperature control feed water heaters 31, 32, 33 are provided, and only the feed water temperature control feed water heater 31 in the uppermost stage is used to directly mix feed water and extracted steam. And the other feed water temperature control feed water heaters 32 and 33 are heat exchange feed water heaters for exchanging heat between the feed water and the extracted steam in a non-contact manner.

【0040】図3において、3台の給水温度制御用給水
加熱器31、32、33を、給水の上流側からそれぞれ
上流給水加熱器31、中流給水加熱器32、下流給水加
熱器33とし、上流給水加熱器31は混合型給水加熱器
とする。この3台の給水温度制御用給水加熱器31、3
2、33により、給水を最大約50℃上昇できるように
設定されている。下流給水加熱器33の排気ドレン34
は中流給水加熱器32に加熱源として注入され、さら
に、この排気ドレン35は上流給水加熱器31の加熱源
となる。また、上流給水加熱器31は混合型加熱器であ
るので、排気ドレンがない。
In FIG. 3, the three feed water temperature control water heaters 31, 32, 33 are referred to as an upstream feed water heater 31, a midstream feed water heater 32, and a downstream feed water heater 33, respectively, from the upstream side of the feed water. The feed water heater 31 is a mixed feed water heater. The three feed water heaters 31 and 3 for controlling the feed water temperature
2, 33, it is set so that the water supply can be increased up to about 50 ° C. Exhaust drain 34 of the downstream feed water heater 33
Is injected into the midstream feed water heater 32 as a heating source, and the exhaust drain 35 serves as a heating source for the upstream feed water heater 31. Further, since the upstream feed water heater 31 is a mixed type heater, there is no exhaust drain.

【0041】一般に、通常の給水加熱器は1段で最大3
0℃程度の給水温度増加能力があるため、通常の給水加
熱器を適用した場合には、3台で約90℃まで給水温度
の制御幅が実現できる。このように給水温度制御のため
の給水加熱器を複数としても、最上流の給水加熱器31
を混合型とすることによって、排気がなくなり熱のロス
がなくなる。さらに、タービン側への熱量の変動の伝達
がなくなるため、抽気流量変動によるタービン熱効率の
変動がなくなる。このため、電気出力制御が容易にな
る。
Generally, a normal feed water heater has a maximum of 3 in one stage.
Since there is an ability to increase the feed water temperature of about 0 ° C., when the normal feed water heater is applied, the control range of the feed water temperature can be realized up to about 90 ° C. with three units. Thus, even if there are a plurality of feed water heaters for controlling the feed water temperature, the most upstream feed water heater 31
By using a mixed type, there is no exhaust and no heat loss. Further, since the fluctuation of the heat quantity is not transmitted to the turbine side, the fluctuation of the turbine thermal efficiency due to the fluctuation of the extraction air flow is eliminated. Therefore, electric output control becomes easy.

【0042】この第3の実施の形態では、給水温度制御
用給水加熱器を3台とした例を示したが、原理的には最
上流を混合型とすれば同様な効果が得られると共に、給
水加熱器台数を増やすほど給水温度制御幅を増大できる
ことは明らかである。この様に、第3の実施の形態にお
いては、熱効率変化がなく、かつタービンへの入力蒸気
量が一定に保たれるため、発電量も一定に保つことがで
きる。
In the third embodiment, an example in which the number of feed water heaters for controlling the feed water temperature is three has been shown, but in principle the same effect can be obtained if the uppermost stream is a mixed type. It is clear that as the number of feed water heaters is increased, the feed water temperature control range can be increased. As described above, in the third embodiment, there is no change in thermal efficiency and the amount of steam input to the turbine is kept constant, so that the amount of power generation can also be kept constant.

【0043】次に、本発明の第4の実施の形態を説明す
る。図4は、本発明の第4の実施の形態を示すプラント
構成図である。この第4の実施の形態は、3台の給水温
度制御用給水加熱器41、42、43を設け、これら3
台の給水温度制御用給水加熱器41、42、43は、給
水と袖気蒸気とが非接触で熱交換する熱交換型給水加熱
器であり、最上流段の給水温度制御用給水加熱器41か
らのドレン水をドレンポンプ44により給水に混合する
ようにしたものである。
Next, a fourth embodiment of the present invention will be described. FIG. 4 is a plant configuration diagram showing a fourth embodiment of the present invention. The fourth embodiment is provided with three feed water temperature control heaters 41, 42, 43 for controlling the feed water temperature.
The water heaters 41, 42, 43 for controlling the water temperature of the stand are heat exchange water heaters for exchanging heat between the water and the sleeve steam in a non-contact manner, and the water heater 41 for controlling the water temperature at the most upstream stage. The drain water from (4) is mixed with the feed water by the drain pump 44.

【0044】図4において、3台の給水温度制御給水加
熱器を、給水の上流側からそれぞれ上流給水加熱器4
1、中流給水加熱器42、下流給水加熱器43とし、上
流給水加熱器41の上流にはその排気ドレンを昇圧して
上流給水加熱器13bへの給水に混合するドレンポンブ
44を設置する。また、これら給水加熱器41、42、
43はすべて熱交換型給水加熱器とする。この3台の給
水加熱器41、42、43により、給水を最大約50℃
上昇できるように設定されている。
In FIG. 4, three feed water temperature control feed water heaters are respectively provided from the upstream side of the feed water to the upstream feed water heaters 4
1. A middle-stream feed water heater 42 and a downstream feed water heater 43 are provided, and a drain pump 44 is installed upstream of the upstream feed water heater 41 so as to increase the pressure of the exhaust drain and mix it with the feed water to the upstream feed water heater 13b. In addition, these feed water heaters 41, 42,
All 43 are heat exchange type feed water heaters. With these three water heaters 41, 42, 43, water can be supplied at a maximum temperature of approximately 50 ° C.
It is set to be able to rise.

【0045】下流給水加熱器43の排気ドレン45は中
流給水加熱器42に加熱源として注入され、さらにこの
排気ドレン46は上流給水加熱器41の加熱源となる。
また上流給水加熱器41の排気ドレンはドレンポンプ4
4により給水に混合される。
The exhaust drain 45 of the downstream feed water heater 43 is injected into the midstream feed water heater 42 as a heating source, and the exhaust drain 46 becomes a heating source of the upstream feed water heater 41.
The exhaust drain of the upstream feed water heater 41 is the drain pump 4
4 is mixed with the water supply.

【0046】この第4の実施の形態の場合も、抽気蒸気
の熱エネルギーはすべて給水に戻されるため、第3の実
施の形態とほぼ同じ効果となる。さらに、この第4の実
施の形態では給水加熱器41、42、43をすべて熱交
換型としドレンポンプ44を設けた構成であるので、現
在実用となっている装置のみで実現できる。
Also in the case of the fourth embodiment, since all the thermal energy of the extracted steam is returned to the feed water, the same effect as that of the third embodiment can be obtained. Further, in the fourth embodiment, since the feed water heaters 41, 42, 43 are all heat exchange type and the drain pump 44 is provided, it can be realized only by the device which is currently in practical use.

【0047】この第4の実施の形態によれば、抽気の熱
量はすべてこの給水温度制御給水加熱器41、42、4
3の内部に取り込まれることとなり、タービン側に属す
る給水加熱器13、11の熱バランスに影響を与えるこ
とがない。また、熱効率変化がなく、かつタービン4へ
の入力蒸気量が一定に保たれるため、発電量も一定に保
つことができる。さらに、混合型給水加熱器を用いてい
ないので、保守が容易である。したがって、製造コス卜
や保守コストの低減が可能となる。
According to the fourth embodiment, all the heat quantities of the extracted air are controlled by the feed water temperature control feed water heaters 41, 42 and 4.
3 is taken into the inside of the turbine 3, and does not affect the heat balance of the feedwater heaters 13 and 11 belonging to the turbine side. Further, since there is no change in thermal efficiency and the amount of steam input to the turbine 4 is kept constant, the amount of power generation can also be kept constant. Further, since the mixed feed water heater is not used, maintenance is easy. Therefore, manufacturing cost and maintenance cost can be reduced.

【0048】ここで、タービン途中から抽気して給水加
熱器に用いる抽気蒸気量を給水量と比例させることによ
って給水温度制御用給水加熱器に注入される給水の温度
を原子炉の出力によらず一定とするようにしても良い。
これによって、給水温度制御用給水加熱器に注入される
給水条件を一定にして抽気蒸気による給水温度制御を簡
単かつ容易にすることができる。
Here, the temperature of the feed water injected into the feed water temperature control feed water heater is made independent of the output of the reactor by making the amount of extracted steam used for the feed water heater extracted from the middle of the turbine proportional to the feed water amount. You may make it fixed.
This makes it possible to easily and easily control the feed water temperature by the extraction steam while keeping the feed water condition injected into the feed water temperature control feed water heater constant.

【0049】[0049]

【発明の効果】以上述べたように、本発明によれば、原
子炉からの主蒸気を抽気する抽気装置及びこの抽気装置
からの抽気量にて給水の温度を加熱する給水温度制御用
給水加熱器を設け、抽気装置からの抽気量を調整するこ
とのみで炉心の熱特性を悪化させることなく負荷追従運
転ができる。しかも、負荷追従時の運転を簡素化とし運
転員の負担を少なくできると共に、熱的余裕を大きく取
った運転ができる。また制御捧挿入単位の大きい簡素な
制御棒を用いることができ、部品点数が少なく製造コス
トを削減することができる。
As described above, according to the present invention, the extraction device for extracting the main steam from the nuclear reactor and the feed water heating for controlling the feed water temperature for heating the temperature of the feed water by the extraction amount from the extraction device. It is possible to perform load following operation without deteriorating the thermal characteristics of the core simply by providing a reactor and adjusting the amount of air extracted from the air extraction device. Moreover, the operation at the time of load following can be simplified, the burden on the operator can be reduced, and the operation with a large thermal margin can be performed. In addition, a simple control rod having a large control insertion unit can be used, and the number of parts is small and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示すプラント構成
図。
FIG. 1 is a plant configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施の形態において日負荷追従
として出力を10%増加した場合の制御捧操作に対して
の各プロセス量の変化を示す特性図。
FIG. 2 is a characteristic diagram showing a change in each process amount with respect to a control operation when an output is increased by 10% as a daily load following in the first embodiment of the present invention.

【図3】本発明の第3の実施の形態を示すプラント構成
図。
FIG. 3 is a plant configuration diagram showing a third embodiment of the present invention.

【図4】本発明の第4の実施の形態を示すプラント構成
図。
FIG. 4 is a plant configuration diagram showing a fourth embodiment of the present invention.

【図5】従来例を示すプラント構成図。FIG. 5 is a plant configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

2 炉心 3 原子炉 4 高圧タービン 5 湿分分離加熱器 6 低圧タービン 7 発電機 8 復水器 9 復水ポンプ 10 復水タンク 11 低圧給水加熱器 12 給水ポンプ 13 高圧給水加熱器 16 抽気装置 17 抽気制御装置 18 給水温度制御用給水加熱器 19 抽気配管 31 上流給水加熱器 32 中流給水加熱器 33 下流給水加熱器 34、35 排気ドレン 41 上流給水加熱器 42 中流給水加熱器 43 下流給水加熱器 44 ドレンポンプ 45、46 排気ドレン 2 Core 3 Reactor 4 High Pressure Turbine 5 Moisture Separation Heater 6 Low Pressure Turbine 7 Generator 8 Condenser 9 Condensate Pump 10 Condensate Tank 11 Low Pressure Water Heater 12 Water Pump 13 High Pressure Water Heater 16 Extractor 17 Extraction Control device 18 Feed water heater for controlling feed water temperature 19 Extraction pipe 31 Upstream feed water heater 32 Midstream feedwater heater 33 Downstream feedwater heater 34, 35 Exhaust drain 41 Upstream feedwater heater 42 Midstream feedwater heater 43 Downstream feedwater heater 44 Drain Pump 45, 46 Exhaust drain

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原子炉における制御棒の挿入位置を調節
して反応度調節を行い日負荷追従連転を行うようにした
沸騰水型原子力発電プラントにおいて、前記原子炉から
タービンに供給される主蒸気の一部を抽気する抽気装置
と、前記抽気装置からの抽気により前記原子炉に供給さ
れる給水を加熱する給水温度制御用給水加熱器と、前記
タービンに供給される蒸気流量が目標負荷に対応した一
定の蒸気流量となるように前記抽気装置での抽気量を制
御する抽気制御装置とを備えたことを特徴とする沸騰水
型原子力発電プラント。
1. In a boiling water nuclear power plant in which a control rod insertion position is adjusted in a nuclear reactor to adjust reactivity to perform daily load following continuous rotation, a main unit supplied from the nuclear reactor to a turbine. A bleeding device for bleeding a part of steam, a feed water temperature control feed water heater for heating feed water supplied to the reactor by bleeding from the bleed device, and a steam flow rate supplied to the turbine to a target load. A boiling water nuclear power plant, comprising: a bleed control device that controls the bleed amount in the bleed device so that a corresponding constant steam flow rate is obtained.
【請求項2】 前記日負荷追従運転時における前記制御
棒の挿入単位を燃料有効部の1/20以上とし、原子炉
の冷却材の循環は自然循環で行うようにしたことを特徴
とする請求項1に記載の沸騰水型原子力発電プラント。
2. The unit for inserting the control rod during the daily load following operation is set to 1/20 or more of the effective fuel portion, and the circulation of the coolant of the nuclear reactor is performed by natural circulation. The boiling water nuclear power plant according to Item 1.
【請求項3】 1台又は複数台の前記給水温度制御用給
水加熱器を設け、最上流段の給水温度制御用給水加熱器
のみを給水と抽気蒸気とが直接混合される方式の混合型
給水加熱器とし、それ以外の給水温度制御用給水加熱器
を給水と抽気蒸気とが非接触で熱交換する熱交換型給水
加熱器としたことを特徴とする請求項1又は請求項2に
記載の沸騰水型原子力発電プラント。
3. A mixed-type water supply system in which one or a plurality of water supply temperature control water heaters are provided, and only the most upstream water supply temperature control water supply heater is used to directly mix the water supply with the extracted steam. 3. A heater, and a feed water heater for controlling the feed water temperature other than that is a heat exchange type feed water heater for exchanging heat with the feed water and the extraction steam in a non-contact manner. Boiling water nuclear power plant.
【請求項4】 1台又は複数台の前記給水温度制御用給
水加熱器を設け、前記給水温度制御用給水加熱器は給水
と袖気蒸気とが非接触で熱交換する熱交換型給水加熱器
であり、最上流段の給水温度制御用給水加熱器からのド
レン水をドレンポンプにより給水に混合するようにした
こと特徴とする請求項1又は請求項2に記載の沸騰水型
原子力発電プラント。
4. A heat exchange type feed water heater provided with one or a plurality of feed water temperature control feed water heaters, wherein the feed water temperature control feed water heater exchanges heat between the feed water and sleeve steam in a non-contact manner. The boiling water nuclear power plant according to claim 1 or 2, wherein the drain water from the feed water heater for controlling the feed water temperature at the uppermost stage is mixed with the feed water by a drain pump.
JP8147869A 1996-05-20 1996-05-20 Boiling water nuclear power plant Pending JPH09304586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8147869A JPH09304586A (en) 1996-05-20 1996-05-20 Boiling water nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8147869A JPH09304586A (en) 1996-05-20 1996-05-20 Boiling water nuclear power plant

Publications (1)

Publication Number Publication Date
JPH09304586A true JPH09304586A (en) 1997-11-28

Family

ID=15440086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8147869A Pending JPH09304586A (en) 1996-05-20 1996-05-20 Boiling water nuclear power plant

Country Status (1)

Country Link
JP (1) JPH09304586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225461A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Output control method of nuclear reactor and nuclear reactor plant
JP2007232394A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Output control device of natural circulation reactor, power generation system of natural circulation reactor, and output control method of natural circulation reactor
JP2017194312A (en) * 2016-04-19 2017-10-26 日立Geニュークリア・エナジー株式会社 Output control apparatus and method for nuclear power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225461A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Output control method of nuclear reactor and nuclear reactor plant
JP2007232394A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Output control device of natural circulation reactor, power generation system of natural circulation reactor, and output control method of natural circulation reactor
JP4669797B2 (en) * 2006-02-27 2011-04-13 日立Geニュークリア・エナジー株式会社 Natural circulation reactor power control system
JP2017194312A (en) * 2016-04-19 2017-10-26 日立Geニュークリア・エナジー株式会社 Output control apparatus and method for nuclear power plant

Similar Documents

Publication Publication Date Title
CA1190304A (en) Hrsg damper control
CN100385092C (en) Rapid power producing system and method for steam turbine
JP4818391B2 (en) Steam turbine plant and operation method thereof
CN207776920U (en) A kind of system of nuclear power generating sets vapor self
JPH09304586A (en) Boiling water nuclear power plant
CN112768101A (en) System and method for starting nuclear power unit of high-temperature gas cooled reactor by sliding pressure
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
JPH08233989A (en) Reactor power plant and operation method
JP4619398B2 (en) Nuclear power plant operating method and nuclear power plant
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
JPS5844240B2 (en) How to operate a boiling water nuclear power plant
JPH0894793A (en) Start up method for natural circulation boiling water reactor
JP4449620B2 (en) Nuclear power plant and operation method thereof
JP4982270B2 (en) Reactor operating method and nuclear power plant
JPS5819240B2 (en) Fast breeder reactor inlet sodium temperature control method and device
CN214671852U (en) System for high temperature gas cooled reactor nuclear power unit sliding pressure starts
JP2008304264A (en) Nuclear power plant and its operation method
JP2008128881A (en) Operation method of nuclear power plant
JP2007232500A (en) Operation method of nuclear reactor and nuclear power plant
JPS5993103A (en) Nuclear power generating plant
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2645128B2 (en) Coal gasification power plant control unit
CN116951535A (en) Pressurized water reactor nuclear power cogeneration control method and system
JPH01140095A (en) Method of controlling feed water temperature of fast breeder reactor
JP2716442B2 (en) Waste heat recovery boiler device