JPH0894793A - Start up method for natural circulation boiling water reactor - Google Patents

Start up method for natural circulation boiling water reactor

Info

Publication number
JPH0894793A
JPH0894793A JP6230962A JP23096294A JPH0894793A JP H0894793 A JPH0894793 A JP H0894793A JP 6230962 A JP6230962 A JP 6230962A JP 23096294 A JP23096294 A JP 23096294A JP H0894793 A JPH0894793 A JP H0894793A
Authority
JP
Japan
Prior art keywords
chimney
pressure
reactor
core
natural circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6230962A
Other languages
Japanese (ja)
Inventor
Nobuaki Abe
信明 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6230962A priority Critical patent/JPH0894793A/en
Publication of JPH0894793A publication Critical patent/JPH0894793A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE: To prevent the occurrence of instable flow phenomenon in reactor start up and enable starting up reactor stably. CONSTITUTION: At core 2 outlet, a pressure gauge 25 and a temperature meter 26 are placed and at lower part of chimney 3 above the core 2, a pressure gauge 27 and a temperature meter 28 are placed so as to calculate the saturation pressure from the pressure gauges 25 and 27 and the temperature meters 26 and 28. When the core outlet becomes saturation state, the opening of a turbine bypass valve 19 or turbine control valve 11 is controlled to decrease the pressure in the pressure vessel so that the pressure in the lower part of the chimney 3 becomes the saturation pressure calculated from the temperature meter in the chimney 3 lower part. Besides, by controlling the withdrawal of the control rod 24 and increasing the reactor power, the chimney 3 part is quickly made to saturation state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炉心内外の静水頭差によ
り冷却材の循環流量が確保される自然循環沸騰水型原子
炉の起動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a natural circulation boiling water reactor in which a circulating flow rate of a coolant is secured by a difference in static head inside and outside the core.

【0002】[0002]

【従来の技術】図5は、従来の自然循環沸騰水型原子炉
を示すもので、図中、符号1は原子炉圧力容器(以下、
圧力容器と記す)であり、この圧力容器1内には炉心2
が配置されているとともに、この炉心2を包囲して円筒
状をなすチムニー3が設置され、チムニー3と圧力容器
1内との間にダウンカマ4が形成されている。チムニー
3の上方は上部プレナムで蒸気ドーム部5となってい
る。
2. Description of the Related Art FIG. 5 shows a conventional natural circulation boiling water reactor, in which 1 is a reactor pressure vessel (hereinafter,
It will be referred to as a pressure vessel).
And a cylindrical chimney 3 surrounding the reactor core 2 is installed, and a downcomer 4 is formed between the chimney 3 and the pressure vessel 1. Above the chimney 3 is a steam dome portion 5 in the upper plenum.

【0003】冷却水6は、ダウンカマ4,下部プレナム
7,炉心2およびチムニー3内を自然循環している。炉
心2で発生した蒸気は、主蒸気管8を通り主蒸気隔離弁
9、タービン蒸気止め弁,タービン蒸気加減弁11を流れ
てタービン12に送られる。タービン12で仕事をした後の
蒸気は、主復水器13で復水後、給水ポンプ14,給水止め
弁15を接続した給水管16を流れ、冷却水として圧力容器
1内に給水されるようになっている。
The cooling water 6 naturally circulates in the downcomer 4, the lower plenum 7, the core 2 and the chimney 3. The steam generated in the core 2 passes through the main steam pipe 8, flows through the main steam isolation valve 9, the turbine steam stop valve, and the turbine steam control valve 11 and is sent to the turbine 12. The steam after having worked in the turbine 12 flows through the water supply pipe 16 connected to the water supply pump 14 and the water supply stop valve 15 after being condensed in the main condenser 13, and is supplied to the pressure vessel 1 as cooling water. It has become.

【0004】主蒸気隔離弁9の入口側と主復水器13との
間には主蒸気ドレン弁17を有する主蒸気ドレン配管18が
接続し、タービン止め弁10の入口側と主復水器13との間
にはタービンバイパス弁19を有するタービンバイパス管
20が接続している。
A main steam drain pipe 18 having a main steam drain valve 17 is connected between the inlet side of the main steam isolation valve 9 and the main condenser 13, and the inlet side of the turbine stop valve 10 and the main condenser are connected. Turbine bypass pipe having turbine bypass valve 19 between 13 and
20 connected.

【0005】圧力容器1の底部には、冷却材浄化系の一
部であるドレン配管21が設けられており、このドレン配
管21で抽出された炉水6は、電気ヒータ等で構成される
熱交換器22に送られ、ここで加熱された炉水6は注水配
管23および給水管16からダウンカマ4に戻されるように
なっている。
A drain pipe 21 which is a part of a coolant purification system is provided at the bottom of the pressure vessel 1, and the reactor water 6 extracted by the drain pipe 21 is heated by an electric heater or the like. The reactor water 6 sent to the exchanger 22 and heated therein is returned from the water injection pipe 23 and the water supply pipe 16 to the downcomer 4.

【0006】炉心2には制御棒24が挿脱して炉心2の出
力が制御される。しかして、上記構成の従来の自然循環
沸騰水型原子炉では圧力容器1内の炉心2を包囲した円
筒状のチムニー3と、チムニー3の外周部と圧力容器1
に囲まれ冷却材である水の流路となるダウンカマ4をも
ち、チムニー3内の水と蒸気の浮力による上昇力および
ダウンカマ4における水頭圧を駆動力として冷却材を循
環させている。
A control rod 24 is inserted into and removed from the core 2 to control the output of the core 2. Therefore, in the conventional natural circulation boiling water reactor having the above-mentioned configuration, the cylindrical chimney 3 surrounding the core 2 in the pressure vessel 1, the outer peripheral portion of the chimney 3 and the pressure vessel 1 are arranged.
The downcomer 4 is surrounded by and serves as a flow path for water as a coolant, and the coolant is circulated by using the ascending force of the buoyancy of water and steam in the chimney 3 and the water head pressure in the downcomer 4 as a driving force.

【0007】自然循環沸騰水型原子炉の起動方法は以下
の通りである。まず、原子炉水を熱交換器22または崩壊
熱で80℃まで昇温する。主復水器13を真空引きの後、主
蒸気ドレイン弁17を開放して脱気運転を行い、冷却水か
ら不純物を取り除く。その後、制御棒24を引抜き原子炉
を臨界にし、出力をゆっくり上昇させながら、冷却水を
昇温すると同時に原子炉圧力を増加させていく。
The method of starting the natural circulation boiling water reactor is as follows. First, the reactor water is heated to 80 ° C. by the heat exchanger 22 or decay heat. After evacuating the main condenser 13, the main steam drain valve 17 is opened to perform deaeration operation to remove impurities from the cooling water. After that, the control rod 24 is pulled out to make the reactor critical, and while the output is slowly increased, the temperature of the cooling water is raised and simultaneously the reactor pressure is increased.

【0008】[0008]

【発明が解決しようとする課題】自然循環沸騰水型原子
炉の起動時において、不安定な熱流動現象が発生する可
能性がある。この不安定流動現象の発生する条件は圧力
容器内の原子炉圧力が低く、自然循環流量が少なく、さ
らに炉心が飽和状態であり、チムニー内がサブクール状
態のときである。
When the natural circulation boiling water reactor is started up, an unstable heat-hydraulic phenomenon may occur. The conditions under which this unstable flow phenomenon occurs are when the reactor pressure in the pressure vessel is low, the natural circulation flow rate is low, the core is saturated, and the chimney is in a subcooled state.

【0009】自然循環沸騰水型原子炉では自然循環流量
を確保するため、炉心2の上部にかなり高いチムニー3
を有している。このチムニー3の高さが例えば10mであ
るとすると、その水頭圧は1ataとなり、蒸気ドーム
5部が大気圧であり、原子炉水温度が 100℃の場合、炉
心2の出口すなわちチムニー3下部のサブクール度は20
℃にもなる。
In the natural circulation boiling water reactor, in order to secure the natural circulation flow rate, the chimney 3 which is considerably high above the core 2 is used.
have. Assuming that the height of this chimney 3 is, for example, 10 m, its head pressure is 1 ata, the steam dome 5 part is atmospheric pressure, and the reactor water temperature is 100 ° C., the outlet of the reactor core 2, that is, the lower part of the chimney 3 Subcool degree is 20
It can be as high as ℃.

【0010】原子炉の出力を上昇させていくと、蒸気発
生のある炉心部の温度がまず上昇していく。チムニー3
内は熱発生がないので、炉心からチムニー3内へ流入し
た高温の水は周りの低温の水と混合してチムニー3内の
流体温度は炉心部より低下し、サブクール状態のままで
ある。さらに出力を上昇させていくと炉心出口部で飽和
となりボイドが発生する。
When the output of the nuclear reactor is increased, the temperature of the core portion where steam is generated first rises. Chimney 3
Since no heat is generated inside, the high temperature water flowing into the chimney 3 from the core mixes with the surrounding low temperature water, and the fluid temperature inside the chimney 3 is lower than that of the core, and remains in the subcooled state. When the power is further increased, the core is saturated at the outlet and voids are generated.

【0011】しかし、チムニー3内はまだ低温のサブク
ール状態であるため、このボイドはチムニー3内で消滅
する。その結果、チムニー3内のサブクール水が炉水に
流入し流動振動および出力振動が生じる。自然循環沸騰
水型原子炉ではこのような不安定流動現象の発生を防止
した起動方法を採用する必要がある。
However, since the inside of the chimney 3 is still in a low temperature subcool state, this void disappears in the chimney 3. As a result, the subcooled water in the chimney 3 flows into the reactor water, causing flow vibration and output vibration. In natural circulation boiling water reactors, it is necessary to adopt a startup method that prevents the occurrence of such unstable flow phenomena.

【0012】図6に自然循環沸騰水型原子炉の起動時の
主要パラメータ変化を、図7にそのときの炉心とチムニ
ー内の流体温度変化を示す。なお、図7中符号1はチャ
ンネル入口水温、2は上部プレナム水温、3はチャンネ
ル出口、4と5はチャンネル出口および上部プレナムで
の飽和温度、t1 は一定圧力の場合の沸騰遅れ時間、t
2 はチャンネル上端部での沸騰遅れ時間、t3 は上部プ
レナムでの沸騰遅れ時間を示している。ここで、チャン
ネルとはチムニー3に相当し、上部プレナムは蒸気ドー
ム5部に相当している。
FIG. 6 shows changes in main parameters when the natural circulation boiling water reactor is started, and FIG. 7 shows changes in fluid temperature in the core and chimney at that time. In FIG. 7, reference numeral 1 is the channel inlet water temperature, 2 is the upper plenum water temperature, 3 is the channel outlet, 4 and 5 are the saturation temperatures at the channel outlet and the upper plenum, t1 is the boiling delay time at a constant pressure, t
2 is the boiling delay time at the upper end of the channel, and t3 is the boiling delay time at the upper plenum. Here, the channel corresponds to the chimney 3 and the upper plenum corresponds to the steam dome 5.

【0013】原子炉出力の増加とともに原子炉出力およ
び冷却水温度が上昇している。図7からわかるように、
この昇温過程において炉心出口でまず飽和状態になりボ
イドが発生する。つぎにチムニー3内が飽和状態にな
る。炉心が飽和であり、かつ、チムニーがサブクール状
態である期間はt3 の1時間であり、この期間において
不安定な流動現象が発生する可能性がある。
As the reactor power increases, the reactor power and cooling water temperature increase. As you can see from Figure 7,
During this temperature rising process, a saturated state is first created at the core outlet and voids are generated. Next, the inside of the chimney 3 becomes saturated. The period in which the core is saturated and the chimney is in the subcool state is 1 hour at t3, and an unstable flow phenomenon may occur during this period.

【0014】このような不安定流動現象は原子炉圧力が
高くなると発生しない。したがって、例えば特開平5−
72387号公報に示されるような自然循環沸騰水型原
子炉の起動方法では同公報の図1に示すように給水管14
に加圧タンク17を設置し、圧力容器1内の加圧を圧力容
器1外部から行い、原子炉圧力を高くしてから圧力容器
内の冷却水を単相流状態から二相流状態に遷移させるこ
とにより、不安定流動現象の発生を防止している。しか
しながら、この起動方法では加圧タンク17を設ける必要
があり実際的ではない課題がある。
Such an unstable flow phenomenon does not occur when the reactor pressure increases. Therefore, for example, Japanese Patent Laid-Open No. 5-
In the method for starting a natural circulation boiling water reactor as disclosed in Japanese Patent No. 72387, the water supply pipe 14 is used as shown in FIG.
A pressure tank 17 is installed in the pressure vessel 1 to pressurize the pressure vessel 1 from outside the pressure vessel 1 to increase the reactor pressure, and then the cooling water in the pressure vessel is changed from a single-phase flow state to a two-phase flow state. By doing so, the occurrence of unstable flow phenomenon is prevented. However, this starting method has a problem that it is not practical because the pressure tank 17 needs to be provided.

【0015】本発明は上記課題を解決するためになされ
たもので、自然循環沸騰水型原子炉の起動時に不安定流
動現象が発生する可能性のある期間を短くして不安定流
動現象の発生を防止し、安定した原子炉の起動を可能と
する自然循環沸騰水型原子炉の起動方法を提供すること
にある。
The present invention has been made to solve the above problems, and shortens the period in which an unstable flow phenomenon may occur at the time of starting a natural circulation boiling water reactor, thereby causing the unstable flow phenomenon. Another object of the present invention is to provide a method for starting a natural circulation boiling water reactor, which prevents the above-mentioned problems and enables stable start-up of the reactor.

【0016】[0016]

【課題を解決するための手段】本発明は炉心出口に圧力
計と温度計、チムニー下部に圧力計と温度計を設置し、
前記温度計から飽和圧力を演算し、炉心出口が飽和状態
になったときにチムニー下部の圧力がチムニー下部の温
度計から演算される飽和圧力になるように、タービンバ
イパス弁またはタービン加減弁の開度を調節し圧力容器
の圧力を低下させたり、もしくは制御棒の引抜きを調節
し原子炉出力を上昇させたりすることを特徴とする。
According to the present invention, a pressure gauge and a thermometer are installed at the core outlet, and a pressure gauge and a thermometer are installed below the chimney.
The saturation pressure is calculated from the thermometer, and the turbine bypass valve or turbine control valve is opened so that the pressure at the lower part of the chimney becomes the saturated pressure calculated from the thermometer at the lower part of the chimney when the core outlet becomes saturated. It is characterized by adjusting the pressure to reduce the pressure in the pressure vessel, or adjusting the withdrawal of control rods to increase the reactor power.

【0017】[0017]

【作用】[Action]

(1)炉心出口に圧力計と温度計、チムニー下部に圧力
計と温度計を設置し、前記温度計から飽和圧力を演算
し、炉心出口が飽和状態になったときにチムニー下部の
圧力がチムニー下部の温度計から演算される飽和圧力に
なるように、主蒸気隔離弁を開放しタービンバイパス弁
の開度を調節し圧力容器の圧力を低下させる。
(1) A pressure gauge and a thermometer are installed at the core outlet, and a pressure gauge and a thermometer are installed at the lower portion of the chimney, and the saturation pressure is calculated from the thermometer. When the core outlet becomes saturated, the pressure at the lower portion of the chimney is the chimney. The main steam isolation valve is opened and the opening of the turbine bypass valve is adjusted to reduce the pressure in the pressure vessel so that the saturated pressure calculated from the lower thermometer is reached.

【0018】(2)起動時の不安定流動現象の発生する
条件は炉心出口が飽和であり、チムニー下部がサブクー
ル状態のときである。タービンバイパス弁を調整するこ
とにより、チムニー下部を飽和状態とすることができ
る。
(2) The unstable flow phenomenon at the time of startup is when the core outlet is saturated and the lower part of the chimney is in the subcool state. The lower part of the chimney can be saturated by adjusting the turbine bypass valve.

【0019】(3)この結果、不安定流動現象の発生す
る可能性がある期間を短縮でき、安定した原子炉の起動
が可能となる。また、制御棒の引抜きを調節し原子炉出
力を上昇させたりすることにより、チムニー下部を飽和
状態とすることができる。
(3) As a result, the period during which the unstable flow phenomenon may occur can be shortened, and the reactor can be stably started up. In addition, the lower part of the chimney can be saturated by adjusting the withdrawal of the control rod and increasing the reactor output.

【0020】(4)炉心出口が飽和状態になったときに
チムニー下部の圧力がチムニー下部の温度計から演算さ
れる飽和圧力になるように、主蒸気隔離弁およびタービ
ン止め弁を開放しタービン加減弁の開度を調節し圧力容
器の圧力を低下させる。炉心出口が飽和状態になったと
きにチムニー下部の圧力がチムニー下部の温度計から演
算される飽和圧力になるように、制御棒の引抜きを調整
し原子炉出力を増加させチムニー内を迅速に飽和状態に
する。
(4) The main steam isolation valve and the turbine stop valve are opened so that the pressure in the lower portion of the chimney becomes the saturated pressure calculated by the thermometer in the lower portion of the chimney when the core outlet is saturated, and the turbine control is adjusted. Adjust the valve opening to reduce the pressure in the pressure vessel. When the core outlet is saturated, the control rod withdrawal is adjusted to increase the reactor output and saturate the chimney quickly so that the pressure below the chimney reaches the saturation pressure calculated from the thermometer below the chimney. Put in a state.

【0021】[0021]

【実施例】図1により本発明に係る自然循環沸騰水型原
子炉の起動方法の第1の実施例を説明する。図1は本実
施例を説明するための自然循環沸騰水型原子炉と、ター
ビン系と、給水系とを概略的に系統図で示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a method for starting a natural circulation boiling water reactor according to the present invention will be described with reference to FIG. FIG. 1 is a schematic system diagram showing a natural circulation boiling water reactor, a turbine system, and a feed water system for explaining the present embodiment.

【0022】図1において、圧力容器1内には多数本の
燃料集合体が装荷され、かつ制御棒24が挿脱する炉心2
が配置され、この炉心2を包囲して円筒状チムニー3が
設置され、チムニー3と圧力容器1との間にダウンカマ
4が形成されている。チムニー3の上方は上部プレナム
で蒸気ドーム部5となっている。圧力容器1内の冷却水
6はダウンカマ4,下部プレナム7,炉心2およびチム
ニー3内を自然循環している。原子炉出力は制御棒24で
調整する。
In FIG. 1, a core 2 in which a large number of fuel assemblies are loaded in a pressure vessel 1 and control rods 24 are inserted and removed.
, A cylindrical chimney 3 is installed so as to surround the core 2, and a downcomer 4 is formed between the chimney 3 and the pressure vessel 1. Above the chimney 3 is a steam dome portion 5 in the upper plenum. The cooling water 6 in the pressure vessel 1 naturally circulates in the downcomer 4, the lower plenum 7, the core 2 and the chimney 3. The reactor power is adjusted by the control rod 24.

【0023】炉心2で発生した蒸気は主蒸気管8から流
出し、主蒸気隔離弁9,タービン蒸気止め弁,タービン
蒸気加減弁11を流れてタービン12に送られる。タービン
12で発電機を駆動させて仕事をした後の蒸気は主復水器
13で復水後、給水ポンプ14,給水止め弁15を接続した給
水管16を流れ、冷却水として圧力容器1内に戻されるよ
うになっている。
The steam generated in the core 2 flows out from the main steam pipe 8, flows through the main steam isolation valve 9, the turbine steam stop valve, and the turbine steam control valve 11 and is sent to the turbine 12. Turbine
The steam after driving the generator at 12 and working is the main condenser
After the water is condensed at 13, it flows through a water supply pipe 16 to which a water supply pump 14 and a water supply stop valve 15 are connected, and is returned to the pressure vessel 1 as cooling water.

【0024】主蒸気隔離弁9の入口側と主復水器13との
間には主蒸気ドレン弁17を有する主蒸気ドレン管18が主
蒸気管8から分岐して接続しており、またタービン蒸気
止め弁10の入口側と主復水器13との間にはタービンバイ
パス弁を有するタービンバイパス管20が主蒸気管8から
分岐して接続されている。
Between the inlet side of the main steam isolation valve 9 and the main condenser 13, a main steam drain pipe 18 having a main steam drain valve 17 is branched and connected from the main steam pipe 8, and the turbine is also connected. Between the inlet side of the steam stop valve 10 and the main condenser 13, a turbine bypass pipe 20 having a turbine bypass valve is branched and connected from the main steam pipe 8.

【0025】炉心2の出口側には炉心出口圧力計25と炉
心出口温度計26が設置され、炉心2の上方のチムニー3
の下部にはチムニー下部圧力計27とチムニー下部温度計
が設置され、これらの圧力計25,27と温度計26,28は制
御器27に接続され各々の信号が入力する。一方、制御器
27の出力信号は主蒸気隔離弁9およびタービンバイパス
弁19へ出力されるようになっている。
On the outlet side of the core 2, a core outlet pressure gauge 25 and a core outlet thermometer 26 are installed, and the chimney 3 above the core 2 is installed.
A lower chimney pressure gauge 27 and a lower chimney thermometer are installed in the lower part of the, and these pressure gauges 25, 27 and thermometers 26, 28 are connected to a controller 27 to input respective signals. Meanwhile, the controller
The output signal of 27 is output to the main steam isolation valve 9 and the turbine bypass valve 19.

【0026】ここで、タービン止め弁10,タービン加減
弁11および給水止め弁15は閉じた状態で、主蒸気隔離弁
9,主蒸気ドレン弁17およびタービンバイパス弁19は開
いた状態となっている。
Here, the turbine stop valve 10, the turbine control valve 11 and the feed water stop valve 15 are closed, and the main steam isolation valve 9, the main steam drain valve 17 and the turbine bypass valve 19 are open. .

【0027】しかして、本実施例の対象となる起動時の
初期においては炉心で発生した蒸気は主蒸気ドレイン配
管18を通って主復水器13に流れる。本発明の対象外であ
る原子炉圧力が 0.5MPa以上の状態では、炉心2で発
生した蒸気は主蒸気隔離弁8を通った後、タービンバイ
パス弁19を経由して主復水器13に流れる。
However, in the initial stage of start-up, which is the object of this embodiment, the steam generated in the core flows to the main condenser 13 through the main steam drain pipe 18. In a state where the reactor pressure is 0.5 MPa or more, which is outside the scope of the present invention, the steam generated in the core 2 flows to the main condenser 13 after passing through the main steam isolation valve 8 and then the turbine bypass valve 19. .

【0028】炉心2の出口に圧力計25と温度計26,チム
ニー3の下部に圧力計27と温度計28を、また、圧力計,
温度計から飽和圧力を計算する制御器29を設置してい
る。この制御器29は炉心2の出口の圧力と、温度計から
計算される飽和圧力を比較し、前者の値と後者の値が等
しくなったときに炉心出口が飽和状態になったと判定す
る。
A pressure gauge 25 and a thermometer 26 are provided at the outlet of the core 2, a pressure gauge 27 and a thermometer 28 are provided below the chimney 3, and a pressure gauge,
A controller 29 for calculating the saturated pressure from a thermometer is installed. The controller 29 compares the pressure at the outlet of the core 2 with the saturation pressure calculated from the thermometer, and determines that the core outlet is saturated when the former value and the latter value become equal.

【0029】また、チムニー3の下部の圧力と、温度計
から計算される飽和圧力を比較し、前者の値と後者の値
が等しくなったときにチムニー3の下部が飽和状態にな
ったと判定する。この制御器29は炉心出口が飽和状態に
なったと判定した場合、主蒸気隔離弁9を全開し、さら
に、タービンバイパス弁19の開度を制御してチムニー3
の下部が飽和状態にあるように調整する。本実施例によ
れば、不安定な流動現象の発生する可能性がある期間を
短縮でき、安定した原子炉の起動ができる。
Further, the lower pressure of the chimney 3 is compared with the saturated pressure calculated from the thermometer, and when the former value and the latter value become equal, it is determined that the lower part of the chimney 3 is saturated. . When the controller 29 determines that the core outlet is saturated, the main steam isolation valve 9 is fully opened, and the opening degree of the turbine bypass valve 19 is controlled to control the chimney 3
Adjust so that the bottom of is saturated. According to the present embodiment, the period during which an unstable flow phenomenon may occur can be shortened, and the reactor can be stably started up.

【0030】つぎに、図2により本発明の第2の実施例
を説明する。なお、図2中図1と同一部分に同一符号を
付して重複する部分の説明は省略する。この第2の実施
例が第1の実施例と異なる点はタービンバイパス弁19お
よび給水止め弁15を閉じ、主蒸気隔離弁9,タービン蒸
気止め弁10,タービン加減弁11および主蒸気ドレン弁17
を開いた状態としている。制御器29の出力信号は主蒸気
隔離弁10,タービン蒸気止め弁10およびタービン蒸気加
減弁11に入力されるようになっている。
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description of the overlapping parts will be omitted. The second embodiment is different from the first embodiment in that the turbine bypass valve 19 and the water stop valve 15 are closed, the main steam isolation valve 9, the turbine steam stop valve 10, the turbine control valve 11 and the main steam drain valve 17 are closed.
Is open. The output signal of the controller 29 is input to the main steam isolation valve 10, the turbine steam stop valve 10 and the turbine steam control valve 11.

【0031】この第2の実施例においては制御器29は炉
心出口が飽和状態になったと判定した場合、主蒸気隔離
弁9およびタービン止め弁10を全開し、またタービン加
減弁11の開度を制御してチムニー3の下部が飽和状態に
なるように調整する。これにより原子炉の起動時に不安
定流動現象が発生する可能性がある期間を短くすること
ができる。
In the second embodiment, when the controller 29 determines that the core outlet has become saturated, the main steam isolation valve 9 and the turbine stop valve 10 are fully opened, and the opening degree of the turbine control valve 11 is changed. It controls and adjusts so that the lower part of the chimney 3 may be saturated. As a result, the period during which the unstable flow phenomenon may occur at the time of starting the reactor can be shortened.

【0032】つぎに図3により本発明の第3の実施例を
説明する。この第3の実施例が第1の実施例と異なる点
は主蒸気ドレン弁17のみを開き、他の全ての弁9,10,
19および15を閉じた状態としている。その他の部分は第
1の実施例と同様であるのでその説明は省略する。
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment differs from the first embodiment in that only the main steam drain valve 17 is opened and all other valves 9, 10,
19 and 15 are closed. The other parts are the same as those in the first embodiment, and the description thereof will be omitted.

【0033】この第3の実施例においては、制御棒24の
引抜きを制御し原子炉出力を増加させ、チムニー3の下
部が飽和状態になるように調整する。これにより第1の
実施例と同様の効果がある。
In the third embodiment, the withdrawal of the control rod 24 is controlled to increase the reactor power, and the lower portion of the chimney 3 is adjusted to be saturated. This has the same effect as that of the first embodiment.

【0034】図4は図2から図3に述べた本発明と従来
例とのチムニー下部温度および炉心出口温度とを、温度
と起動からの時間との関係で比較して示したものであ
る。図4から明らかなように本発明の実施例によれば、
自然循環沸騰水型原子炉の起動時に不安定流動現象が発
生する可能性のある期間T3 を短くすることができ、安
定した原子炉の起動が可能となる。
FIG. 4 shows the chimney lower temperature and core outlet temperature of the present invention described in FIGS. 2 to 3 and the conventional example in comparison with each other in relation to temperature and time from start-up. As is apparent from FIG. 4, according to the embodiment of the present invention,
The period T3 during which the unstable flow phenomenon may occur at the time of starting the natural circulation boiling water reactor can be shortened, and the stable start-up of the reactor becomes possible.

【0035】[0035]

【発明の効果】本発明によれば、炉心出口に圧力計と温
度計、チムニー下部に圧力計と温度計を設置し、前記温
度計から飽和圧力を演算し、炉心出口が飽和状態になっ
たときにチムニー下部の圧力がチムニー下部の温度計か
ら演算される飽和圧力になるように、タービンバイパス
弁またはタービン加減弁の開度を調節し、圧力容器の圧
力を低下させたり、もしくは制御棒の引抜きを調節し原
子炉出力を上昇させたりする。
According to the present invention, a pressure gauge and a thermometer are installed at the core outlet, and a pressure gauge and a thermometer are installed below the chimney, and the saturation pressure is calculated from the thermometer, and the core outlet becomes saturated. At times, adjust the opening of the turbine bypass valve or turbine control valve so that the pressure under the chimney reaches the saturation pressure calculated from the thermometer under the chimney, and lower the pressure in the pressure vessel, or Adjusting the withdrawal and increasing the reactor power.

【0036】これにより、チムニー下部を迅速に飽和状
態とすることができ、この結果、この不安定流動現象の
発生する条件(炉心出口が飽和であり、チムニー部が未
飽和状態であること)を避けることができ、不安定流動
現象の発生する可能性がある期間を短縮できる。
As a result, the lower part of the chimney can be quickly saturated, and as a result, the conditions under which this unstable flow phenomenon occurs (the core outlet is saturated and the chimney part is unsaturated) are satisfied. This can be avoided, and the period during which the unstable flow phenomenon may occur can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る自然循環沸騰水型原子炉の起動方
法の第1の実施例を説明するための系統図。
FIG. 1 is a system diagram for explaining a first embodiment of a method for starting a natural circulation boiling water reactor according to the present invention.

【図2】本発明に係る自然循環沸騰水型原子炉の起動方
法の第2の実施例を説明するための系統図。
FIG. 2 is a system diagram for explaining a second embodiment of a method for starting a natural circulation boiling water reactor according to the present invention.

【図3】本発明に係る自然循環沸騰水型原子炉の起動方
法の第3の実施例を説明するための系統図。
FIG. 3 is a system diagram for explaining a third embodiment of a method for starting a natural circulation boiling water reactor according to the present invention.

【図4】本発明と従来例における作用効果を温度と起動
から時間との関係で比較して示す特性図。
FIG. 4 is a characteristic diagram showing the effects of the present invention and the conventional example in comparison with each other in the relationship between temperature and time from startup.

【図5】従来の自然循環沸騰水型原子炉の起動方法を説
明するための系統図。
FIG. 5 is a system diagram for explaining a method for starting a conventional natural circulation boiling water reactor.

【図6】従来の自然循環沸騰水型原子炉の主要パラメー
タ変化を示す特性図。
FIG. 6 is a characteristic diagram showing changes in main parameters of a conventional natural circulation boiling water reactor.

【図7】図6における炉心とチムニー内の冷却材温度変
化を示す特性図。
7 is a characteristic diagram showing changes in coolant temperature in the core and chimney in FIG.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…炉心、3…チムニー、4…ダ
ウンカマ、5…蒸気ドーム部、6…冷却水、7…下部プ
レナム、8…主蒸気管、9…主蒸気隔離弁、10…タービ
ン蒸気止め弁、11…タービン蒸気加減弁、12…タービ
ン、13…主復水器、14…給水ポンプ、15…給水止め弁、
16…給水管、17…主蒸気ドレン弁、18…主蒸気ドレン配
管、19…タービンバイパス弁、20…タービンバイパス
管、21…ドレン管、22…熱交換器、23…注水配管、24…
制御棒、25…炉心出口圧力計、26…炉心出口温度計、27
…チムニー下部圧力計、28…チムニー下部温度計、29…
制御器。
1 ... Reactor pressure vessel, 2 ... Reactor core, 3 ... Chimney, 4 ... Downcomer, 5 ... Steam dome part, 6 ... Cooling water, 7 ... Lower plenum, 8 ... Main steam pipe, 9 ... Main steam isolation valve, 10 ... Turbine steam stop valve, 11 ... Turbine steam control valve, 12 ... Turbine, 13 ... Main condenser, 14 ... Water pump, 15 ... Water stop valve,
16 ... Water supply pipe, 17 ... Main steam drain valve, 18 ... Main steam drain pipe, 19 ... Turbine bypass valve, 20 ... Turbine bypass pipe, 21 ... Drain pipe, 22 ... Heat exchanger, 23 ... Water injection pipe, 24 ...
Control rod, 25 ... Core outlet pressure gauge, 26 ... Core outlet thermometer, 27
… Chimney bottom pressure gauge, 28… Chimney bottom thermometer, 29…
Controller.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧力容器内にチムニーを有し、このチム
ニー内に炉心が配置され、このチムニー内に冷却水を保
有するとともに内部で蒸気を発生する自然循環沸騰水型
原子炉の起動方法において、前記圧力容器内の冷却水を
昇温する際に、前記炉心の出口が飽和状態であり、かつ
前記チムニー内が未飽和状態である期間を短くするか、
または前記炉心の出口が飽和状態になったときに原子炉
圧力を減少させることにより前記チムニー内を飽和状態
に維持し、前記炉心の出口が飽和状態でありかつ前記チ
ムニー内が未飽和状態である期間を短くすることを特徴
とする自然循環沸騰水型原子炉の起動方法。
1. A method for starting a natural circulation boiling water reactor, comprising a chimney in a pressure vessel, a reactor core arranged in the chimney, holding cooling water in the chimney, and generating steam inside. When the temperature of the cooling water in the pressure vessel is raised, the outlet of the core is in a saturated state, and the period in which the chimney is in an unsaturated state is shortened, or
Alternatively, when the core outlet is saturated, the reactor pressure is reduced to maintain the chimney in a saturated state, the core outlet is in a saturated state, and the chimney is in an unsaturated state. A method for starting a natural circulation boiling water reactor characterized by shortening the period.
【請求項2】 前記炉心の出口が飽和状態になったとき
に原子炉出力を増大させて前記チムニー内を飽和状態に
維持し、前記炉心の出口が飽和状態であり、かつ前記チ
ムニー内が未飽和状態である期間を短くすることを特徴
とする請求項1記載の自然循環沸騰水型原子炉の起動方
法。
2. When the outlet of the core becomes saturated, the reactor output is increased to maintain the inside of the chimney in a saturated state, the outlet of the core is in a saturated state, and the inside of the chimney is not yet saturated. The method for starting a natural circulation boiling water reactor according to claim 1, characterized in that the period of the saturated state is shortened.
【請求項3】 前記原子炉圧力の減少は主蒸気隔離弁を
開き、タービンバイパス弁の開度を調整し制御すること
を特徴とする請求項1記載の自然循環沸騰水型原子炉の
起動方法。
3. The method for starting a natural circulation boiling water reactor according to claim 1, wherein the reduction of the reactor pressure is performed by opening a main steam isolation valve and adjusting and controlling an opening of a turbine bypass valve. .
【請求項4】 前記原子炉圧力の減少は主蒸気隔離弁を
開き、タービン加減弁の開度を調整し制御することを特
徴とする請求項1記載の自然循環沸騰水型原子炉の起動
方法。
4. The method for starting a natural circulation boiling water reactor according to claim 1, wherein the reduction of the reactor pressure is performed by opening a main steam isolation valve and adjusting and controlling an opening of a turbine control valve. .
【請求項5】 前記原子炉出力の増加は制御棒の引抜き
を調整し制御することを特徴とする請求項1記載の自然
循環沸騰水型原子炉の起動方法。
5. The method for starting a natural circulation boiling water reactor according to claim 1, wherein the increase of the reactor power is controlled by adjusting the pulling out of the control rod.
JP6230962A 1994-09-27 1994-09-27 Start up method for natural circulation boiling water reactor Pending JPH0894793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6230962A JPH0894793A (en) 1994-09-27 1994-09-27 Start up method for natural circulation boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6230962A JPH0894793A (en) 1994-09-27 1994-09-27 Start up method for natural circulation boiling water reactor

Publications (1)

Publication Number Publication Date
JPH0894793A true JPH0894793A (en) 1996-04-12

Family

ID=16916053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6230962A Pending JPH0894793A (en) 1994-09-27 1994-09-27 Start up method for natural circulation boiling water reactor

Country Status (1)

Country Link
JP (1) JPH0894793A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225511A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Nuclear reactor monitoring device and output controller
JP2007232395A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Temperature sensor for boiling water reactor of natural circulation type
JP2007232504A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
JP2007232503A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
JP2007315938A (en) * 2006-05-26 2007-12-06 Toshiba Corp Method of testing flow force vibration in natural circulation type boiling water reactor
JP2011017720A (en) * 2010-09-17 2011-01-27 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor system and nuclear reactor control method
CN113488206A (en) * 2021-06-17 2021-10-08 中广核研究院有限公司 Lead-based fast reactor control system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225511A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Nuclear reactor monitoring device and output controller
JP2007232395A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Temperature sensor for boiling water reactor of natural circulation type
US20100195782A1 (en) * 2006-02-27 2010-08-05 Yoshihiko Ishii Temperature Detection Apparatus For Natural Circulation Boiling Water Reactor
JP2007232504A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
JP2007232503A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
JP2007315938A (en) * 2006-05-26 2007-12-06 Toshiba Corp Method of testing flow force vibration in natural circulation type boiling water reactor
JP2011017720A (en) * 2010-09-17 2011-01-27 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor system and nuclear reactor control method
CN113488206A (en) * 2021-06-17 2021-10-08 中广核研究院有限公司 Lead-based fast reactor control system and method
CN113488206B (en) * 2021-06-17 2024-03-22 中广核研究院有限公司 Lead-based fast reactor control system and method

Similar Documents

Publication Publication Date Title
US9431136B2 (en) Stable startup system for nuclear reactor
JPS5830560B2 (en) Water supply control equipment for nuclear reactor power plants
US4424186A (en) Power generation
US20110200155A1 (en) Nuclear Reactor System and Nuclear Reactor Control Method
JPH0894793A (en) Start up method for natural circulation boiling water reactor
JP2007232503A (en) Nuclear reactor system and nuclear reactor control method
US5271044A (en) Boiling water nuclear reactor and start-up process thereof
JPH0549076B2 (en)
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
JPH06265665A (en) Natural circulation type boiling water reactor
JP3133812B2 (en) Boiling water reactor and start-up method thereof
JP2004101492A (en) Natural circulation reactor and its starting method
EP0125924A2 (en) Start-up systems and start-up vessels for such systems
JP4785558B2 (en) Reactor monitoring device
JPH05256991A (en) Activation method for natural circulation type reactor
JP4916569B2 (en) Reactor system and reactor control method
JP2011099772A (en) Natural circulation boiling water reactor and method of starting the same
JP2007232396A (en) Nuclear power plant and its control method
JP4590361B2 (en) Nuclear reactor system
JP4489046B2 (en) How to start a natural circulation furnace
JPH0529278B2 (en)
JPH05209979A (en) Startup method for nuclear reactor
JP2009128289A (en) Pressure control method of nuclear power plant, its pressure controller and nuclear power plant operation method
JPH09304586A (en) Boiling water nuclear power plant
KR810001339B1 (en) Nuclear reactor power generation