JPH06265665A - Natural circulation type boiling water reactor - Google Patents

Natural circulation type boiling water reactor

Info

Publication number
JPH06265665A
JPH06265665A JP5055986A JP5598693A JPH06265665A JP H06265665 A JPH06265665 A JP H06265665A JP 5055986 A JP5055986 A JP 5055986A JP 5598693 A JP5598693 A JP 5598693A JP H06265665 A JPH06265665 A JP H06265665A
Authority
JP
Japan
Prior art keywords
natural circulation
reactor
heat exchanger
lower plenum
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5055986A
Other languages
Japanese (ja)
Inventor
Nobuaki Abe
信明 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5055986A priority Critical patent/JPH06265665A/en
Publication of JPH06265665A publication Critical patent/JPH06265665A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a stable flow rate of natural circulation at the time of starting under a low pressure. CONSTITUTION:In a reactor pressure vessel 1, a core 2, riser 3, a shroud, downcomer 5 and a lower plenum 7 are provided respectively. A drain piping 10 is connected to the bottom of the lower plenum 7. A heat exchanger 22 is fitted to the drain piping 10 through a valve 21. The fore end of an injection water piping 23 coming out from the heat exchanger 22 is disposed at the lower part of the downcomer 5. At the time of starting under a low pressure, reactor water 6 is sent into the heat exchanger 22 by opening the valve 21. The reactor water 6 heated by the heat exchanger 22 is returned into the lower plenum 7 from the injection water piping 23. Thereby the temperature of the lower plenum 7 is raised and a stable flow rate of natural circulation is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自然循環型沸騰水型原子
炉に係り、特に低圧の起動時に安定した自然循環流量を
確保することができる自然循環型沸騰水型原子炉に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a natural circulation type boiling water nuclear reactor, and more particularly to a natural circulation type boiling water nuclear reactor capable of ensuring a stable natural circulation flow rate at low pressure startup.

【0002】[0002]

【従来の技術】図4は、従来の自然循環型沸騰水型原子
炉を示すもので、図中、符号1は原子炉圧力容器であ
り、この原子炉圧力容器1内には、炉心2が格納されて
いるとともに、炉心2の上部にはライザ3が形成され、
これらの外側には、円筒状をなすシュラウド4を介しダ
ウンカマ5が形成されている。そして炉水6は、ダウン
カマ5、下部プレナム7、炉心2およびライザ3を自然
循環しており、炉心2で発生した蒸気は、主蒸気管8を
介し、図示しないガスタービンに送られるとともに、タ
ービンで仕事をした後の蒸気は、復水後、給水管9を介
して原子炉圧力容器1内に戻されるようになっている。
2. Description of the Related Art FIG. 4 shows a conventional natural circulation type boiling water nuclear reactor. In the figure, reference numeral 1 is a reactor pressure vessel. While being stored, a riser 3 is formed above the core 2.
A downcomer 5 is formed on the outer side of these through a cylindrical shroud 4. The reactor water 6 naturally circulates in the downcomer 5, the lower plenum 7, the core 2 and the riser 3, and the steam generated in the core 2 is sent to a gas turbine (not shown) through the main steam pipe 8 and the turbine. The steam after working in is returned to the inside of the reactor pressure vessel 1 through the water supply pipe 9 after the condensate.

【0003】前記原子炉圧力容器1の底部には、図4に
示すように、冷却材浄化系の一部であるドレン配管10
が設けられており、このドレン配管10で抽出された炉
水6は、電気ヒータ等で構成される熱交換器11に送ら
れ、ここで加熱された炉水6は、注水配管12および給
水管9を介し、ダウンカマ5に戻されるようになってい
る。
At the bottom of the reactor pressure vessel 1, as shown in FIG. 4, is a drain pipe 10 which is a part of a coolant purification system.
Is provided, and the reactor water 6 extracted by the drain pipe 10 is sent to a heat exchanger 11 composed of an electric heater or the like, and the reactor water 6 heated here is supplied with a water injection pipe 12 and a water supply pipe. It is designed to be returned to the downcomer 5 via 9.

【0004】以上の構成において、起動(原子炉の昇温
昇圧)時に崩壊熱が利用できない場合には、炉水6を、
熱交換器11により大気圧下で100℃程度まで充分に
熱する。そしてその後、制御棒を引き抜いて原子炉を臨
界にし、核加熱により原子炉を昇温昇圧する。
In the above structure, when the decay heat is not available at the time of start-up (heating and pressure rise of the reactor), the reactor water 6 is
The heat exchanger 11 sufficiently heats up to about 100 ° C. under atmospheric pressure. Then, after that, the control rod is pulled out to make the reactor critical, and the reactor is heated and pressurized by nuclear heating.

【0005】[0005]

【発明が解決しようとする課題】図5は、自然循環型沸
騰水型原子炉における自然循環特性を示すものである。
自然循環流量は、炉心・ライザ部とダウンカマ部との密
度差で決まり、通常運転時のような高圧条件下では、僅
かな出力でも自然循環流量が多く、熱的に安定している
ことが判る。一方、低圧の起動時の自然循環特性は詳細
な評価がなされていないが、低圧では水と蒸気との密度
比が大きくなるので、同一の出力に対して自然循環流量
は定格時よりも多いと考えられており、低圧の起動時に
充分な自然循環流量が確保されないといった問題は発生
しないとされている。しかしながら、低圧の起動時に、
安定な高流量の自然循環流量を確保することは重要であ
る。
FIG. 5 shows natural circulation characteristics in a natural circulation type boiling water reactor.
The natural circulation flow rate is determined by the density difference between the core / riser section and the downcomer section. Under high pressure conditions such as during normal operation, even with a small output, the natural circulation flow rate is large and it is found to be thermally stable. . On the other hand, the natural circulation characteristics at low pressure startup have not been evaluated in detail, but since the density ratio of water and steam is large at low pressure, the natural circulation flow rate is higher than at the rated output for the same output. It is considered that there is no problem that a sufficient natural circulation flow rate is not secured at low pressure startup. However, at low pressure startup,
It is important to ensure a stable and high natural circulation flow rate.

【0006】原子炉の起動時の圧力は、大気圧程度であ
る。出力の大きな自然循環型原子炉では、自然循環流量
を増加させるめ、上下寸法の比較的大きなライザが設け
られている。自然循環流量は、前述のように炉心・ライ
サ部とダウンカマ部との密度差で決まるが、この密度差
は、温度差もしくはボイド率の差による。自然循環流量
を増加させるには、炉心・ライザ部の温度もしくはボイ
ド率を、ダウンカマ部のそれよりも大きくする必要があ
る。また、炉心・ライザ部において、下部ほど温度もし
くはボイド率を大きくした方が自然循環流量が多くな
る。逆に、ダウンカマ部の温度を炉心・ライザ部より高
くすると自然循環流量は低下する。すなわち、自然循環
型原子炉の起動時(大気圧近傍)において、図6に示す
ような温度分布となれば、高流量の自然循環量が確保さ
れる。
The pressure at the time of starting the reactor is about atmospheric pressure. Natural circulation reactors with large output are provided with risers with relatively large vertical dimensions in order to increase the natural circulation flow rate. The natural circulation flow rate is determined by the density difference between the core / riser section and the downcomer section as described above, and this density difference is due to the temperature difference or the void ratio difference. In order to increase the natural circulation flow rate, it is necessary to make the temperature or void ratio of the core / riser part larger than that of the downcomer part. Further, in the core / riser part, the natural circulation flow rate increases as the temperature or void rate increases toward the lower part. On the contrary, when the temperature of the downcomer part is higher than that of the core / riser part, the natural circulation flow rate decreases. That is, when the natural circulation reactor is started (near the atmospheric pressure), if the temperature distribution shown in FIG. 6 is achieved, a high flow rate of natural circulation is secured.

【0007】ところが、前記従来の自然循環型原子炉に
おいては、熱交換器11で加熱した炉水6をダウンカマ
5に戻すようにしているため、ダウンカマ5の温度が上
昇し、高流量の自然循環流量の増加は困難である。ま
た、熱交換器11を通した高温の炉水6を、給水管9か
ら注水しており、この注水位置は、通常水位よりやや下
方程度の高さであるので、大気圧下では100℃までの
炉水6しか注水できない。さらに、注水位置が原子炉圧
力容器1の上部であるため、自然循環力が弱く安定した
自然循環流は期待できない。そして、低圧の起動時に充
分な自然循環流量が得られない場合には、低温の炉水6
が炉心2に流入して反応度変化が生じ、不安定な熱流動
現象が生じるおそれがあるとともに、下部プレナム7内
において温度成層化が生じ、原子炉圧力容器1の熱応力
を厳しくするおそれがある。
However, in the conventional natural circulation type nuclear reactor, since the reactor water 6 heated by the heat exchanger 11 is returned to the downcomer 5, the temperature of the downcomer 5 rises and a high flow rate of natural circulation occurs. Increasing the flow rate is difficult. Further, the high-temperature reactor water 6 that has passed through the heat exchanger 11 is injected from the water supply pipe 9, and since this injection position is a little lower than the normal water level, up to 100 ° C under atmospheric pressure. Only the reactor water 6 can be injected. Furthermore, since the water injection position is the upper part of the reactor pressure vessel 1, the natural circulation force is weak and a stable natural circulation flow cannot be expected. If sufficient natural circulation flow rate cannot be obtained at low pressure startup, low temperature reactor water 6
May flow into the core 2 to cause a change in reactivity, which may cause an unstable heat-hydraulic phenomenon, and temperature stratification may occur in the lower plenum 7 to make the thermal stress of the reactor pressure vessel 1 severe. is there.

【0008】そこで一部では、これを解決するために種
々の提案がなされている。すなわち、自然循環型原子炉
の起動法およびそのシステム例としては、特公平3−6
1159号公報に開示されているものがある。これは、
原子炉圧力容器内に熱交換器を内蔵させ、起動時に原子
炉圧力容器外に備えられているボイラからの熱を、熱交
換器を介して原子炉冷却水に予め供給するものである。
しかしながら、この方法でも、ダウンカマ上部の炉水の
みを暖めているため、自然循環の駆動力が得られず、高
流量の自然循環流量を確保することは困難である。
Therefore, in part, various proposals have been made to solve this problem. That is, Japanese Patent Publication No.
There is one disclosed in Japanese Patent No. 1159. this is,
A heat exchanger is incorporated in the reactor pressure vessel, and heat from a boiler provided outside the reactor pressure vessel is supplied to the reactor cooling water in advance through the heat exchanger at startup.
However, even with this method, since only the reactor water in the upper part of the downcomer is warmed, the driving force for natural circulation cannot be obtained, and it is difficult to secure a high natural circulation flow rate.

【0009】また、自然循環型原子炉の例としては、特
開昭59−217188号公報に開示されているものが
ある。これは、原子炉圧力容器内の炉心下部に熱交換器
を設置し、起動に要する時間を短かくしかつ起動時の制
御を容易にするものである。ところがこの方法は、下部
プレナムを暖めるため高流量の自然循環流量は得易いも
のの、下部プレナム内には制御棒案内管やその駆動機構
が多数設けられているため、熱交換器を設置する場所の
確保が困難である。
An example of the natural circulation type nuclear reactor is disclosed in Japanese Patent Laid-Open No. 59-217188. This is to install a heat exchanger in the lower part of the core in the reactor pressure vessel to shorten the time required for startup and facilitate control at startup. However, although this method easily obtains a high natural circulation flow rate for warming the lower plenum, a large number of control rod guide tubes and their drive mechanisms are provided in the lower plenum, so that the location of the heat exchanger is It is difficult to secure.

【0010】さらに、沸騰水型原子炉圧力容器の例とし
ては、特開平4−188096号公報に示されているも
のがある。これは、起動時に原子炉圧力容器内の温度分
布をできるだけ均一にするために、冷却材浄化系配管か
ら圧力容器内の炉心上方の高温の冷却材を取り出し、圧
力容器がボトムドレン配管を介して原子炉圧力容器底面
から注水するものである。ところが、この方法にも2つ
の問題がある。すなわち、原子炉が臨界以前では、炉心
上部に高温の冷却材は存在しないため、高温の冷却水を
下部プレナムに注水できず、高流量の自然循環流量は確
保できない。また、通常の冷却材浄化系の流れは、圧力
容器底部から冷却材を抽出する方向であるため、このよ
うな方法を採用した場合には、冷却材浄化系のポンプ特
性を変更する必要がある。
Further, as an example of a boiling water reactor pressure vessel, there is one disclosed in Japanese Patent Laid-Open No. 4-188096. This is because in order to make the temperature distribution in the reactor pressure vessel as uniform as possible at startup, the high temperature coolant above the reactor core in the pressure vessel is taken out from the coolant purification system piping, and the pressure vessel passes through the bottom drain piping. Water is injected from the bottom of the reactor pressure vessel. However, this method also has two problems. That is, since the high temperature coolant does not exist in the upper part of the core before the criticality of the nuclear reactor, high temperature cooling water cannot be injected into the lower plenum, and a high natural circulation flow rate cannot be secured. Further, since the flow of the normal coolant purification system is in the direction of extracting the coolant from the bottom of the pressure vessel, it is necessary to change the pump characteristics of the coolant purification system when such a method is adopted. .

【0011】本発明は、かかる現況に鑑みてなされたも
ので、低圧の起動時に安定した自然循環流量を確保する
ことができる自然循環型沸騰水型原子炉を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a natural circulation type boiling water reactor capable of ensuring a stable natural circulation flow rate at low pressure startup.

【0012】[0012]

【課題を解決するための手段】本発明は、前記目的を達
成する手段として、原子炉圧力容器底部のドレン配管
に、バルブを介して熱交換器を接続するとともに、熱交
換器からの出口配管の先端を、ダウンカマの底部近傍位
置に開口し、前記バルブを、低圧の起動時に開放して、
高温水を下部プレナムに注入するようにしたことを特徴
とする。
As a means for achieving the above object, the present invention is to connect a heat exchanger to a drain pipe at the bottom of a reactor pressure vessel via a valve and to provide an outlet pipe from the heat exchanger. Open the tip of the valve near the bottom of the downcomer, and open the valve when the low pressure starts,
It is characterized in that high temperature water is injected into the lower plenum.

【0013】そして、本発明においては、下部プレナム
での飽和温度と下部プレナムの温度との差に応じて熱交
換器の出力を調整する制御器を備えていることが好まし
い。
Further, in the present invention, it is preferable to include a controller for adjusting the output of the heat exchanger according to the difference between the saturation temperature in the lower plenum and the temperature in the lower plenum.

【0014】[0014]

【作用】本発明に係る自然循環型沸騰水型原子炉におい
ては、低圧の起動時にバルブが開放され、下部プレナム
内の炉水がドレン配管を介し抽出される。そして、熱交
換器で昇温した高温水が、ダウンカマ底部近傍位置から
下部プレナムに注入される。
In the natural circulation type boiling water reactor according to the present invention, the valve is opened when the low pressure is started, and the reactor water in the lower plenum is extracted through the drain pipe. Then, the high temperature water heated by the heat exchanger is injected into the lower plenum from a position near the bottom of the downcomer.

【0015】ところで、自然循環流量は、前述のよう
に、炉心・ライザ部のようなシュラウド内側と、ダウン
カマであるシュラウド外側との密度差により決定され
る。すなわち、シュラウド内部の温度が高いほど、また
シュラウド内部で蒸気が発生すればするほど、自然循環
流量は増大することになる。
As described above, the natural circulation flow rate is determined by the density difference between the inside of the shroud such as the core / riser section and the outside of the shroud which is the downcomer. That is, the higher the temperature inside the shroud and the more steam is generated inside the shroud, the more the natural circulation flow rate increases.

【0016】本発明においては、高温水を直接下部プレ
ナムに注入しているので、ダウンカマの温度を上げるこ
となく下部プレナム温度を上昇させることができ、しか
も大気圧下では、上下寸法の大きなライザを採用してい
る自然循環炉では水頭ヘッドが大きく、飽和温度が原子
炉圧力容器内部で約25℃も異なるため、より高温の高
温水を注入することができ、自然循環駆動力を増加させ
ることができる。この結果、原子炉起動以前において
も、安定した自然循環流が確保され、また原子炉起動後
の非常に出力の小さい領域においても、炉心入口のサブ
クール度が小さいため、炉心で蒸気が発生し易くなり、
さらに自然循環駆動力が増加して自然循環流量は増加す
る。
In the present invention, since the high temperature water is directly injected into the lower plenum, the lower plenum temperature can be raised without raising the temperature of the downcomer, and under atmospheric pressure, a riser having a large vertical dimension can be used. The natural head used in the natural circulation reactor has a large head, and the saturation temperature differs by about 25 ° C inside the reactor pressure vessel, so it is possible to inject higher temperature hot water and increase the natural circulation driving force. it can. As a result, a stable natural circulation flow is secured even before the reactor is started, and the subcooling degree at the core inlet is small even in a very small output area after the reactor is started, so steam is likely to be generated in the core. Becomes
Further, the natural circulation driving force increases and the natural circulation flow rate increases.

【0017】そして、本発明において、下部プレナムで
の飽和温度と下部プレナムの温度との差に応じて熱交換
器の出力を調整する制御器を設けることにより、下部プ
レナム温度に合せて熱交換器出力を調整することが可能
となる。
Further, in the present invention, by providing a controller for adjusting the output of the heat exchanger according to the difference between the saturation temperature in the lower plenum and the temperature in the lower plenum, the heat exchanger is adjusted in accordance with the lower plenum temperature. It becomes possible to adjust the output.

【0018】[0018]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0019】図1は、本発明の一実施例に係る自然循環
型沸騰水型原子炉を示すもので、図中、符号1は原子炉
圧力容器であり、この原子炉圧力容器1内には、炉心2
が格納されているとともに、炉心2の上部にはライザ3
が形成され、これらの外側には、円筒状をなすシュラウ
ド4を介して、ダウンカマ5が形成されている。そして
炉水6は、ダウンカマ5、下部プレナム7、炉心2およ
びライザ3を自然循環しており、炉心2で発生した蒸気
は、主蒸気管8を介し図示しないタービンに送られると
ともに、タービンで仕事をした後の蒸気は、復水後、給
水管9を介し給水として原子炉圧力容器1内に戻される
ようになっている。
FIG. 1 shows a natural circulation type boiling water reactor according to an embodiment of the present invention. In the figure, reference numeral 1 is a reactor pressure vessel, and the inside of this reactor pressure vessel 1 is shown. , Core 2
And the riser 3 is installed above the core 2.
Are formed, and downcomers 5 are formed on the outer sides of these through a cylindrical shroud 4. The reactor water 6 naturally circulates in the downcomer 5, the lower plenum 7, the core 2 and the riser 3, and the steam generated in the core 2 is sent to a turbine (not shown) via the main steam pipe 8 and works at the turbine. The steam after the operation is returned to the inside of the reactor pressure vessel 1 as water supply through the water supply pipe 9 after the condensate.

【0020】前記原子炉圧力容器1の底部には、図1に
示すように、冷却材浄化系の一部であるドレン配管10
が設けられており、このドレン配管10には、バルブ2
1を介して熱交換器22が接続され、この熱交換器22
出口の注水配管23の先端は、前記ダウンカマ5の底部
に開口している。そして、熱交換器22で加熱された炉
水6は、ダウンカマ5の底部から直接下部プレナム7内
に注水されるようになっている。
At the bottom of the reactor pressure vessel 1, as shown in FIG. 1, is a drain pipe 10 which is a part of a coolant purification system.
The drain pipe 10 is provided with a valve 2
1 to which a heat exchanger 22 is connected, and the heat exchanger 22
The tip of the outlet water injection pipe 23 is open at the bottom of the downcomer 5. Then, the reactor water 6 heated by the heat exchanger 22 is directly injected into the lower plenum 7 from the bottom of the downcomer 5.

【0021】この下部プレナム7内には、図1に示すよ
うに、圧力計24および温度計25がそれぞれ設けられ
ており、これらからの出力信号は、制御器26に入力さ
れ、制御器26からの制御信号により、前記バルブ21
の開閉制御および熱交換器22の出力制御がなされるよ
うになっている。
As shown in FIG. 1, a pressure gauge 24 and a thermometer 25 are provided in the lower plenum 7, and output signals from these are input to a controller 26, and the controller 26 outputs them. The control signal from the valve 21
Is controlled and the output of the heat exchanger 22 is controlled.

【0022】すなわち、制御器26は、前記圧力計24
からの出力信号に基づき、下部プレナム7での飽和温度
を計算するとともに、この計算結果と前記温度計25か
らの出力信号との差を求めるようになっており、前記熱
交換器22は、この差信号によりその出力が調整される
ようになっている。
That is, the controller 26 uses the pressure gauge 24
The saturation temperature in the lower plenum 7 is calculated based on the output signal from the thermometer 25, and the difference between the calculation result and the output signal from the thermometer 25 is calculated. The output is adjusted by the difference signal.

【0023】次に、本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0024】低圧の起動時には、バルブ21を開いて炉
水6を熱交換器22に送り、この熱交換器22で加熱し
た高温水を、ダウンカマ5の下部から下部プレナム7に
戻す。
At the time of starting at low pressure, the valve 21 is opened to send the reactor water 6 to the heat exchanger 22, and the high temperature water heated by the heat exchanger 22 is returned from the lower part of the downcomer 5 to the lower plenum 7.

【0025】一例として、大気圧、炉水30℃から原子
炉の起動(昇温昇圧)時の熱交換器22の出力変化、温
度計25の温度変化および自然循環流量変化を図2に示
す。
As an example, FIG. 2 shows changes in the output of the heat exchanger 22, changes in the temperature of the thermometer 25, and changes in the natural circulation flow rate when the reactor is started (temperature rise and pressure increase) from atmospheric pressure and reactor water of 30 ° C.

【0026】最初は、原子炉圧力容器1内の冷却材温度
は均一で30℃である。蒸気ドーム部の圧力が大気圧で
あるので、水頭ヘッドを考えると下部プレナム7の飽和
温度は125℃である。制御器26からの信号によりバ
ルブ21が開放されるとともに、熱交換器22が起動さ
れる。すると、制御器26はまず、下部プレナム7の温
度が125℃になるよう熱交換器22の出力を調整す
る。この熱交換器22で加熱された炉水6が、注水配管
23によりダウンカマ5の下部に注水されると、下部プ
レナム7内の冷却材温度は30℃以上となり、自然循環
流が生じる。高温水が、ダウンカマ5の底部から下部プ
レナム7に供給されることにより、自然循環流量は下部
プレナム7の温度上昇とともに増加していく。そして、
下部プレナム7の温度が上昇していくと、温度計25の
出力信号値が増加していき、制御器26により、熱交換
器22の出力が低く抑えられる。
Initially, the temperature of the coolant in the reactor pressure vessel 1 is uniform and 30 ° C. Since the pressure of the steam dome portion is atmospheric pressure, the saturation temperature of the lower plenum 7 is 125 ° C. considering the head head. The signal from the controller 26 opens the valve 21 and activates the heat exchanger 22. Then, the controller 26 first adjusts the output of the heat exchanger 22 so that the temperature of the lower plenum 7 becomes 125 ° C. When the reactor water 6 heated by the heat exchanger 22 is injected into the lower part of the downcomer 5 by the water injection pipe 23, the coolant temperature in the lower plenum 7 becomes 30 ° C. or higher, and a natural circulation flow occurs. The high-temperature water is supplied to the lower plenum 7 from the bottom of the downcomer 5, so that the natural circulation flow rate increases as the temperature of the lower plenum 7 increases. And
As the temperature of the lower plenum 7 increases, the output signal value of the thermometer 25 increases and the controller 26 keeps the output of the heat exchanger 22 low.

【0027】このようにして自然循環流量が充分に確保
できたならば、制御棒が引き抜かれて出力が増加する。
この結果、熱交換器22と炉心2との出力とにより、炉
心2およびライザ3の温度がさらに上昇し、自然循環流
量が増加して安定な流れとなる。
When the natural circulation flow rate is sufficiently secured in this way, the control rod is pulled out and the output increases.
As a result, the temperatures of the core 2 and the riser 3 are further increased by the outputs of the heat exchanger 22 and the core 2, and the natural circulation flow rate is increased to provide a stable flow.

【0028】しかして、図3に示すように、低圧の起動
時において、炉心入口サブクール度を低下でき、低出力
でも炉心内で蒸気の発生が容易となって自然循環駆動力
が増加し、高流量の自然循環流量が安定に得られる。こ
の結果、低圧、低出力で生じ易い不安定流動現象の発生
を阻止でき、また、下部プレナム温度の成層化を防止す
ることができる。
Therefore, as shown in FIG. 3, at the time of starting at a low pressure, the core inlet subcooling degree can be lowered, and even if the output is low, steam is easily generated in the core, the natural circulation driving force increases, and Stable natural circulation flow rate can be obtained. As a result, it is possible to prevent the occurrence of an unstable flow phenomenon that tends to occur at low pressure and low output, and to prevent stratification of the lower plenum temperature.

【0029】[0029]

【発明の効果】以上説明したように本発明は、低圧の起
動時にバルブを開放し、熱交換器で加熱した高温水を、
ダウンカマの底部近傍位置から下部プレナムに注入する
ようにしているので、低圧の起動時に安定した自然循環
流量を確保することができる。
As described above, according to the present invention, the valve is opened at the time of starting the low pressure, and the high temperature water heated by the heat exchanger is
Since it is injected into the lower plenum from a position near the bottom of the downcomer, it is possible to secure a stable natural circulation flow rate at low pressure startup.

【0030】そして、本発明において、下部プレナムで
の飽和温度と下部プレナムの温度との差に応じて熱交換
器の出力を調整する制御器を設けることにより、下部プ
レナム温度に合せて熱交換器出力を調整することができ
る。
Further, in the present invention, by providing a controller for adjusting the output of the heat exchanger according to the difference between the saturation temperature in the lower plenum and the temperature in the lower plenum, the heat exchanger is adjusted according to the lower plenum temperature. The output can be adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る自然循環型沸騰水型原
子炉を示す全体構成図。
FIG. 1 is an overall configuration diagram showing a natural circulation type boiling water reactor according to an embodiment of the present invention.

【図2】起動時の熱交換器出力、下部プレナム温度およ
び自然循環流量変化を示すグラフ。
FIG. 2 is a graph showing changes in heat exchanger output, lower plenum temperature, and natural circulation flow rate at startup.

【図3】本発明の効果を示すグラフ。FIG. 3 is a graph showing the effect of the present invention.

【図4】従来の自然循環型沸騰水型原子炉を示す構成
図。
FIG. 4 is a configuration diagram showing a conventional natural circulation type boiling water reactor.

【図5】自然循環型原子炉の自然循環特性を示すグラ
フ。
FIG. 5 is a graph showing the natural circulation characteristics of the natural circulation reactor.

【図6】高流量の自然循環流量時の温度分布を示す説明
図。
FIG. 6 is an explanatory diagram showing a temperature distribution at a high natural flow rate.

【符号の説明】[Explanation of symbols]

1 原子炉圧力容器 2 炉心 3 ライザ 4 シュラウド 5 ダウンカマ 6 炉水 7 下部プレナム 21 バルブ 22 熱交換器 23 注水配管 24 圧力計 25 温度計 26 制御器 1 Reactor pressure vessel 2 Core 3 Riser 4 Shroud 5 Downcomer 6 Reactor water 7 Lower plenum 21 Valve 22 Heat exchanger 23 Water injection pipe 24 Pressure gauge 25 Thermometer 26 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原子炉圧力容器底部のドレン配管に、バ
ルブを介して熱交換器を接続するとともに、熱交換器か
らの出口配管の先端を、ダウンカマの底部近傍位置に開
口し、前記バルブを、低圧の起動時に開放して、高温水
を下部プレナムに注入することを特徴とする自然循環型
沸騰水型原子炉。
1. A heat exchanger is connected to a drain pipe at the bottom of a reactor pressure vessel via a valve, and a tip of an outlet pipe from the heat exchanger is opened to a position near a bottom of a downcomer, and the valve is , A natural circulation type boiling water reactor characterized by opening at low pressure startup and injecting high temperature water into the lower plenum.
【請求項2】 下部プレナムでの飽和温度と下部プレナ
ムの温度との差に応じて熱交換器の出力を調整する制御
器を備えていることを特徴とする請求項1記載の自然循
環型沸騰水型原子炉。
2. The natural circulation type boiling according to claim 1, further comprising a controller that adjusts the output of the heat exchanger according to the difference between the saturation temperature in the lower plenum and the temperature in the lower plenum. Water reactor.
JP5055986A 1993-03-16 1993-03-16 Natural circulation type boiling water reactor Pending JPH06265665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5055986A JPH06265665A (en) 1993-03-16 1993-03-16 Natural circulation type boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5055986A JPH06265665A (en) 1993-03-16 1993-03-16 Natural circulation type boiling water reactor

Publications (1)

Publication Number Publication Date
JPH06265665A true JPH06265665A (en) 1994-09-22

Family

ID=13014411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5055986A Pending JPH06265665A (en) 1993-03-16 1993-03-16 Natural circulation type boiling water reactor

Country Status (1)

Country Link
JP (1) JPH06265665A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225511A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Nuclear reactor monitoring device and output controller
JP2007232503A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
JP2007232395A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Temperature sensor for boiling water reactor of natural circulation type
WO2009097033A2 (en) * 2007-11-15 2009-08-06 The State Of Oregon Acting By And Through The State System Of Higher Education On Behalf Of Oregon State University Stable startup system for a nuclear reactor
JP2011017720A (en) * 2010-09-17 2011-01-27 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor system and nuclear reactor control method
US9330796B2 (en) 2007-11-15 2016-05-03 Nuscale Power, Llc Stable startup system for a nuclear reactor
CN115050491A (en) * 2022-06-24 2022-09-13 中国核动力研究设计院 Full-pressure type auxiliary heating and boosting system and method for small modular reactor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225511A (en) * 2006-02-24 2007-09-06 Hitachi Ltd Nuclear reactor monitoring device and output controller
JP2007232395A (en) * 2006-02-27 2007-09-13 Hitachi Ltd Temperature sensor for boiling water reactor of natural circulation type
JP2007232503A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Nuclear reactor system and nuclear reactor control method
WO2009097033A2 (en) * 2007-11-15 2009-08-06 The State Of Oregon Acting By And Through The State System Of Higher Education On Behalf Of Oregon State University Stable startup system for a nuclear reactor
WO2009097033A3 (en) * 2007-11-15 2009-11-12 The State Of Oregon Acting By And Through The State System Of Higher Education On Behalf Of Oregon State University Stable startup system for a nuclear reactor
US8891723B2 (en) 2007-11-15 2014-11-18 State of Oregon Acting by and Through The State Board of Higher Education on Behalf or Oregon State University, The Oregon State University Stable startup system for a nuclear reactor
US9330796B2 (en) 2007-11-15 2016-05-03 Nuscale Power, Llc Stable startup system for a nuclear reactor
US9431136B2 (en) 2007-11-15 2016-08-30 Nuscale Power, Llc Stable startup system for nuclear reactor
JP2011017720A (en) * 2010-09-17 2011-01-27 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor system and nuclear reactor control method
CN115050491A (en) * 2022-06-24 2022-09-13 中国核动力研究设计院 Full-pressure type auxiliary heating and boosting system and method for small modular reactor
CN115050491B (en) * 2022-06-24 2024-05-07 中国核动力研究设计院 Full-pressure type auxiliary temperature and pressure increasing system and method for small modular stack

Similar Documents

Publication Publication Date Title
US8705682B2 (en) Feedwater temperature control methods and systems
JPH06265665A (en) Natural circulation type boiling water reactor
KR900008663B1 (en) Method and apparatus for suppressing water-solid overpossurization of coolant in nuclear reactor power apparatus
US5271044A (en) Boiling water nuclear reactor and start-up process thereof
EP0212488B1 (en) Nuclear reactor
JP2007232503A (en) Nuclear reactor system and nuclear reactor control method
JPH0894793A (en) Start up method for natural circulation boiling water reactor
JP2899979B2 (en) High temperature gas furnace
US4343682A (en) Plant having feed water heating means for nuclear units during plant start up and method of operating the same
US20090141847A1 (en) Method for operating nuclear power generation plant and nuclear power generation plant
JP2004101492A (en) Natural circulation reactor and its starting method
JP3133812B2 (en) Boiling water reactor and start-up method thereof
JP4916569B2 (en) Reactor system and reactor control method
JPH0361159B2 (en)
JPH0572375A (en) Boiling water and natural circulation reactor
JP4590361B2 (en) Nuclear reactor system
JP4982270B2 (en) Reactor operating method and nuclear power plant
JP2011099772A (en) Natural circulation boiling water reactor and method of starting the same
JP2507357B2 (en) Reactor power controller
JP2008128881A (en) Operation method of nuclear power plant
JPH05256991A (en) Activation method for natural circulation type reactor
JP4489046B2 (en) How to start a natural circulation furnace
Liu et al. PWR station blackout transient simulation in the INER integral system test facility
JPH0434041B2 (en)
JPH0529278B2 (en)