JPH01139808A - Aromatic polyamide fiber with high configuration stability at high temperatures - Google Patents

Aromatic polyamide fiber with high configuration stability at high temperatures

Info

Publication number
JPH01139808A
JPH01139808A JP29799187A JP29799187A JPH01139808A JP H01139808 A JPH01139808 A JP H01139808A JP 29799187 A JP29799187 A JP 29799187A JP 29799187 A JP29799187 A JP 29799187A JP H01139808 A JPH01139808 A JP H01139808A
Authority
JP
Japan
Prior art keywords
fiber
dsr
aromatic polyamide
group
tex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29799187A
Other languages
Japanese (ja)
Inventor
Masanori Osawa
正紀 大澤
Kohei Sei
静 公平
Masahiro Jinno
神野 政弘
Akio Omori
大森 昭夫
Masaji Asano
浅野 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Kuraray Co Ltd
Priority to JP29799187A priority Critical patent/JPH01139808A/en
Publication of JPH01139808A publication Critical patent/JPH01139808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide the title fiber of low heat shrinkage even at temperatures higher than the melting point, free from fiber fusing when burned, to be used for fireman uniforms etc., having functional group or halogen atom at the ortho site of the phenylene group directly bonded to the e.g., nitrogen atom in the amide group in an aromatic polyamide. CONSTITUTION:An aromatic dicarboxylic acid compound such as terephthalic acid is allowed to react, in a solvent, with 4-chloro-1,3-phenylenediisocyanate, while heating, to carry out a polymerization followed by vacuum filtration of the resulting polymer solution to prepare a spinning stock solution. Thence, this solution is delivered through a spinneret followed by coagulation in a coagulating bath, and the resultant yarn is subjected to dry heat drawing, thus obtaining the objective fiber having halogen atom or such functional group as amino, hydroxyl, sulfonic acid or carboxyl group at the ortho site of the phenylene group directly bonded to the nitrogen and/or carbon atom(s) in the amide group in the aromatic polyamide. This fiber has the following characteristics: 1. melting point TM>=350 deg.C, 2. TM-TEX>=30 deg.C(TEX refers to exothermic phenomenon initiation temperature), 3. degree of crystallinity XC>=10%, 4: fiber breaking elongation DE>=10%, 5. dry heat shrinkage rate DSR(TM)<=15%, 6. DSR(TM+55 deg.C)/ DSR(TM)<=3.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は、既存の有機合成繊維と変らない一般繊維性能
と、融点以上の高温下においても熱収縮が小さくかつ燃
焼時にも繊維同志が強固に融着することのない優れた高
温形態安定性とを兼備し念芳香族ポリアミド繊維に関す
るものである。
Detailed Description of the Invention (Field of Application of the Invention) The present invention has the same general fiber performance as existing organic synthetic fibers, low heat shrinkage even at high temperatures above the melting point, and strong fiber bonding properties during combustion. This invention relates to a highly aromatic polyamide fiber that has excellent high-temperature morphological stability without fusion.

(従来の技術) 有機合成繊維は優れ九繊維性能を有する念め衣料用から
産業資材用まで広く使われているものの、耐熱の要求さ
几る用途分野では、これまでは石綿、ガラス、スチール
など無機系繊維が中心で、その利用は極めて少ないもの
であった。
(Conventional technology) Organic synthetic fibers have excellent properties and are widely used in everything from clothing to industrial materials. Mainly inorganic fibers were used, and their use was extremely limited.

しかし近年有機合成化学の進歩と一般衣料用および産業
資材用から航空宇宙開発用に至るまでの多様なニーズと
が結びついて有機合成耐熱性繊維の開発が積礪的に展開
されてきた。その成果として種々の有機合成耐熱性繊維
が誕生してきた。その中で商業生産規模で最も成功をお
さめ、その代表と思われるのが、メタ系全芳香族ポリア
ミド線維でその化学組成はポリメタフェニレンイソ7タ
ルアミド(以下PMIAと略記する)を主成分としてい
る。
However, in recent years, progress in organic synthetic chemistry has been coupled with diverse needs ranging from general clothing and industrial materials to aerospace development, and the development of organic synthetic heat-resistant fibers has been progressing steadily. As a result, various organic synthetic heat-resistant fibers have been created. Among these, the one that has been most successful on a commercial scale and is considered to be the most representative is the meta-based wholly aromatic polyamide fiber, whose chemical composition is mainly composed of polymetaphenylene iso-7-talamide (hereinafter abbreviated as PMIA). .

このPMIA繊維は、既存の合成繊維の使用温度より5
0〜200℃程度も高い温度領域での使用が可能であっ
てかつ、汎用繊維製品として必要な一般的な性能、例え
ば強度と伸度のバランスやしなやかさや、後加工性等を
有する。さらに、繊維が燃焼しても炎を出すことが少な
く、炎を遠ざけると直ちに消火する”自己消火性、を示
す高い難燃性をもつことから、耐熱性ν過材料、電気絶
縁材料等の産業資材分野から、消防服、航空服、炉前脂
環耐熱防護服等の衣料用分野、さらに寝装インテリア分
野まで広く使用され、今日まで拡大を続けている。
This PMIA fiber has a temperature higher than that of existing synthetic fibers.
It can be used in a temperature range as high as 0 to 200°C, and has the general performance required as a general-purpose textile product, such as a balance between strength and elongation, flexibility, and post-processability. In addition, it has high flame retardancy, meaning it does not produce much flame even when the fiber burns, and extinguishes immediately when the flame is moved away. It is widely used in the materials field, clothing fields such as firefighting suits, aviation suits, alicyclic heat-resistant protective clothing in front of furnaces, and even in the bedding interior field, and continues to expand to this day.

しかしこのPMIA繊維も衣料用途、例えば耐熱防護服
用素材等におけるより高温、例えば融点以上での形態安
定性への要求に対して充分でない事が分ってき九〇これ
に対する対策としてパラ系全芳香族ポリアミド繊維を少
量混用することが提案されている(多々清爾;プラスチ
ック36,34(1985))。この方法によれば高温
+の形態安定性は混率に応じて改良されるものの、パラ
系全芳香族ポリアミド繊維の極めて高い剛直性と衣料用
繊維としては伸度が極端に小さいためとの理由により、
PMIA繊維の一般衣料用繊維並みのしなやかさや、後
加工性が著しく低下するという欠点がある。
However, it has been found that this PMIA fiber is not sufficient to meet the requirements for morphological stability at higher temperatures, for example, above the melting point, in clothing applications, such as materials for heat-resistant protective clothing. It has been proposed to mix a small amount of polyamide fiber (Tata Seiji; Plastic 36, 34 (1985)). According to this method, the shape stability at high temperatures is improved depending on the blending ratio, but due to the extremely high rigidity of para-based wholly aromatic polyamide fibers and the extremely low elongation for clothing fibers, ,
PMIA fibers have the disadvantage that they are as flexible as ordinary clothing fibers and that their post-processability is significantly reduced.

PMIA繊維は燃焼時に溶融してメルトドリップを生じ
る事はないが、その繊維製品は熱収縮による大きな形態
変化をしながらさらに繊維同志が固く融着してしまうの
で耐熱防護服としてこれを着用中被災した場合、脱衣困
難になって火傷等の傷害をかえって拡大する等の問題も
起きている。
Although PMIA fibers do not melt during combustion and do not cause melt drips, the fiber products undergo large changes in shape due to heat shrinkage, and the fibers also become tightly fused together. In such cases, it becomes difficult to take off clothes, causing problems such as increasing the risk of burns and other injuries.

(発明が解決しようとする問題点) 本発明者らは、前記PMIA繊維のもつ問題にすなわち
融点以上のような高温下においても熱収縮率が小さくか
つ燃焼時にも繊維同志が強固に融着することのない芳香
族ポリアミド繊維を得るべくポリマー合成面、礒維製造
面、さらに繊維物性面から種々検討を試み念結果本発明
に到達し念ものである。
(Problems to be Solved by the Invention) The present inventors solved the problems of the PMIA fibers, namely, that the thermal shrinkage rate is small even at high temperatures above the melting point, and the fibers are firmly fused together during combustion. In order to obtain a unique aromatic polyamide fiber, we have conducted various studies from the aspects of polymer synthesis, fiber production, and fiber properties, and have finally arrived at the present invention.

(問題点を解決するための手段) すなわち本発明は、芳香族ポリアミドのアミド結合の・
窒素原子及び/又は炭素原子に直結するフェニレン基の
オルソ位にアミノ基、水酸基、スルホン酸基、カルボキ
シル基から選ばれる官能基又はハロゲン原子を有する芳
香族ポリアミドより製造される繊維で、TM≧350℃
、TM−TEX≧30℃、Xc≧10%、DE≧10%
、DSR(TM)≦15%、DSR(TM+55℃)/
DSR(TM)≦3であることを特徴とする芳香族ポリ
アミド繊維に関する。
(Means for solving the problem) That is, the present invention solves the problem by
A fiber manufactured from an aromatic polyamide having a functional group selected from an amino group, a hydroxyl group, a sulfonic acid group, a carboxyl group, or a halogen atom at the ortho position of a phenylene group directly connected to a nitrogen atom and/or a carbon atom, and TM≧350 ℃
, TM-TEX≧30℃, Xc≧10%, DE≧10%
, DSR(TM)≦15%, DSR(TM+55℃)/
The present invention relates to an aromatic polyamide fiber characterized in that DSR(TM)≦3.

なお、本発明でいう特性値および物性値は、そ几ぞれ以
下に記す測定機、測定条件で得られ念数値を表わす。
The characteristic values and physical property values referred to in the present invention represent estimated values obtained using the measuring equipment and measurement conditions described below.

TM:融点;パーキンエルマー社■製DSC−20によ
り約10119の試料をAtH試料皿に入れ窒素ガス気
流中(30d/min )で毎分10℃で室温から所定
温度までのDSC曲線をえ、その吸熱ピーク温度をTM
とする。
TM: melting point; put a sample of about 10119 in an AtH sample dish using DSC-20 manufactured by PerkinElmer and obtain a DSC curve from room temperature to a specified temperature in a nitrogen gas flow (30 d/min) at 10°C per minute. TM the endothermic peak temperature
shall be.

TEX :発熱開始温度;パーキンエルマー社■製DS
C−20により約10■の試料をAt製試料皿に入れ空
気気流中(30d/min )  で毎分10℃で室温
から所定温度までのDSC曲線をえ、その発熱開始温度
をTEXとする。
TEX: Heat generation start temperature; DS manufactured by PerkinElmer
Approximately 10 cm of a sample was placed in an At sample dish using C-20, and a DSC curve was obtained from room temperature to a predetermined temperature at 10°C per minute in an air stream (30 d/min), and the temperature at which the exotherm started was defined as TEX.

XC:結晶化度;理学電機■製回転対陰極超高強力X線
発生装置RAD−rA(40KV100mA。
XC: Crystallinity; Rotating anticathode ultra-high intensity X-ray generator RAD-rA (40KV 100mA, manufactured by Rigaku Denki ■).

CuKz線)を使用し、X線ビームに垂直な面内で試料
を回転させながら回折角2θ=5゜〜35°の範囲のX
線回折強度曲線をえ、次に回折曲線を結晶領域(Ac 
)と非晶領域(Aa )に分離、次式より算出し比値X
cを結晶化度とする。
Using a diffraction angle of 2θ = 5° to 35° while rotating the sample in a plane perpendicular to the X-ray beam.
Obtain the line diffraction intensity curve, then convert the diffraction curve to the crystalline region (Ac
) and amorphous region (Aa ), calculated from the following formula, and the ratio value X
Let c be the crystallinity.

Ac Xc = −x 100 (%) Ac −)−Aa DE:繊維の伸度;インストロン引張り試験機を用い試
料長10cW1.引速5 cm 7分、初荷重0.05
f/dの条件下で引張試験を行なって求めた。
Ac Pull speed 5 cm 7 minutes, initial load 0.05
It was determined by conducting a tensile test under f/d conditions.

DSR(TM) :融点における乾熱収縮率DSR(T
M+55℃):融点+ss℃ニオける乾熱収縮率を表わ
し、DSHの測定は 次の様にして求めた。
DSR (TM): Dry heat shrinkage rate DSR (T
M+55°C): represents the dry heat shrinkage rate at melting point + ss°C, and DSH was determined as follows.

0.1 t/dの加重をかけ試料長toを測定した後、
所定温度の熱風乾燥機中で10分間フリーで処理し、そ
の後30分後に再び0.11/dの加重をかけて試料長
t1を測定し、次式によって乾熱収縮率DSRf:求め
to O 本発明においては、TM七350℃、TM−TEX≧3
0℃、 Xc≧10%、DE≧10チ でなければなら
ない。すなわち本発明の芳香族ポリアミド繊維において
TM(融点)が350℃以上であり、 TMに対してT
EX (発熱開始温度)が30℃以上低(Xc (結晶
化度)が10チ以上であるときに融点以上の高温におい
ても形朗安定性に優れ念繊維となる事を見出し念もので
ある。
After measuring the sample length to with a load of 0.1 t/d,
The sample length t1 was measured by applying a load of 0.11/d again after 30 minutes. In the invention, TM7 350℃, TM-TEX≧3
Must be 0℃, Xc≧10%, DE≧10chi. That is, in the aromatic polyamide fiber of the present invention, the TM (melting point) is 350°C or higher, and the T
It was discovered that when EX (exothermic onset temperature) is 30° C. or lower (Xc (crystallinity) is 10° C. or higher, it becomes a fiber with excellent shape stability even at high temperatures above the melting point).

これは換言すればTM≧350℃で且つXc≧101で
ある場合においても、TM−TEXが30℃以上とTM
−TEXが30℃未満の繊維を比較すると前者すなわち
TEX (熱分解開始温度)がTM (融点)より30
℃以上低い方が後者すなわちTEXが釉より30℃未満
にあるものよりその繊維のTM(融点)以上の高温にお
ける形態安定性がよいという事である。これは−見不合
理のように考えられるが全く意外にも、実際にはTEX
のより低い方が良好な形態安定性を示すのである。
In other words, even when TM≧350℃ and Xc≧101, TM-TEX is 30℃ or more and TM
- When comparing fibers with a TEX of less than 30°C, the former, that is, the TEX (thermal decomposition onset temperature) is 30° lower than the TM (melting point).
The shape stability at high temperatures above the TM (melting point) of the fiber is better when the temperature is lower than the latter, that is, when the TEX is less than 30°C than the glaze. This may seem absurd, but surprisingly, in reality, TEX
The lower the value, the better the shape stability.

これについての正確な理由はよく分らないが、TM≧3
50℃、Xc≧10%であってかつTExがTMに対し
て30℃以上低い本発明繊維では比較的低いTExから
熱分解が始まるのでそれは磯やかにかつ非晶領域を中心
に起りその際、結晶領域では微結晶が溶融する事なく存
在する念め、熱による非晶領域の配向分子鎖の配向緩和
とともに生じる熱収縮に対して微結晶が分子鎖の拘束点
として作用する九め、収縮が抑えられつつ、同時に進行
する熱分解反応に伴ない分子鎖間に一種の架橋が起き、
3次元構造が形成される九め融点以上でも形態安定性が
良好になると考えらn、る。
I don't know the exact reason for this, but TM≧3
In the fiber of the present invention where Xc≧10% at 50°C and TEx is 30°C or more lower than TM, thermal decomposition starts from a relatively low TEx, so it occurs rapidly and mainly in the amorphous region. In order to ensure that microcrystals exist without melting in the crystalline region, microcrystals act as restraining points for the molecular chains against thermal contraction that occurs as the orientation of the oriented molecular chains in the amorphous region is relaxed due to heat. At the same time, a type of cross-linking occurs between molecular chains due to the thermal decomposition reaction that proceeds simultaneously.
It is thought that the morphological stability will be good even above the melting point at which a three-dimensional structure is formed.

それに対してTM≧350℃、XC≧10%であっても
TEXがTMに対して30℃未満でしか低くない時には
充分な分子間の架橋による3次元構造が形成されるまえ
に熱溶融が生じるので、熱収縮や繊維間での融着が大き
くなり形態安定性不良となったものと考えられる。
On the other hand, even if TM≧350℃ and XC≧10%, if TEX is lower than TM by only less than 30℃, thermal melting occurs before a three-dimensional structure is formed due to sufficient intermolecular crosslinking. Therefore, it is thought that heat shrinkage and fusion between fibers increased, resulting in poor shape stability.

この次め一−TEXの範囲はTM−Tp:x≧30℃で
なければならず、好ましくはTM−TEX≧50℃さら
に好ましくはTM−TEX≧70℃である。
The range of this second -TEX must be TM-Tp:x≧30°C, preferably TM-TEX≧50°C, more preferably TM-TEX≧70°C.

本発明の繊維はTM(融点)以上の高温下においても良
好なる形態安定性を有するものの、珈以上では他の繊維
物性がある程度低下するので、一般の合成繊維より20
0℃以上も高い温度でも実用可能な耐熱性繊維であるた
めには、TM≧350℃でなければならず好ましくはT
M≧400℃以上である0ま九、聰≧350℃、TM−
TEX≧30℃であってもXC(10%と結晶性が小さ
い場合、微結晶による分子鎖移動に対する拘束作用がほ
とんどない念め、相よりはるか低温のガラス転移点あ之
りから急激に熱収縮を増大して形態安定性は不良となる
Although the fibers of the present invention have good morphological stability even at high temperatures above the TM (melting point), other fiber properties deteriorate to some extent at temperatures above the TM (melting point).
In order to be a heat-resistant fiber that can be used at temperatures as high as 0°C or higher, TM must be 350°C and preferably T.
M≧400℃ or above, 0maku, 聰≧350℃, TM-
Even if TEX≧30℃, if the crystallinity is as low as XC (10%), the microcrystals will have almost no restraining effect on molecular chain movement, so thermal contraction will occur rapidly from the glass transition point, which is much lower than the phase. As the morphological stability increases, the morphological stability becomes poor.

これらの理由からXc≧10%である事が必要であり、
好ましくはXc≧10俤である。
For these reasons, it is necessary that Xc≧10%,
Preferably, Xc≧10.

さらに繊維が衣料用、産業資材用等の用途において既存
の有機台底繊維と同様な利用がされるためには、良好な
しなやかさ、加工性を有す必須の条件となる。この九め
には強度と伸度のバランス、とりわけ伸度が充分にある
ことが大事でDE(繊維伸度)≧10チでなければなら
ない。好ましくはDE ) 1φ%、さらに好ましくは
DE ) 2 o%である。
Furthermore, in order for the fiber to be used in the same way as existing organic base fibers in applications such as clothing and industrial materials, good flexibility and processability are essential conditions. For this ninth point, it is important to have a sufficient balance between strength and elongation, especially elongation, and DE (fiber elongation) must be 10 inches or more. Preferably DE ) 1φ%, more preferably DE ) 2o%.

次に本発明繊維の高温における形態安定性をさらに高め
る好ましい態様としては繊維のD S R(TM)であ
る。
Next, a preferred embodiment for further enhancing the shape stability of the fibers of the present invention at high temperatures is DSR (TM).

DSR(TM)が15チを越える場合には融点において
乾熱収縮がすでに大きく形態安定性が良好とはいえない
。D S R(TM )≦15チであっても急激に熱収
縮が増大するため、例えば耐熱防護服用途で着用中被災
し次場合脱衣が困難となって火傷等の被害をかえって大
きくするといった事があのように融点+55℃という融
点よりかなり高温でも熱収縮が充分に小さい事が重要で
ある。
If the DSR(TM) exceeds 15 inches, the dry heat shrinkage is already large at the melting point, and the shape stability cannot be said to be good. Even if DSR(TM)≦15, heat shrinkage increases rapidly, so if, for example, heat-resistant protective clothing is damaged while being worn, it may become difficult to remove it the next time, causing more damage such as burns. However, it is important that the thermal shrinkage is sufficiently small even at temperatures much higher than the melting point of +55°C.

本発明の芳香族ポリアミドはアミド基の窒素原子及び/
又は炭素原子に直結するフェニレン基のオルソ位にアミ
ノ基、水酸基、スルホン酸基、カルボキシル基から選ば
れる官能基又はハロゲン原子が置換されているものであ
り、オルソ位以外に置換されているときは高温における
形態安定性を満足する繊維が得られない。さらに後述す
るように本発明繊維は実用レベルにある染色性をもつが
それはこれらの置換基によって溶媒に対する親和性の増
大、染着率の増大等の好ましい効果が表わnたものと思
われる。
The aromatic polyamide of the present invention has a nitrogen atom of an amide group and/or
Or, a phenylene group directly connected to a carbon atom is substituted with a functional group selected from an amino group, a hydroxyl group, a sulfonic acid group, a carboxyl group, or a halogen atom at the ortho position, and when it is substituted at a position other than the ortho position. Fibers with satisfactory shape stability at high temperatures cannot be obtained. Furthermore, as will be described later, the fibers of the present invention have dyeability at a practical level, which is thought to be due to the favorable effects of these substituents, such as increased affinity for solvents and increased dyeing rate.

本発明を満足する特定構造の芳香族ポリアミドは、公知
の製造法によって容易に製造することができる。すなわ
ち芳香族ジアミンと芳香族ジカルボン酸ハライドを低温
溶液重合法、低温界面重合法等によって製造できる。又
芳香族ジイソシアネートと芳香族ジカルボン酸から高温
溶液重合で製造することもできる。
An aromatic polyamide having a specific structure that satisfies the present invention can be easily produced by a known production method. That is, aromatic diamines and aromatic dicarboxylic acid halides can be produced by low-temperature solution polymerization, low-temperature interfacial polymerization, and the like. It can also be produced by high temperature solution polymerization from aromatic diisocyanate and aromatic dicarboxylic acid.

本発明の芳香族ポリアミドを製造する原料としては、芳
香族ジアミンとして例えば、1,3−フェニレンジアミ
ン、2−クロル−1,3−フェニレンジアミン、4−ク
ロル−1,3−フェニレンジアミン、2.5−ジクロル
−1,3−フェニレンジアミン、4、6− シクロルー
1.3−7二二レンジアミン、4−カルボキシ−1,3
−フェニレンジアミン、4−スル7オー1.3−フエニ
レンジアミシ%1,4−フ二二レンジアミン、2−クロ
ル−1,4−フェニレンジアミン、2.5−ジクロル−
1,4−フェニレンジアミン、2,6−シクロルー1.
4−4 フェニレンジアミン、2−カルボキシ−1,4
−7二二レンジアミン、2−スルフオー1.4−7二二
レンジアミン等、あるいはこれらの混合物があげられる
。上記ジアミンと反応させる芳香族ジカルボン酸シバラ
イドとしては例えば、イソフタル酸ジクロライド、2−
アミノ−イソフタル酸ジクロライド、4−アミノ−イソ
フタル酸ジクロライド、4−プロモーイソフタル酸ジプ
ロマイド、4−クロル−イソフタル酸ジクロライド、4
.6−ジクロル−インフタル酸シクロライド、4−ヒド
ロキシ−イソフタル酸ジクロライド、テレフタル酸ジク
ロライド、2−アミノ−テレフタル酸ジクロライド、4
−ブロモ−テレタル酸ジプロマイド、2.5−ヒドロキ
シ−テレフタル酸ジクロライド等、あるいはこれらの混
合物があげられる。
Raw materials for producing the aromatic polyamide of the present invention include aromatic diamines such as 1,3-phenylenediamine, 2-chloro-1,3-phenylenediamine, 4-chloro-1,3-phenylenediamine, 2. 5-dichloro-1,3-phenylenediamine, 4,6-cyclo-1,3-7 2-dichlorodiamine, 4-carboxy-1,3
-phenylenediamine, 4-sul7oh 1,3-phenylenediamisi% 1,4-phenylenediamine, 2-chloro-1,4-phenylenediamine, 2,5-dichloro-
1,4-phenylenediamine, 2,6-cycloru1.
4-4 phenylenediamine, 2-carboxy-1,4
Examples include -7 22-diamine, 2-sulfur 1.4-7 22-22 diamine, and mixtures thereof. Examples of the aromatic dicarboxylic acid civalide to be reacted with the diamine include isophthalic acid dichloride, 2-
Amino-isophthalic acid dichloride, 4-amino-isophthalic acid dichloride, 4-promoisophthalic acid dibromide, 4-chloro-isophthalic acid dichloride, 4
.. 6-dichloro-inphthalic acid cyclolide, 4-hydroxy-isophthalic acid dichloride, terephthalic acid dichloride, 2-amino-terephthalic acid dichloride, 4
Examples include -bromo-terethalic acid dipromide, 2,5-hydroxy-terephthalic acid dichloride, and mixtures thereof.

又芳香族ジイソシアネートとしては、例えば1゜2−7
二二レンジイソシアネート、2−クロル−1,3−フェ
ニレンジイソシアネート、4−クロル−1,3−フェニ
レンジインシアオー)、2.4−ジクロル−1,3−フ
ェニレンジイソシアネート、4゜6−ジクロル−1,3
−フェニレンジイソシアネート、1.4−フェニレンジ
イソシアネート、2−クロル−1,4−7二二レンジイ
ソシアネー)、2.5−シクロルー1.4−フェニレン
ジイソシアネート、2.6−ジクロル−1,4−フェニ
レンジイソシアネート等、あるいはこれらの混合物があ
げられる。
Further, as aromatic diisocyanate, for example, 1°2-7
22 diisocyanate, 2-chloro-1,3-phenylene diisocyanate, 4-chloro-1,3-phenylene diisocyanate, 2,4-dichloro-1,3-phenylene diisocyanate, 4゜6-dichloro- 1,3
-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2-chloro-1,4-7 di-2 diisocyanate), 2,5-cyclo-1,4-phenylene diisocyanate, 2,6-dichloro-1,4-phenylene Examples include diisocyanates and mixtures thereof.

上記ジイソシアネートと反応される芳香族ジカルボン酸
としては、例えばイソフタル酸、2−アミノ−イソフタ
ル酸、4−アミノ−イン7タル酸、4−プロモーインフ
タル酸、4−クロル−イソフタル酸、4.6−シクロル
ーイン7タル酸、4−ヒドロキシ−・イソフタル酸、4
−スルフオーイソフタル酸、テレフタル酸、2−アミノ
−テレフタル酸、2−プロモーテレフタル酸、2.5−
ジヒドロキシ−テレフタル酸、2−スルフオーテレフタ
ル酸等、あるいはこれらの混合物があげられる。そして
これら原料の組合わせによって本願発明の芳香族ポリア
ミドが製造できるが、更に好ましくは下記式(I)で表
わされる繰り返し単位を満足するような原料の組合わせ
による芳香族ポリアミドが好ましい。
Examples of the aromatic dicarboxylic acid reacted with the diisocyanate include isophthalic acid, 2-amino-isophthalic acid, 4-amino-ynepthalic acid, 4-promoinphthalic acid, 4-chloro-isophthalic acid, 4.6 -Cycloluin hepthalic acid, 4-hydroxy-isophthalic acid, 4
-Sulfoisophthalic acid, terephthalic acid, 2-amino-terephthalic acid, 2-promoterephthalic acid, 2.5-
Examples include dihydroxy-terephthalic acid, 2-sulfoterephthalic acid, and mixtures thereof. The aromatic polyamide of the present invention can be produced by combining these raw materials, and more preferably, the aromatic polyamide is produced by combining raw materials that satisfy the repeating unit represented by the following formula (I).

−HN−Art −NH−QC−Arz −Co−(1
)すなわち、式(1)で表わされる繰り返し単位をもつ
芳香族ポリアミドにおいて、Arl及び/又はAr2は
結合軸のオルソ位にアミノ基、水酸基、スルホン酸基、
カルボキシル基から選ばれる官能基又はハロゲン原子を
有す為2価のフェニレン残基であり、 Arl又はAr
z 、がそれぞれ1種以上の原料の組合せから構成され
、 Arr又はArzのいずれか一方の成分の結合軸の
共軸(パラ結合)対非平行軸(メタ結合)の割合が10
010〜80/20であるとき、他方の成分の結合軸の
割合はO/100〜20/80となるような原料の組合
せをとる事が好ましいO この事は同時にAr1及びAr2の結合軸の合計が共軸
:袖平行軸=60:40〜40:60モル比である事を
意味し、これらの範囲をこえて共軸結合が多くなると繊
維は剛直で伸びの小さいものとなって所望の物性が得ら
れず、逆に非平行軸が多くなると繊維の一般物性は良好
であるが、高温での乾熱収縮が大きく形態安定性の悪い
ものとなってしまう。
-HN-Art -NH-QC-Arz -Co-(1
) That is, in an aromatic polyamide having a repeating unit represented by formula (1), Arl and/or Ar2 are amino groups, hydroxyl groups, sulfonic acid groups,
It is a divalent phenylene residue because it has a functional group selected from carboxyl groups or a halogen atom, and Arl or Ar
z, are each composed of a combination of one or more types of raw materials, and the ratio of coaxial (para bond) to nonparallel axis (meta bond) of the bond axes of either Arr or Arz is 10.
010 to 80/20, it is preferable to take a combination of raw materials such that the ratio of the bond axes of the other component is O/100 to 20/80. This also means that the sum of the bond axes of Ar1 and Ar2 is means that the coaxial: sleeve parallel axis = 60:40 to 40:60 molar ratio, and when the number of coaxial bonds increases beyond this range, the fiber becomes rigid and has low elongation, resulting in desired physical properties. If the number of non-parallel axes increases, the general physical properties of the fiber will be good, but the dry heat shrinkage at high temperatures will be large and the shape stability will be poor.

本発明による高温形態安定に優れ念芳香族ポリアミド繊
維の製造法も公知のいかなる方法によってもよいが乾式
紡糸あるいは、湿式紡糸法によって製造するのが好まし
い。
The highly aromatic polyamide fiber having excellent high-temperature shape stability according to the present invention may be produced by any known method, but it is preferably produced by dry spinning or wet spinning.

紡糸原液としてはアミド系溶媒、例えば、ジメチルフォ
ルムアミド、ジメチルアセトアミド、N−メチル−ピロ
リドン、N、N’−ジメチルエチレンウレアあるいはジ
メチルスルフオキシド等を用い念重合溶液をそのまま、
あるいは場合によっては濃縮して使用できる。
An amide solvent such as dimethylformamide, dimethylacetamide, N-methyl-pyrrolidone, N,N'-dimethylethylene urea or dimethyl sulfoxide is used as the spinning stock solution, and the superpolymerization solution is used as it is.
Alternatively, it can be used after being concentrated.

特に本発明による特定構造のポリアミドの場合には、本
発明者らが別途発明し念特開昭61−190517号の
方法によって製造し之重合溶液を紡糸原液として使用し
、例えば原液温度;30℃〜100℃、凝固浴組成;C
aα23〇二50係水溶液、凝固浴温度;50〜100
℃の条件で湿式紡糸し、ついで、1.1〜5倍の湿熱延
伸を行ない、次に50〜100℃熱水中で水洗を充分に
行なつ念後、100〜200℃で熱風乾燥し、つづいて
300℃〜450℃の空気中−または不活性ガス浴中で
1.1〜5倍の乾熱延伸熱処理を行なう事によって本発
明の高温における形態安定性に優れた耐熱性芳香族ポリ
アミド繊維を製造する事ができる。
In particular, in the case of the polyamide with a specific structure according to the present invention, the polymerization solution produced by the method separately invented by the present inventors and disclosed in Japanese Patent Application Laid-Open No. 1988-190517 is used as a spinning stock solution, for example, the stock solution temperature is 30°C. ~100°C, coagulation bath composition; C
aα23〇250 aqueous solution, coagulation bath temperature; 50-100
wet spinning under conditions of 1.1 to 5 times, followed by thorough washing in hot water at 50 to 100 degrees Celsius, followed by hot air drying at 100 to 200 degrees Celsius, Subsequently, the heat-resistant aromatic polyamide fiber of the present invention, which has excellent shape stability at high temperatures, is subjected to a dry heat stretching heat treatment of 1.1 to 5 times in air or an inert gas bath at 300°C to 450°C. can be manufactured.

(発明の効果・用途) 本発明の繊維は既存有機合成繊維、例えばポリエチレン
テレフタレート繊維等とほとんど変らない強度、伸度、
ヤング率に代表されるパラ/スのとれた一般偵維性能と
既存の耐熱性有機合成繊維のPMIA繊維にはない性能
、すなわち融点以上の高温下においても熱収縮が小さく
かつ燃焼時にも繊維同志が強固に融着することがない優
れt形態安定性をもつ。さらKPMIA繊維の最も大き
な欠点のひとつと云われる染色性の不良も、本発明繊維
はPMIA繊維よりははるかに良好で実用レベルに−あ
る。したがって耐熱性と高温形態安定性、さらに染色を
生かした防護衣料から寝具からインテリアまで巾広い用
途へ利用ができる。
(Effects and Applications of the Invention) The fibers of the present invention have almost the same strength and elongation as existing organic synthetic fibers, such as polyethylene terephthalate fibers.
It has general recoil performance, represented by Young's modulus, and properties not found in PMIA fibers, which are existing heat-resistant organic synthetic fibers.In other words, the thermal shrinkage is small even at high temperatures above the melting point, and the fibers stick together even when burned. It has excellent t-form stability without being strongly fused. Furthermore, regarding the poor dyeability, which is said to be one of the biggest drawbacks of KPMIA fibers, the fibers of the present invention are much better than PMIA fibers and are at a practical level. Therefore, it can be used for a wide range of purposes, from protective clothing to bedding to interior decoration, taking advantage of its heat resistance and high-temperature morphological stability.

次に本発明の態様を実施例をもって具体的に説明するが
、本発明はこれら記載例によって限定されるものではな
い。
Next, aspects of the present invention will be specifically explained with examples, but the present invention is not limited by these examples.

実施例1 攪拌機、温度計、コンデンサー、滴下ロート、窒素導入
管を備えfc3L容量のセパラブルフラスコ中にテレフ
タル酸150.1F (0,9035モル)、テレフタ
ル酸モノカリウム塩1,7009% m水Ntマージメ
チルエチレンウレア1500a/、を窒素雰囲気下に装
入し、油浴上で攪拌しながら200℃に加熱する。内容
物を200℃に維持しなから4−クロル−1,3−フ二
二レンジイソシアネート197.2F(0,8127モ
ル)及び2−クロル−1,3−フ二二レンジイソシアネ
ート21.9t(0,0903モル)を無水N、N’−
ジメチルエチレンウレア200 atに溶解し次溶液を
滴下ロートより2時間にわたって滴下し、その後さらに
1時間反応を継続した後に加熱を止め、室温まで冷却し
た。反応液の一部をとり強攪拌水中に投入して白色ポリ
マーを沈殿させ、更に多量の水で洗浄し之後150℃で
約3時間減圧乾燥して得たポリマーの対数粘度(95チ
kh 8040.1係、30℃)は1.5であった。ま
た重合液のポリマー濃度は約14.0重量%で、この溶
液の粘度は420ボイズ(B型粘度計;50℃)であっ
た。得られtポリマーはNMR測定より、ポリC(4−
クロル−1,3−)ユニしンテレフタルアミド)m(2
−クロル−1,3−フェニレンテレフタル、アミド)n
〕(m:n−9:1)であるこ、とを確認し念。
Example 1 Terephthalic acid 150.1F (0,9035 mol), terephthalic acid monopotassium salt 1,7009% m water Nt in a separable flask with fc3L capacity equipped with a stirrer, thermometer, condenser, dropping funnel, and nitrogen introduction tube. 1500 a/ml of merged methyl ethylene urea is charged under a nitrogen atmosphere and heated to 200° C. with stirring on an oil bath. While maintaining the contents at 200°C, 197.2 F (0,8127 mol) of 4-chloro-1,3-phenyl diisocyanate and 21.9 t of 2-chloro-1,3-phyl diisocyanate ( 0,0903 mol) in anhydrous N, N'-
Dimethylethylene urea was dissolved in 200 at, and the solution was added dropwise from the dropping funnel over a period of 2 hours. After continuing the reaction for an additional hour, heating was stopped and the mixture was cooled to room temperature. A portion of the reaction solution was taken and poured into strongly agitated water to precipitate a white polymer, which was further washed with a large amount of water and dried under reduced pressure at 150°C for about 3 hours. 1, 30°C) was 1.5. The polymer concentration of the polymerization solution was about 14.0% by weight, and the viscosity of this solution was 420 voids (B-type viscometer; 50° C.). The obtained t-polymer was found to be polyC(4-
Chlor-1,3-)unitine terephthalamide)m(2
-chloro-1,3-phenylene terephthal, amide) n
] (m:n-9:1).

上記重合液’t50℃で減圧−過して気泡を含まぬ紡糸
原液を調整する。ついで50℃に保ったまま孔径0.1
1m、孔数600(6孔は円形)のノズルから80℃に
維持され7’tCac!237%を含む水性凝固浴中へ
38.8f/分で吐出する。ノズルより吐出され友糸状
は凝固浴を通し念後凝固浴と同−組成の浴中で湿熱延伸
を約1.5倍で行ない、さらに80℃温水からなる水洗
浴で充分に水洗洗浄し、つづいて油剤付与し150℃の
熱風槽を通して乾燥を行ない湿熱延伸済紡糸原糸を得る
The above polymerization solution was filtered under reduced pressure at 50° C. to prepare a spinning stock solution containing no air bubbles. Then, while keeping the temperature at 50℃, the pore size was adjusted to 0.1.
The temperature is maintained at 80℃ from a 1m nozzle with 600 holes (6 holes are circular) and 7'tCac! Discharge at 38.8 f/min into an aqueous coagulation bath containing 237%. The filamentous material discharged from the nozzle is passed through a coagulation bath, and then subjected to moist heat stretching at about 1.5 times in a bath with the same composition as the coagulation bath, and then thoroughly washed with water in a washing bath consisting of 80°C warm water. An oil agent is applied thereto, and the fiber is dried through a hot air tank at 150° C. to obtain a wet-heat-stretched spun yarn.

紡糸原糸はだ円形断面で2800デニール/600フイ
ラメントであつ念。次にこの紡糸原糸’t−370℃に
保次九九、窒素気流中空乾熱延伸機によって乾熱延伸を
延伸倍率的2.3倍で行なうことによって本発明のポリ
〔(4−クロA/ −1,3−フェニレンテレ7タルア
ミド)m(2−10ルー1゜3−フェニレンテレフタル
アミド)n)(m:n=9:1)繊維を製造し念。
The spinning yarn has an oval cross section and is 2800 denier/600 filament. Next, this spun yarn was subjected to dry heat stretching at -370°C using a nitrogen flow hollow dry heat stretching machine at a stretching ratio of 2.3 times, thereby producing the poly[(4-chloroA) of the present invention. / -1,3-phenylene terephthalamide) m (2-10 1° 3-phenylene terephthalamide) n) (m:n = 9:1).

得られ念繊維の物性値は単糸デニール=2、強度=4.
st/drs伸度+25.4%、ヤング率=72f/d
%TM=380℃、TEX −290℃、TM −TE
X = 90℃、Xc −18%、D S R(TM 
) −D S R(380℃)=12%、 であり、良好な一般繊維物性と融点以上の高温における
優れた形態安定性を数値的に示しているのが分る。
The physical properties of the obtained fiber were as follows: single yarn denier = 2, strength = 4.
st/drs elongation +25.4%, Young's modulus = 72f/d
%TM=380℃, TEX -290℃, TM-TE
X = 90°C, Xc -18%, DSR(TM
) -D S R (380°C) = 12%, which numerically indicates good general fiber physical properties and excellent shape stability at high temperatures above the melting point.

次に本発明線維を使って筒編地を作成しこれを用いて燃
焼試験を行なつ念ところ、火炎を遠ざけると直ちに消火
する自己消火性を明瞭に示し、燃焼後の絹地1に観察す
ると燃焼部も繊維同志が強固に融着することもなかった
Next, a tubular knitted fabric was made using the fibers of the present invention, and a combustion test was conducted using this fabric.As a precaution, it clearly showed self-extinguishing properties that extinguished immediately when the flame was kept away, and when observed on silk fabric 1 after burning, combustion There was also no strong fusion of the fibers together.

又、本発明繊維について染色試験を行なつ之。染色条件
は分散染料5%o0w、f、染色温度140℃、染色時
間60分、キャリア使いとし九ところ、試験を行なつ食
券、青、紫、黄、の4色とも充分に濃色に染りた。
Furthermore, a dyeing test was conducted on the fiber of the present invention. The dyeing conditions were disperse dye 5% O0W, F, dyeing temperature 140℃, dyeing time 60 minutes, and using a carrier.The four colors of food stamps tested, blue, purple, and yellow, were dyed sufficiently deep. Ta.

実施例2 実施例1と同様の装置、方法にて合成した。2−アミツ
テレフタル酸163.9F(0,9050モN)、テレ
フタル酸モノカリウム塩1,3114゜無水N、 N’
−ジメチルエチレンウレア1600−をセパラブルフラ
スコに仕込み、内容物を200℃に維持しながら、1.
3−7二二レンジイソシアネー) 144.9 f (
0,9050モル)を無水N、N’−ジメチルエチレン
ウレア150!!Llに溶解し九溶液を2時間で滴下し
念。以後、実施例1と同様の方法で処理して得たポリマ
ーの対数粘度は1.6であつ几。ま比重合液のポリマー
濃度は14重量%で、この溶液の粘度は480ポイズで
あつ念。
Example 2 Synthesis was carried out using the same equipment and method as in Example 1. 2-Amitoterephthalic acid 163.9F (0,9050 moN), terephthalic acid monopotassium salt 1,3114° anhydrous N, N'
-Dimethylethylene urea 1600- was charged into a separable flask, and while maintaining the contents at 200°C, 1.
3-7 22 diisocyanate) 144.9 f (
0,9050 mol) of anhydrous N,N'-dimethylethyleneurea 150! ! Dissolved in Ll and added the solution dropwise over 2 hours. Thereafter, the polymer obtained by processing in the same manner as in Example 1 had a logarithmic viscosity of 1.6. The polymer concentration of the specific polymerization solution was 14% by weight, and the viscosity of this solution was 480 poise.

ボIJ (1,3−フェニレン−2−アミノ−テレ7タ
ルアミド  維の製゛ 水性凝固浴のCa偽濃度を33チとし、乾熱延伸温度を
400℃とした以外は実施例1と同様の装置、方法で芳
香族ポリアミド繊維を製造し九。得られた繊維物性は単
糸デニール=2、強度=5.1’ / ds 伸U= 
23 % s ヤング率−831/d。
Production of IJ (1,3-phenylene-2-amino-tere-7-talamide fiber) The same apparatus as in Example 1 except that the Ca pseudo concentration in the aqueous coagulation bath was 33% and the dry heat stretching temperature was 400°C. Aromatic polyamide fiber was produced by the method 9. The physical properties of the obtained fiber were as follows: single yarn denier = 2, strength = 5.1'/ds elongation U =
23% s Young's modulus -831/d.

Tyt = 415℃、TEX=310℃、TM−TE
X−ios℃、Xc = 22%、DSR(TM) =
 D S R(415℃)=11%、DSR(TM+5
5℃)=DSR(470℃)=18%、 であり、良好な繊維物性と、融点以上の高温における秀
れ次形態安定性を示している。
Tyt = 415°C, TEX = 310°C, TM-TE
X-ios°C, Xc = 22%, DSR(TM) =
DSR(415℃)=11%, DSR(TM+5
5°C) = DSR (470°C) = 18%, indicating good fiber physical properties and excellent morphological stability at high temperatures above the melting point.

実施例1と同様に分散染料による染色試験を行なって、
赤、青、紫、黄の4色とも充分に濃色に染った。
A dyeing test using a disperse dye was conducted in the same manner as in Example 1, and
All four colors, red, blue, purple, and yellow, were dyed sufficiently deep.

比較例1 ポリ(メタフェニレンイソフタルアミド)の製造攪拌機
、温度計、ジャケット付滴下ロートを備えた2tのジャ
ケット付セパラブルフラスコ中にイソフタル酸クロリド
250.2F (1,232モル)、無水テトラヒドロ
フラン600dを投入して溶解し、ジャケットに冷媒を
通して内容物を20℃に冷却し危。強攪拌しながら無水
テトラヒドロフラン400m/にメタフェニレンジアミ
ン133.7F(1,237モル)を溶解し穴溶液を約
20分間で滴下した。得られ次白色乳濁液を無水炭酸ソ
ーダ2.464モル含有水(水冷)中に強攪拌下にすば
やく投入し次。直ちにスラリー温度は室温近くまで上昇
した。引続いてカセイソーダで州を11になる様に調製
し念後スラリーを戸別し、得られ九ケーキを多量の水で
充分に洗浄し、150℃下で減圧下に一晩乾燥した得ら
fL7tポリマーの対数粘度は1.4であつ念。
Comparative Example 1 Production of poly(metaphenylene isophthalamide) 250.2 F (1,232 mol) of isophthalic acid chloride and 600 d of anhydrous tetrahydrofuran were placed in a 2 t jacketed separable flask equipped with a stirrer, a thermometer, and a jacketed dropping funnel. Pour it in, melt it, and cool the contents to 20℃ by passing a refrigerant through the jacket. Metaphenylenediamine 133.7F (1,237 mol) was dissolved in 400 ml of anhydrous tetrahydrofuran with strong stirring, and the solution was added dropwise over about 20 minutes. The resulting white emulsion was quickly poured into water (water-cooled) containing 2.464 mol of anhydrous soda carbonate under strong stirring. The slurry temperature immediately rose to near room temperature. Subsequently, the slurry was adjusted to 11 with caustic soda, and the slurry was thoroughly washed with a large amount of water and dried overnight under reduced pressure at 150°C to obtain the fL7t polymer. The logarithmic viscosity of is 1.4.

ポリ メタフェニレンイソ7タルアミド 繊維の製造 前記ポリ(メタフェニレンイソ7タルアミド)すなわち
PMIAポリマー粉末をN−メチル−2−ピロリドン(
NMP )とNMPに対して2チのL1αを含有する溶
媒中に22重量%濃度で溶解し80℃で減圧p過して気
泡を含まぬ紡糸原液を調整し7t+H,ついで80℃に
保つtまま孔径0.08−孔数100(6孔は円形)の
ノズルから80℃に維持されたCaα240%を含む水
性凝固浴中へ5.2F1分で吐出しs  10m/分で
回転するローラーを経て80℃温水浴中を通して充分に
水洗し、つづいて98℃の熱水中でローラーとローラー
により湿熱延伸を2.88倍で行ない、さらに油剤付与
後150℃の熱風槽中を通して乾燥を行ない湿熱延伸済
み紡糸原糸を得念。紡糸原子は均質なまゆ形断面で、3
58デニール/100フイラメントであった。
Preparation of poly(metaphenyleneiso7talamide) fiber The poly(metaphenyleneiso7talamide) or PMIA polymer powder was mixed with N-methyl-2-pyrrolidone (
NMP) and NMP were dissolved at a concentration of 22% by weight in a solvent containing 2 parts of L1α, and filtered under reduced pressure at 80°C to prepare a spinning dope free of air bubbles. Discharged from a nozzle with a hole diameter of 0.08 and a number of holes of 100 (6 holes are circular) into an aqueous coagulation bath containing 240% Caα maintained at 80°C at 5.2F 1 minute via a roller rotating at 10 m/min. ℃ hot water bath, thoroughly rinsed with water, then subjected to wet heat stretching at 2.88 times with rollers in 98℃ hot water, and after applying an oil agent, dried by passing through a 150℃ hot air bath to complete wet heat stretching. Focus on spinning yarn. The spinning atoms have a homogeneous cocoon-shaped cross section, 3
It was 58 denier/100 filament.

次にこの紡糸原子を310℃のプレート上で1.88倍
の乾熱延伸を行なう事によってポリ(メタフェニレンイ
ンクタルアミド)繊維を得比。
Next, the spun atoms were subjected to dry heat stretching 1.88 times on a plate at 310°C to obtain poly(metaphenylene inctalamide) fibers.

得られた繊維の物性値は単糸デニール=2、強度= 4
.9 t/d、伸度=28.54、ヤング率=80f/
d% TM = 4 2 5℃、 TEX = 4 0
 5℃、TM二TEX−20℃、XC=25%、DSR
(TM)=DSR(425℃)=16%、 であり、本発明外になるとのPMIA繊維は良好な一般
的繊維物性は示すものの、融点以上の高温における形態
安定性については本発明である実施例1、実施例2に比
べると明らかに劣ったものとなった。
The physical properties of the obtained fibers are: single yarn denier = 2, strength = 4
.. 9 t/d, elongation=28.54, Young's modulus=80f/
d% TM = 425℃, TEX = 40
5℃, TM2 TEX-20℃, XC=25%, DSR
(TM) = DSR (425°C) = 16%, and although the PMIA fibers outside the present invention exhibit good general fiber physical properties, the shape stability at high temperatures above the melting point is limited by the present invention. This was clearly inferior to Example 1 and Example 2.

次に上記PMIA繊fa ?使って筒編地を作成しこれ
を用いて燃焼試験を行なつ友ところ、火炎を遠ざけると
直ちに消火する自己消火性は明瞭に示すものの、燃焼後
編地を観察すると燃焼部では繊維同志が強固に融着して
繊維形態を完全に消失していた。
Next, the above PMIA fiber fa? However, when observing the knitted fabric after combustion, it was found that the fibers were firmly attached to each other in the burning part, although it clearly showed self-extinguishing properties that extinguished immediately when the flame was moved away. It was fused and the fiber form had completely disappeared.

次に繊維試料を本例のPMIA繊維におきかえ次以外は
実施例と同様の染色試験を行なつ念。この場合のPMI
A@l維は各色ともほとんど染色されず、本発明の実施
例1及び2に比らぺると大巾に染色性が劣っている事が
分る。
Next, replace the fiber sample with the PMIA fiber of this example and carry out the same dyeing test as in the example except for the following. PMI in this case
It can be seen that the A@l fibers were hardly dyed in any of the colors, and compared to Examples 1 and 2 of the present invention, the dyeability was significantly inferior.

実施例3 ポリ 14−フェニレン−2−ヒドロキシ−イソフタル
アミド の重合 攪拌機、温度計、リヤケラト何滴下ロートを備えft−
21のジャケット付セパラブルフラスコ中に2−ヒドロ
キシ−イソフタル酸クロリド216.8t(0,990
0モル)、無水ナト2ヒトa 79 y800dを投入
して溶解し、ジャケットに冷媒を通じて内容物を10℃
に冷却した。強攪拌しながらバラフェニレンジアミン1
07.iF (0,9907モル)を無水テトラヒドロ
7ラン500dに溶解した溶液を約10分間で投入した
。得られ念白色懸濁液を無水炭酸ソーダ2.0モル含有
水中に水冷下に投入した。スラリー温度は直ちに室温近
くまで上昇する。引続いて、カセイソーダでl:4(1
1になる様に調製し念後スラリーを炉別し、多量の水で
洗浄を繰り返し、続いて150℃減圧下に1晩乾燥して
白色のポリマーを得た。ポリマーの対数粘度は1.3で
6つ九〇 前記のポリ(1,4−〕二二レン−2−ヒドロキシーイ
ソフタルアミド)をN−メチル−ピロリドンに溶解し、
約15重量−の溶液とし念。80℃で減圧濾過して気泡
を含まぬ紡糸原液とし、続いて、80℃に保つ友まま孔
径0.08露、孔数100のノズルから80℃に維持さ
れ念CacJ232チを含む水性凝固浴中へ5.2t/
分で吐出し、更に凝固浴と同一組成の浴中で湿熱延伸を
1.5倍行ない、さらに80℃温水からなる水洗浴で充
分に水洗しつづいて油剤付与の後、150℃の熱風槽を
通して乾燥を行ない、湿熱延伸原糸を得友。
Example 3 Polymerization of poly 14-phenylene-2-hydroxy-isophthalamide A ft-ft.
216.8 tons of 2-hydroxy-isophthalic acid chloride (0,990
0 mol), anhydrous sodium chloride 79 y800d was added and dissolved, and the contents were heated to 10°C by passing the refrigerant through the jacket.
It was cooled to Add 1 phenylene diamine while stirring vigorously.
07. A solution of iF (0,9907 mol) dissolved in 500 d of anhydrous tetrahydro7ran was added over about 10 minutes. The resulting bright white suspension was poured into water containing 2.0 mol of anhydrous sodium carbonate under water cooling. The slurry temperature immediately rises to near room temperature. Subsequently, with caustic soda, l:4 (1
1, the slurry was separated in a furnace, washed repeatedly with a large amount of water, and then dried overnight at 150° C. under reduced pressure to obtain a white polymer. The logarithmic viscosity of the polymer is 1.3, and the poly(1,4-]dinilene-2-hydroxy-isophthalamide) is dissolved in N-methyl-pyrrolidone.
Approximately 15% by weight of the solution. The spinning dope was vacuum-filtered at 80°C to obtain a bubble-free spinning stock solution, and then passed through a nozzle with a pore size of 0.08 mm and 100 holes kept at 80°C in an aqueous coagulation bath containing CacJ232. to 5.2t/
After discharging for 10 minutes, it was further subjected to wet heat stretching 1.5 times in a bath with the same composition as the coagulation bath, and then thoroughly washed in a washing bath consisting of 80℃ hot water, and after applying an oil agent, it was passed through a hot air bath at 150℃. After drying, wet heat drawn yarn is obtained.

この原糸は540デニール/100フイラメントであつ
念。次にこの原糸を430℃に保たれ念窒素気流中空乾
熱延伸機によって乾熱延伸を2.7倍で行ってポリ(1
,4−フェニレン−2−ヒドロキシ−インフタルアミド
)繊維を得念。得られ念繊維の物性値は単糸デニール=
2、強度= 5.3 f/ ds伸度=191.−?/
グ率=98f/d、TM=420℃、TEX=320℃
、 TM−TEX =−100℃、Xcコ23%、DS
R(TM)=DSR(420℃);9%、DSR(TM
+55℃)=DSR(475℃);16であり、イソフ
タル酸結合軸のオルソ位に水酸基が置換され九芳香族ポ
リアミドからなるこの繊維が優A7’j一般物性と高温
における良好な形態安定性を持つことを示している。
This yarn is made of 540 denier/100 filament. Next, this yarn was kept at 430°C and subjected to dry heat stretching at 2.7 times using a nitrogen stream hollow dry heat stretching machine.
, 4-phenylene-2-hydroxy-inphthalamide) fibers. The physical properties of the obtained fiber are single yarn denier =
2. Strength = 5.3 f/ds elongation = 191. −? /
Grading rate=98f/d, TM=420℃, TEX=320℃
, TM-TEX = -100℃, Xc 23%, DS
R(TM)=DSR(420°C); 9%, DSR(TM
+55℃) = DSR (475℃); 16, and this fiber made of nine aromatic polyamide with a hydroxyl group substituted at the ortho position of the isophthalic acid bond axis has excellent general physical properties and good morphological stability at high temperatures. It shows that it has.

比較例2 2−ヒドロキシ−イソフタル酸クロリドの代りに5−ヒ
ドロキシイソフタルクロリドを用い念以外は、実施例3
と同様の装置で同様の方法で重合した。得られ九ポリマ
ーの対数粘度は1.5であった0 実施例3と同様の方法で上記ポリマーの約15型量4N
−メチルーピロリド/溶液より480デニール/100
フイラメントの湿熱延伸原糸を得て、次にこの原糸を4
10℃に保った窒素気流中空乾熱延伸機によって2.4
倍の乾熱延伸を行ってボIJ(1,4−フェニレン−5
−ヒドロキシイソフタルアミド)繊維を得た0得られた
繊維の単糸デニール= 2.0 、強度4.9f/d、
伸度30%、ヤング率= 959/d、TM= 425
℃、TEX=340℃、TM−TEX=85℃、Xc 
−17%、DSR(TM)=DSR(425℃)=22
*% DSR(TM+55℃)−DS Rアミドの場合
、得られ几繊維は良好な一般物性を示すが、高温におけ
る乾熱収縮が大きく、形態安定性の悪い繊維であつ几。
Comparative Example 2 Example 3 except that 5-hydroxyisophthalic chloride was used instead of 2-hydroxy-isophthalic acid chloride.
Polymerization was carried out in the same manner using the same equipment. The logarithmic viscosity of the nine polymers obtained was 1.50.About 15% of the above polymer was prepared in the same manner as in Example 3.
-Methyl-pyrrolid/480 denier/100 from solution
Obtain a wet-heat-drawn yarn of filament, and then process this yarn into 4
2.4 using a nitrogen flow hollow dry heat stretching machine maintained at 10°C.
The IJ (1,4-phenylene-5
-Hydroxyisophthalamide) fiber was obtained. Single yarn denier of the obtained fiber = 2.0, strength 4.9 f/d,
Elongation 30%, Young's modulus = 959/d, TM = 425
℃, TEX=340℃, TM-TEX=85℃, Xc
-17%, DSR(TM)=DSR(425℃)=22
*% DSR (TM + 55°C) - In the case of DSR amide, the resulting fiber shows good general physical properties, but has large dry heat shrinkage at high temperatures and is a fiber with poor shape stability.

特許出願人 株式会社 り ラ し 同   三井東圧化学株式会社Patent applicant RiRashi Co., Ltd. Same Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)芳香族ポリアミドのアミド基の窒素原子及び/又
は炭素原子に直結するフエニレン基のオルソ位にアミノ
基、水酸基、スルホン酸基、カルボキシル基から選ばれ
る官能基又はハロゲン原子を有する芳香族ポリアミドよ
り製造される繊維で、T_M≧350℃、T_M−T_
E_X≧30℃、X_C≧10%、D_E≧10%、D
SR(T_M)≦15%、DSR(T_M+55℃)/
DSR(T_M)≦3であることを特徴とする芳香族ポ
リアミド繊維。
(1) An aromatic polyamide having a functional group selected from an amino group, a hydroxyl group, a sulfonic acid group, a carboxyl group, or a halogen atom at the ortho position of the phenylene group directly connected to the nitrogen atom and/or carbon atom of the amide group of the aromatic polyamide. T_M≧350℃, T_M-T_
E_X≧30℃, X_C≧10%, D_E≧10%, D
SR(T_M)≦15%, DSR(T_M+55℃)/
An aromatic polyamide fiber characterized in that DSR (T_M)≦3.
JP29799187A 1987-11-25 1987-11-25 Aromatic polyamide fiber with high configuration stability at high temperatures Pending JPH01139808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29799187A JPH01139808A (en) 1987-11-25 1987-11-25 Aromatic polyamide fiber with high configuration stability at high temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29799187A JPH01139808A (en) 1987-11-25 1987-11-25 Aromatic polyamide fiber with high configuration stability at high temperatures

Publications (1)

Publication Number Publication Date
JPH01139808A true JPH01139808A (en) 1989-06-01

Family

ID=17853715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29799187A Pending JPH01139808A (en) 1987-11-25 1987-11-25 Aromatic polyamide fiber with high configuration stability at high temperatures

Country Status (1)

Country Link
JP (1) JPH01139808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012274A1 (en) * 1991-12-18 1993-06-24 Teijin Limited Flat aromatic polyamide fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012274A1 (en) * 1991-12-18 1993-06-24 Teijin Limited Flat aromatic polyamide fiber
US5378538A (en) * 1991-12-18 1995-01-03 Teijin Limited Aromatic polyamide flat yarn

Similar Documents

Publication Publication Date Title
KR100531989B1 (en) Process for producing meta-aromatic polyamide fiber
US4018735A (en) Anisotropic dopes of aromatic polyamides
JP2771805B2 (en) Wet spinning of aramid polymer containing salt
RU2285761C1 (en) Method of manufacturing high-strength heat-resistant threads from aromatic copolyamide having heterocycles in the chain
JPS63120108A (en) Heat-resistant organic synthetic fiber and production thereof
JPH11508938A (en) Aromatic polyamide, optically anisotropic dope and molded product, and method for producing the same
CA1118546A (en) Wholly aromatic polyamide composition
JPS5911609B2 (en) Method for producing copolyamide and molded products made from copolyamide
JP2858869B2 (en) Fiber material made from homogeneous alloy of aromatic polyamide and poly-N-vinylpyrrolidone, its production and use
JP2922431B2 (en) Method for producing meta-type aromatic polyamide fiber
JP3847515B2 (en) Method for producing dense meta-type aromatic polyamide fiber
JPH01139808A (en) Aromatic polyamide fiber with high configuration stability at high temperatures
EP0008126B1 (en) Aromatic polyamide composition
JPS63309641A (en) Blended spun yarn excellent in shape stability at high temperature
MXPA06004601A (en) Improved wet spinning process for aramid polymer containing salts.
JPH11502241A (en) Hydrolysis resistant aramids
JPH01139813A (en) Pigmented aromatic polyamide fiber and production thereof
JPS60110918A (en) Aromatic copolyamide fiber
JPH03119139A (en) Flameproofing and heat-resistant fabric
JP4563926B2 (en) Aromatic copolyamide fiber
JPS63309615A (en) Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability
JPS63315685A (en) Heat and flame resistant rope
JP6321425B2 (en) Totally aromatic polyamide fiber
JPS63312386A (en) Gasket
RU2111978C1 (en) Anisotropic solution based on aromatic copolyamides and formed articles from this solution