JPS63309641A - Blended spun yarn excellent in shape stability at high temperature - Google Patents

Blended spun yarn excellent in shape stability at high temperature

Info

Publication number
JPS63309641A
JPS63309641A JP14657687A JP14657687A JPS63309641A JP S63309641 A JPS63309641 A JP S63309641A JP 14657687 A JP14657687 A JP 14657687A JP 14657687 A JP14657687 A JP 14657687A JP S63309641 A JPS63309641 A JP S63309641A
Authority
JP
Japan
Prior art keywords
fiber
fibers
aromatic polyamide
group
dsr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14657687A
Other languages
Japanese (ja)
Inventor
敏裕 浜田
大森 昭夫
正紀 大澤
神野 政弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Kuraray Co Ltd
Priority to JP14657687A priority Critical patent/JPS63309641A/en
Publication of JPS63309641A publication Critical patent/JPS63309641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明は高温における形態安定性および防融性に優れた
芳香族ボリアばド繊維を主体繊維の中に混紡することに
よって、主体繊維の持つ熱に対する欠点を効果的に解決
しようとするものである。
[Detailed Description of the Invention] [Field of the Invention] The present invention incorporates aromatic boliabad fibers, which have excellent shape stability and melt resistance at high temperatures, into the main fiber, thereby reducing the heat resistance of the main fiber. This is an attempt to effectively resolve the shortcomings.

この方法によって主体繊維の持つ性質を大幅に変化させ
ることなく、種々の用途に活用できる。たとえば摩擦熱
による溶融を防いだスポーツウェアー、燃焼時の熱によ
る収縮を防いだ消防服等の各種防護衣、たばこの火によ
る穴開きを防いだ各種リビング用品への適用がなされる
This method can be used for various purposes without significantly changing the properties of the main fiber. For example, it can be applied to sportswear that prevents melting due to frictional heat, various types of protective clothing such as firefighting suits that prevent shrinkage due to heat during combustion, and various living items that prevent punctures caused by cigarette burns.

〔従来技術〕[Prior art]

耐熱性繊維としてはメタ系芳香族ポリアミド繊維として
、その化学組成がポリメタフェニレンイノフタルアミド
(以下PMIAと略記する)を主成分とする繊維が広く
用いられている。しかしこの繊維は融点以上での高温で
の形態安定性が不充分である。したがってパラ系の芳香
族ポリアミド繊維の少量混用が提案されている程である
。しかしパラ系芳香族ポリアミド繊維は剛直性が高く、
繊維伸度も低いことから衣料用繊維としてのしなやかさ
や後加工性を著しく低下させる欠点がある。
As heat-resistant fibers, meta-aromatic polyamide fibers whose chemical composition is mainly composed of polymetaphenylene inophthalamide (hereinafter abbreviated as PMIA) are widely used. However, this fiber has insufficient morphological stability at high temperatures above its melting point. Therefore, it has even been proposed to incorporate a small amount of para-based aromatic polyamide fiber. However, para-aromatic polyamide fibers have high rigidity,
Since the fiber elongation is also low, it has the drawback of significantly reducing flexibility and post-processability as a clothing fiber.

またPMIAljll維は後染色性が悪く、他の主体繊
維に混用すると、あざやかな染色ができない欠点がある
Furthermore, PMIAljll fibers have poor post-dyeability, and when mixed with other main fibers, they have the disadvantage that vivid dyeing cannot be achieved.

〔発明が解決しようとする手段〕[Means to be solved by the invention]

本発明は、主体繊維の持つ性質を大幅に変化させること
なく主体繊維の持つ熱に対する欠点を効果的に解決する
ために、下記(1)〜(6)の特性を有する芳香族ポリ
アミド繊維を主体縁MK混紡することによって、主体繊
維の欠点をカバーし、高温における形態安定性に優れた
混紡糸が得られることを見出した。
The present invention mainly uses aromatic polyamide fibers having the following characteristics (1) to (6) in order to effectively solve the drawbacks of the main fibers against heat without significantly changing the properties of the main fibers. It has been found that by blending edge MK, it is possible to obtain a blended yarn that covers the defects of the main fiber and has excellent shape stability at high temperatures.

即ち本発明は、 次式を満足する特性を有する芳香族ポリアミド繊維を5
〜70重量%混入して々る混紡糸、Tm5350℃  
          (1)Tm −Tex≧30°C
(2) Xc≧10チ             (8)DE≧
10%             (4)DSR(Tm
)≦15%         (5)である。
That is, the present invention provides 5 aromatic polyamide fibers having characteristics satisfying the following formula.
~70% by weight blended yarn, Tm5350℃
(1) Tm-Tex≧30°C
(2) Xc≧10chi (8) DE≧
10% (4) DSR (Tm
)≦15% (5).

本発明で、主体繊維と混紡する芳香族ポリアミド繊維は
、前記(1)〜(6)の特性値および物性値で示される
ように、既存の有機合成繊維、例えばポリエチレンテレ
フタレート繊維等とほとんど変らない強度、伸度、ヤン
グ率に代表されるバランスのとれた一般繊維性能と、既
存の耐熱性有機合成繊維のPMIA繊維にはない性能、
すなわち融点以上の高温下においても熱収縮が小さくか
っ燃線時にも繊維同志が強固に融着することがない優れ
た形態安定性をもつ。
In the present invention, the aromatic polyamide fiber blended with the main fiber is almost the same as existing organic synthetic fibers, such as polyethylene terephthalate fiber, as shown in the characteristic values and physical property values of (1) to (6) above. Balanced general fiber performance represented by strength, elongation, and Young's modulus, and performance that existing heat-resistant organic synthetic fiber PMIA fiber does not have.
In other words, it has excellent morphological stability, with small thermal shrinkage even at high temperatures above the melting point, and the fibers do not firmly fuse together even when burned.

この式(1)〜(6)について説明すると、Tm(融点
)が350℃以上でおり、Tmに対してTex (発熱
開始温度)が30℃以上低(Xc(結晶化度)が10%
以上であるときに融点以上の高温においても形態安定性
に優れた繊維となる。
To explain these formulas (1) to (6), Tm (melting point) is 350°C or higher, and Tex (exothermic onset temperature) is 30°C or lower (Xc (crystallinity) is 10% lower than Tm).
When it is above, the fiber has excellent shape stability even at high temperatures above the melting point.

これは換言すれば′rm≧350℃で且っXc≧10%
である場合においても、Tm−Texが30℃以上とT
m −Texが30℃未満の繊維を比較すると前者すな
わちTex (熱分解開始温度)がTm(融点)よ、1
0℃以上低い方が後者すなわちTexがTmよ930℃
未満にあるものよシその繊維のTm(融点)以上の高温
における形態安定性がよいという事である。これは−見
不合理のように考えられるが全く意外にも、実際にはT
exのよシ低い方が良好な形態安定性を示すのである。
In other words, 'rm≧350℃ and Xc≧10%
Even if Tm-Tex is 30°C or higher and T
Comparing fibers with m-Tex of less than 30°C, the former, that is, Tex (thermal decomposition initiation temperature) is lower than Tm (melting point), 1
The one lower than 0℃ is the latter, that is, Tex is 930℃ lower than Tm.
This means that fibers with a temperature of less than 50% have better morphological stability at high temperatures that are higher than the Tm (melting point) of the fiber. This may seem absurd, but surprisingly, it actually turns out to be T.
The lower the ex, the better the shape stability.

これについての正確な理由はよく分らないが、Tm53
50℃、Xc≧10チであってかつTexがTmに対し
て30℃以上低い芳香族ポリアミド繊維では比較的低い
Texから熱分解が始まるのでそれは緩やかにかつ非晶
領域を中心に起りその際、結晶領域では微結晶が溶融す
る事なく存在するため、熱による非晶領域の配向分子鎖
の配向緩和とともに生じる熱収縮に対して微結晶が分子
鎖の拘束点として作用するため、収縮が抑えられつつ、
同時に進行する熱分解反応に伴ない分子鎖間に一種の架
橋が起き、3次元構造が形成されるため融点以上でも形
態安定性が良好になると考えられる。
I don't know the exact reason for this, but Tm53
In aromatic polyamide fibers where 50°C, Xc≧10 and Tex is 30°C or more lower than Tm, thermal decomposition starts from a relatively low Tex, so it occurs slowly and mainly in the amorphous region, and at that time, Since the microcrystals exist without melting in the crystalline region, the shrinkage is suppressed because the microcrystals act as restraint points for the molecular chains against thermal contraction that occurs when the orientation of the oriented molecular chains in the amorphous region is relaxed due to heat. Tsutsu,
It is thought that a type of crosslinking occurs between molecular chains as a result of the thermal decomposition reaction that proceeds simultaneously, forming a three-dimensional structure, resulting in good morphological stability even above the melting point.

それに対してTm5350℃、Xc≧lO%であっても
TexがTmに対して30°C未満でしか低くない時に
は充分な分子間の架橋による3次元構造が形成されるま
えに熱溶融が生じるので、熱収縮や繊維間での融着が大
きくなり形態安定性不良となったものと考えられる。
On the other hand, even if Tm is 5350°C and Xc≧lO%, if Tex is lower than Tm by only 30°C, thermal melting will occur before a three-dimensional structure is formed due to sufficient intermolecular crosslinking. It is thought that thermal shrinkage and fusion between fibers increased, resulting in poor shape stability.

このためTm−Texの範囲はTm −Tex530℃
でなければならず、好ましくはTm−Tex≧50℃さ
らに好ましくはTm −Tex≧70℃である。
Therefore, the range of Tm-Tex is Tm-Tex530℃
Preferably Tm-Tex≧50°C, more preferably Tm-Tex≧70°C.

また、Tm以上では他の繊維物性がある程度低下するの
で、一般の合成繊維よ9200℃以上も高い温度でも実
用可能な耐熱性繊維でおるためには、Tm≧350℃で
なければならず、好ましくはTm≧400℃以上、さら
に好ましくはTm≧420℃以上である。
In addition, other fiber properties deteriorate to some extent at Tm or higher, so in order to be a heat-resistant fiber that can be used even at temperatures 9200°C or higher than general synthetic fibers, Tm must be 350°C or higher, which is preferable. is Tm≧400°C or higher, more preferably Tm≧420°C or higher.

また、Tm≧350℃、Tm−Tex230℃であって
もXC<10チと結晶性が小さい場合、微結晶による分
子鎖移動に対する拘束作用がほとんどないため、Tmよ
シはるか低温のガラス転移点あたυから急激に熱収縮を
増大して形態安定性は不良となる。
In addition, even if Tm≧350℃ and Tm-Tex 230℃, if the crystallinity is small (XC<10), there is almost no restraining effect on molecular chain movement due to microcrystals, so the glass transition point is much lower than Tm. As a result, thermal shrinkage rapidly increases and shape stability becomes poor.

これらの理由からXc≧10チである事が必要でおシ、
好ましくはXc≧15チである0さらに繊維が衣料用、
産業資材用等の用途において既存の有機合成繊維と混紡
して同様な利用がされるためには、良好なしなやかさ、
加工性を有すると共に染色性が必須の条件となる。この
ためには強度と伸度のバランス、と)わけ伸度が充分に
あることが大事でDE(繊維伸度)≧10チでなければ
ならない。好ましくはDE)15チ、さらに好ましくは
pg>2o=1である。またさらに高温における形態安
定性をさらに高める態様としては繊維がDSR(Tm)
≦15チおよびDSR(Tm+55℃) DSR(Tm)  ≦3 を満足しなければならない。
For these reasons, it is necessary that Xc≧10chi,
Preferably, Xc≧15, and the fiber is for clothing;
In order to be used in the same way by blending with existing organic synthetic fibers in industrial materials, etc.
Processability and dyeability are essential conditions. For this purpose, it is important to have a sufficient balance between strength and elongation, especially elongation, and DE (fiber elongation) must be 10 inches. Preferably DE)15, more preferably pg>2o=1. In addition, as an aspect to further improve the shape stability at high temperatures, the fiber has DSR (Tm).
≦15 and DSR (Tm + 55°C) DSR (Tm) ≦3 must be satisfied.

DSR(Tm)が15%を越える場合には融点において
乾熱収縮がすでに大きく形態安定性が良好とはいえない
。DSR(Tm)≦15’16であってもDSR(Tm
+55℃) DSR(Trn)   〉3の場合には融点を越えると
急激に熱収縮が増大するため、例えば耐熱防護服用途で
着用中被災した場合脱衣が困難となって火傷等の被害を
かえって大きくするといった事が6つ、好、シくない。
If the DSR (Tm) exceeds 15%, dry heat shrinkage is already large at the melting point, and the shape stability cannot be said to be good. Even if DSR(Tm)≦15'16, DSR(Tm
+55℃) DSR (Trn) In the case of 〉3, the thermal contraction increases rapidly when the melting point is exceeded, so if you are wearing heat-resistant protective clothing and are damaged by an earthquake, it will be difficult to take it off and you will suffer more damage such as burns. There are 6 things I like and don't like.

したかっ−CDSRσI’m+55’C)−DSR(T
m) ≦3のように融点+55℃という融点よシがなシ高温で
も熱収縮が充分に小さい事が重要である〇このような耐
熱性の芳香族ポリアミド繊維を主体繊維と混紡する場合
、主体繊維が例えば熱可塑性繊維の場合は、jllll
ll防熱効果が発揮できる混紡糸となシ、また主体繊維
が耐熱稙−の場合には、高温時の寸法安定性効果が発揮
できる混紡糸となプ、さらにまた主体繊維が防炎繊維の
場合には、寸法安定性向上ばかりでなくより防炎性の向
上効果が発揮できる混紡糸となるものである。
I wanted to-CDSRσI'm+55'C)-DSR(T
m) It is important that the heat shrinkage is sufficiently small even at higher temperatures than the melting point of +55°C as shown in ≦3. When blending such heat-resistant aromatic polyamide fibers with the main fiber, If the fiber is a thermoplastic fiber, for example, jllll
Blended yarns and yarns that can exhibit heat-insulating effects, and when the main fiber is heat-resistant, blended yarns and yarns that can exhibit dimensional stability effects at high temperatures, and when the main fibers are flame-resistant fibers. This results in a blended yarn that not only improves dimensional stability but also exhibits the effect of improving flame retardancy.

なお本発明での芳香族ポリアミド繊維の特性値および物
性値はそれぞれ以下に記す測定機、測定条件で得られた
数値を表わす。
Note that the characteristic values and physical property values of the aromatic polyamide fiber in the present invention represent values obtained using the measuring equipment and measuring conditions described below, respectively.

Tm:融虚:パーキンエルマー社■製DSC−2Cによ
シ約10〜の試料をA1%試料皿に入れ窒累ガス気流中
(30*l/m1n)で毎分lO℃で室温から所定温度
までのDSC曲線をえ、その吸熱ピーク温度f:Tmと
する。
Tm: Melt failure: Approximately 10 or more samples were placed in an A1% sample dish using DSC-2C manufactured by PerkinElmer and heated at 10℃ per minute from room temperature to a predetermined temperature in a nitrogen gas stream (30*l/m1n). Obtain the DSC curve up to and let its endothermic peak temperature f: Tm.

Tax:発熱開始温度;パーキンエルマー社■dDsc
−2Cによシ約10■の試料をAtU試料皿に入れ空気
気流中(30ml/ min )で毎分lO℃で室温か
ら所足温度までのDSC曲線をえ、その発熱開始温度を
Texとする。
Tax: Heat generation start temperature; PerkinElmer dDsc
At -2C, put about 10 cm of sample into an AtU sample dish in an air stream (30 ml/min) at 10°C per minute, draw a DSC curve from room temperature to the required temperature, and let the temperature at which the heat starts to heat up to Tex. .

結晶化度:Xc;理学電機■製回転対陰極超高強力X線
発生装置iRA D −rA(40KV 100mA、
 CuKz線)を使用し、X線ビームに垂直な面内で試
料を回転させながら回折角2θ=5〜35の範囲のX線
回折強度曲線をえ、次に回折曲線を結晶領域(Ac)と
非晶領域(AA ’)に分離、次式より算出した値Xc
を結晶化度とする。
Crystallinity: Xc; Rotating anticathode ultra-high intensity X-ray generator iRA D-rA (40KV 100mA, manufactured by Rigaku Denki ■)
(CuKz ray), obtain an X-ray diffraction intensity curve in the range of diffraction angle 2θ = 5 to 35 while rotating the sample in a plane perpendicular to the X-ray beam, and then divide the diffraction curve into a crystal region (Ac). Separated into amorphous region (AA'), value Xc calculated from the following formula
Let be the crystallinity.

X c = −X 100 (チ) Ac−)−Aa DE:繊維の伸度;インストロン引張り試験機を用い試
料長10cm5引張速度scm/分、初荷重0.05f
/dの条件下で引張試験を行なって求めた。
X c = -X 100 (chi) Ac-)-Aa DE: Elongation of fiber; using an Instron tensile tester, sample length 10 cm, tensile speed scm/min, initial load 0.05 f
It was determined by conducting a tensile test under the conditions of /d.

DSR:乾熱収縮率;繊維試料に0.1f/dの加重を
かけその長さtoを測定した後、所定温度の熱風乾燥機
中で10分間フリーで処理し、その後30分後に再びQ
、if/dの加重をかけて試料長t1を測定し、次式に
よって乾熱収縮率DSRを求めた。
DSR: Dry heat shrinkage rate; after applying a load of 0.1 f/d to the fiber sample and measuring its length to, it is free-treated in a hot air dryer at a predetermined temperature for 10 minutes, and then 30 minutes later, Q
, if/d was applied to measure the sample length t1, and the dry heat shrinkage rate DSR was determined by the following formula.

DSR=−xlOOチ t。DSR=-xlOOchi t.

前記特定の物性値で表わされる芳香族ポリアミド繊維は
、例えばアミド結合の窒素原子および/または炭素原子
に直結するフェニレン基のオルソ位に炭素原子lから4
の低級アルキル基、あるいはアミン基、スルホン基、カ
ルボキシル基、水酸基等から選ばれた官能基、またはハ
ロゲン原子を有する芳香族ポリアミドよシ製造された繊
維である。
The aromatic polyamide fiber represented by the above-mentioned specific physical properties has, for example, carbon atoms 1 to 4 at the ortho position of the phenylene group directly connected to the nitrogen atom and/or carbon atom of the amide bond.
It is a fiber made of aromatic polyamide having a lower alkyl group, or a functional group selected from amine group, sulfone group, carboxyl group, hydroxyl group, etc., or a halogen atom.

芳香族ポリアミドのフェニル基のオルソ位に存在スる置
換基としては繊維の物性値を満足するものであればいか
なるものであっても良いが、好ましくは前記に記述のも
のが良い。さらに好ましくは炭素原子1から4の低級ア
ルキル基のものである。
The substituent present at the ortho-position of the phenyl group of the aromatic polyamide may be any substituent as long as it satisfies the physical properties of the fiber, but those described above are preferred. More preferred are lower alkyl groups having 1 to 4 carbon atoms.

この様な特定の物性値の芳香族ポリアミド繊維の製造法
は、特別には限定されないが、例えば本発明者等が別途
出願した特願昭61−117970号明細書に記載され
ているが如き、繰シ返し単位の95モルチ以上が4−メ
チル−1,3−フェニレンテレフタルアミドおよび/ま
たは6−メチル−1゜3−フェニレンテレフタルアミド
で、6.6 ホIJマーを紡糸原液として用い、原液温
度を20〜150℃、好ましくは40〜100℃に保持
して、金属塩、例えばCaαz、ZnQ!z、Lto2
、LiBr等を10〜50wt%含有した温度30〜沸
点温度、好壕しくけ50〜100℃の水溶液中に湿式紡
糸し、ついで、凝固浴とほぼ同一の組成の水性溶液浴中
で1.1〜5倍の湿熱延伸を行ない1次に50〜100
℃熱水中で水洗を充分に行なった後、100〜200℃
で熱風乾燥し、つづいて300°C〜450℃の空気中
または不活性ガス浴中で1.1〜5倍の乾熱延伸熱処理
を行なう事によって製造される。
The method for producing aromatic polyamide fibers having such specific physical property values is not particularly limited, but for example, as described in Japanese Patent Application No. 117970/1987 filed separately by the present inventors, At least 95 moles of repeating units are 4-methyl-1,3-phenylene terephthalamide and/or 6-methyl-1゜3-phenylene terephthalamide, and 6.6 mmolth is used as the spinning stock solution, and the stock solution temperature is is maintained at 20 to 150°C, preferably 40 to 100°C, and metal salts such as Caαz, ZnQ! z, Lto2
Wet spinning is carried out in an aqueous solution containing 10 to 50 wt% of LiBr, etc. at a temperature of 30 to boiling point temperature and 50 to 100 °C, and then in an aqueous solution bath with almost the same composition as the coagulation bath. 50 to 100
℃After thorough washing in hot water, 100-200℃
It is manufactured by drying with hot air at 300° C. to 450° C. and then performing a dry heat stretching heat treatment of 1.1 to 5 times in air or an inert gas bath at 300° C. to 450° C.

この湿式紡糸の除、凝固浴の性質によって、得られる繊
維の表面に凹凸を形成させる事も出来、このような凹凸
表面の繊維とすれば、その紡績性に、よシ良い影響を与
える事が出来る。
Depending on the properties of the coagulation bath during wet spinning, it is possible to form unevenness on the surface of the resulting fiber, and if the fiber has such an uneven surface, it will have a good effect on its spinnability. I can do it.

〔発明の効果〕〔Effect of the invention〕

本発明で用いられる芳香族ポリアミド繊維と混紡される
繊維としては、特に制約がない。その主体繊維が耐熱繊
維である場合には、高温時の寸法安定性が一層向上し、
防炎繊維の場合には、寸法安定性向上以外に防炎性が向
上し、熱可塑性繊維の場合には、摩擦熱による防融加工
が主な目的となる。
There are no particular restrictions on the fibers to be blended with the aromatic polyamide fibers used in the present invention. When the main fiber is a heat-resistant fiber, the dimensional stability at high temperatures is further improved,
In the case of flame-retardant fibers, the main objective is to improve flame retardancy in addition to improving dimensional stability, and in the case of thermoplastic fibers, the main purpose is melt-proof processing using frictional heat.

そして、特に本発明で用いられる芳香族ボリアミド繊維
が、アミド結合の窒素原子および/または炭素原子に直
結するフェニレン基のオルソ位に炭素原子1から4の低
級アルキル基、あるいはアミノ基、スルホン基、カルボ
キシル基、水酸基から選ばれた官能基、またはハロゲン
原子を有する芳香族ポリアミドよ!ll製造された繊維
である場合には、PMIA繊維にくらべ後染色性優れて
いるので、混紡糸の染色性を損う事がなく衣料用繊維と
して特に有用である。以上の様に高温時の寸法安定性と
染色性を有したこの芳香族ポリアミド繊維を混用された
混紡糸は、染色性を損うことなく、耐熱性能を有するこ
とができる。したがってその応用範囲はきわめて広い。
In particular, the aromatic polyamide fiber used in the present invention has a lower alkyl group having 1 to 4 carbon atoms, an amino group, a sulfone group, or An aromatic polyamide with a functional group selected from carboxyl groups, hydroxyl groups, or halogen atoms! In the case of a fiber manufactured by I.L., it has better post-dyeability than PMIA fiber, so it is particularly useful as a clothing fiber without impairing the dyeability of the blended yarn. As described above, the blended yarn mixed with this aromatic polyamide fiber, which has dimensional stability and dyeability at high temperatures, can have heat resistance without impairing dyeability. Therefore, its application range is extremely wide.

次に本発明の蝕様を実施例をもって具体的に説明するが
、本発明はこれら記載例によって限定されるものではな
い。
Next, the eclipse mode of the present invention will be specifically explained with examples, but the present invention is not limited to these examples.

実施例1 芳香族ポリアミドの製造 攪拌機、温度計、コンデンサー、滴下ロート、窒素導入
管を備えた3を容量のセパラブルフラスコ中にテレフタ
ル酸166、Of’ (0,9991モル)、テレフタ
ル酸モノカリウム塩2.038i/、無水N、N’−ジ
メチルエチレンウレア1600m1.を窒素雰囲気下に
装入し、油浴上で攪拌しながら200°Cに加熱する。
Example 1 Production of aromatic polyamide Terephthalic acid 166, Of' (0,9991 mol), and monopotassium terephthalate were placed in a 3-capacity separable flask equipped with a stirrer, thermometer, condenser, dropping funnel, and nitrogen introduction tube. salt 2.038i/, anhydrous N,N'-dimethylethyleneurea 1600ml. was charged under a nitrogen atmosphere and heated to 200°C with stirring on an oil bath.

内容物を200℃に維持しながらトリレン−2,4−ジ
イソシアネート174.0f(0,9991モル)を無
水N、N’−ジメチルエチレンウレア160ulK溶解
した溶液を滴下ロートより4時間にわたって滴下し、そ
の後さらに1時間反応を継続した後に加熱を止め、室温
まで冷却した。反応液の一部をとυ強攪拌水中に投入し
て白色ポリマーを沈殿させ、更に多量の水で洗浄した後
150°Cで約3時間減圧乾燥して得たポリマーの対数
粘度(95%H2SO40,1? /d、/ 、 30
°C)は2.2であった。また重合液のポリマー濃度は
約11.0重量係で、この溶液の粘度は420ボイズ(
B型粘度計;50°C)であった。また得られたポリマ
ーはIRスペクトル、NMRスペクトルによシボリ(4
−メチル−1,3−フェニレンテレフタルアミド)であ
ることを確認した。
While maintaining the contents at 200°C, a solution containing 174.0f (0,9991 mol) of tolylene-2,4-diisocyanate dissolved in 160 ulK of anhydrous N,N'-dimethylethylene urea was added dropwise from the dropping funnel over 4 hours, and then After continuing the reaction for an additional hour, heating was stopped and the mixture was cooled to room temperature. A portion of the reaction solution was poured into strongly stirred water to precipitate a white polymer, which was further washed with a large amount of water and dried under reduced pressure at 150°C for about 3 hours. The logarithmic viscosity of the obtained polymer was ,1? /d, / , 30
°C) was 2.2. The polymer concentration of the polymerization solution is about 11.0% by weight, and the viscosity of this solution is 420 voids (
Type B viscometer; 50°C). In addition, the obtained polymer showed a difference in IR spectrum and NMR spectrum (4
-Methyl-1,3-phenylene terephthalamide).

上記重合液を50℃で減圧脱泡して気泡を含まぬ紡糸原
液を調整する。ついで50℃に保ったまま孔径Q、l1
w、孔数600(6孔は円形)のノズルから80°Cに
維持されたCaα240%を含む水性凝固浴中へ54.
41’/分で吐出する。ノズルよシ吐出された糸状は凝
固浴を通した後凝固浴と同一組成の浴中で湿熱延伸を約
1.6倍で行ない、さらに80℃温水からなる水洗浴で
充分に水洗洗浄し、つづいて油剤付与し150℃の熱風
槽を通して乾燥を行ない湿熱延伸法紡糸原糸を得る。
The above polymerization solution is degassed under reduced pressure at 50° C. to prepare a spinning dope that does not contain air bubbles. Then, while maintaining the temperature at 50°C, the pore diameter Q and l1
w, 54. into an aqueous coagulation bath containing 240% Caα maintained at 80°C through a nozzle with 600 holes (6 holes are circular).
Discharge at 41'/min. The filament discharged from the nozzle passes through a coagulation bath, and then is subjected to moist heat stretching in a bath with the same composition as the coagulation bath at a rate of about 1.6 times, and is thoroughly washed with water in a washing bath consisting of 80°C warm water. An oil agent is applied thereto, and the fiber is dried through a hot air tank at 150° C. to obtain a wet heat drawing method spun yarn.

紡糸原糸はだ円形断面であるが均質なもので、2900
デニール/600フイラメントであった。
The spinning yarn has an oval cross section but is homogeneous and has a diameter of 2900
It was a denier/600 filament.

次にこの紡糸原糸を430℃に保たれた、窒素気流中空
乾熱延伸機によって乾熱延伸を延伸倍率約2.4倍で行
なうことによって本発明のポリ(4−メチル−1,3−
フェニレンテレフタルアミ)”)ffl維を製造した。
Next, this spun yarn was subjected to dry heat stretching at a draw ratio of about 2.4 times using a nitrogen flow hollow dry heat drawing machine maintained at 430°C.
Phenylene terephthalamide)") ffl fibers were produced.

得られた繊維の物性値は単糸デニール=2、強度=5.
8f/dr%伸度= 25.4 %、ヤング率=88f
/d%Tm=425℃、Tex=330℃、Tm−Te
x=95℃、Xc=24%、DSR(Tm)=DSR(
425℃)=11チ、 であシ、艮好な一般繊維物性と融点以上の高温における
優れた形・態安定性を数値的に示しているのが分る。
The physical properties of the obtained fiber were as follows: single yarn denier = 2, strength = 5.
8f/dr% elongation = 25.4%, Young's modulus = 88f
/d%Tm=425°C, Tex=330°C, Tm-Te
x=95°C, Xc=24%, DSR(Tm)=DSR(
425°C) = 11°C, it can be seen that numerically it shows good general fiber physical properties and excellent shape and stability at high temperatures above the melting point.

この様にして得られた繊維を機械捲縮させ38籠にカッ
トした紡績用ファイバーを作る。次にポリエチレンテレ
フタレート繊維の2dX 38日カットのファイバーと
芳香族ポリアミド繊m/ポリエチレンテレフタレート繊
維=4/6重量比で混合し、通常のスフ紡績方法で30
番手の紡績糸を作シ、を織り、摩擦溶融テストを行なっ
た。その結果ポリエチレンテレフタレート繊維が溶融す
る条件においても穴が開く事がなかった0さらに煙草の
火を直接布に接融させても穴が開かなかった。
The fibers thus obtained were mechanically crimped and cut into 38 baskets to produce fibers for spinning. Next, a 2dX 38 day cut polyethylene terephthalate fiber was mixed with aromatic polyamide fiber m/polyethylene terephthalate fiber at a weight ratio of 4/6, and a
A high-count spun yarn was made and woven, and a friction melting test was conducted. As a result, no holes were formed even under conditions where polyethylene terephthalate fibers were melted.Furthermore, no holes were formed even when a cigarette was directly fused to the fabric.

実施例2 ポリ(メタフェニレンイソフタルアミド)の製造攪拌機
、温度計、ジャケット付滴下ロートを備えた2tのジャ
ケット付セパラブルフラスコ中にイソフタル酸クロリド
250.29 (1,232モル)、無水テトラヒドロ
フラン60011/を投入して溶解し、ジャケットに冷
媒を通して内容物を20’Cに冷却した。強攪拌しなが
ら無水テトラヒドロ7、yン40011VCメタフェニ
レンジアミン133.7?(1,237モル)を溶解し
た溶液を約20分間で滴下した。得られた白色乳濁液を
無水炭酸ソーダ2.464モル含有水(水冷)中に強攪
拌下にすばやく投入した。直ちにスラリ一温度は室温近
くまで上昇した。引続いてカセイソーダで田を11にな
る様に調製した後スラリーを戸別し、得られたケーキを
多量の水で充分に洗浄し、150℃下で減圧下に一晩乾
燥した得られたポリマーの対数粘度は1.4であった。
Example 2 Production of poly(metaphenylene isophthalamide) In a 2 t jacketed separable flask equipped with a stirrer, a thermometer, and a jacketed dropping funnel, 250.29 (1,232 mol) of isophthalic acid chloride, anhydrous tetrahydrofuran 60011/ was charged and dissolved, and the contents were cooled to 20'C by passing a refrigerant through the jacket. While stirring vigorously, add anhydrous tetrahydro 7, yn 40011VC metaphenylene diamine 133.7? (1,237 mol) was added dropwise over about 20 minutes. The obtained white emulsion was quickly poured into water (water-cooled) containing 2.464 mol of anhydrous sodium carbonate under strong stirring. Immediately, the slurry temperature rose to near room temperature. Subsequently, the slurry was prepared with caustic soda to a concentration of 11, and the resulting cake was thoroughly washed with a large amount of water and dried under reduced pressure at 150°C overnight. Logarithmic viscosity was 1.4.

ポリ(メタフェニレンイソ7タルアミド)繊維の製造 前記ポリ(メタフェニレンイソフタルアミド)すなわち
PMIAポリマー粉末をN−メチル−2−ピaリデン(
NMP)とNMPに対して2%の整した。ついで80℃
に保ったまま孔径0.08 ta孔数100(6孔は円
形)のノズルから80℃に維持され九Caα240チを
含む水性凝固浴中へ5.2f/分で吐出し、10m/分
で回転するローラーを経て80℃温水浴中を通して充分
に水洗し、つづいて98℃の熱水中でa−ラーとローラ
ーによシ湿熱延伸を2.88倍で行ない、さらに油剤付
与後150℃の熱風槽中を通して乾燥を行ない湿熱延伸
済み紡糸原糸を得た。紡糸原糸は均質なまゆ形断面で、
358デニール/100フイラメントであった。
Preparation of poly(metaphenylene isophthalamide) fiber The poly(metaphenylene isophthalamide) or PMIA polymer powder was mixed with N-methyl-2-pyridene (
NMP) and 2% to NMP. Then 80℃
It was discharged at 5.2 f/min from a nozzle with a hole diameter of 0.08 ta and 100 holes (6 holes are circular) into an aqueous coagulation bath maintained at 80 °C and containing 9 Caα 240 cm, and rotated at 10 m/min. The rollers are passed through a hot water bath at 80°C, thoroughly rinsed with water, and then the a-roller and rollers are stretched at 2.88 times in a hot water bath at 98°C. The yarn was dried by passing it through a tank to obtain a spun yarn that had been subjected to wet heat stretching. The spinning yarn has a homogeneous cocoon-shaped cross section,
It was 358 denier/100 filament.

次にこの紡糸原糸を310℃のプレート上で1.88倍
の乾熱延伸を行なり事によってポリ(メタフェニレンイ
ソフタルアミド)繊維を得り。
Next, this spun yarn was subjected to dry heat stretching of 1.88 times on a plate at 310°C to obtain poly(metaphenylene isophthalamide) fiber.

得られた繊維の物性値は単糸デニール=2、強度=4.
9’/d%伸度= 28.5%、ヤング率=80r/d
、Tm=425℃、Tex=405℃、Tm −Tex
=20℃、Xc=25%、DSR(Tm)=DSR(4
25℃)=16%、 であり、このPMIA繊維は良好な一般的繊維物性は示
すものの、融点以上の高温における形態安定性について
は劣るものであった。
The physical properties of the obtained fibers were as follows: single yarn denier = 2, strength = 4.
9'/d% elongation = 28.5%, Young's modulus = 80r/d
, Tm=425°C, Tex=405°C, Tm −Tex
=20℃, Xc=25%, DSR(Tm)=DSR(4
25°C) = 16%, and although this PMIA fiber exhibited good general fiber properties, it was poor in shape stability at high temperatures above the melting point.

この様にして得られたPM、IA織繊維機械捲縮させ、
38■にカットしたファイバーと、実施例1で得られた
ファイバーとを6対4の重量比で混合し、通常のスフ紡
績法で30番手の混紡糸を得た0 2/2ツイルの織物を作シ、燃焼テストを行なったとこ
ろ自己消火性を示し、燃焼部も融着することなく、炎を
貫通させることがなかった。一方PMIAI維単独の同
様の織物では、燃焼部の融着を生じ、その部分が太きく
収縮し、織物に穴が開き炎が貫通する。
The PM obtained in this way was machine crimped with IA woven fibers,
A 0 2/2 twill fabric was prepared by mixing the fibers cut into 38 mm and the fibers obtained in Example 1 at a weight ratio of 6:4, and obtaining a blended yarn of 30 count using the normal spun spinning method. When we conducted a combustion test, it showed self-extinguishing properties, and the burning part did not fuse and the flame did not penetrate. On the other hand, in a similar fabric made of only PMIA fibers, fusion occurs at the burning part, and that part shrinks thickly, creating a hole in the fabric and allowing the flame to pass through.

特許出願人  株式会社 り ラ し 同   三井東圧化学株式会社Patent applicant: RiRashi Co., Ltd. Same Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、次式を満足する特性を有する芳香族ポリアミドを5
〜70重量%混入してなる混紡糸。 Tm≧350℃ Tm−Tex≧30℃ Xc≧10% DE≧10% DSR(Tm)≦15% DSR(Tm+55℃)/DSR(Tm)≦3 (ここでTmは融点(℃)、Texは発熱開始温度(℃
)、Xcは結晶化度(%)、DEは伸度(%)、DSR
(Tm)は融点Tmにおける乾熱収縮率(%)、DSR
(Tm+55℃)は融点+55℃における乾熱収縮率を
表わす。) 2、芳香族ポリアミド繊維が、アミド結合の窒素原子お
よび/または炭素原子に直結するフェニレン基のオルソ
位に炭素原子1から4の低級アルキル基あるいはアミノ
基、スルホン基、カルボキシル基、水酸基から選ばれた
官能基、またはハロゲン原子を有する芳香族ポリアミド
より製造された繊維である事を特徴とする特許請求の範
囲第1項記載の混紡糸。
[Claims] 1. An aromatic polyamide having characteristics satisfying the following formula:
A blended yarn containing ~70% by weight. Tm≧350℃ Tm-Tex≧30℃ Starting temperature (°C
), Xc is crystallinity (%), DE is elongation (%), DSR
(Tm) is dry heat shrinkage rate (%) at melting point Tm, DSR
(Tm+55°C) represents the dry heat shrinkage rate at the melting point +55°C. ) 2. The aromatic polyamide fiber has a lower alkyl group having 1 to 4 carbon atoms, an amino group, a sulfone group, a carboxyl group, and a hydroxyl group in the ortho position of the phenylene group directly connected to the nitrogen atom and/or carbon atom of the amide bond. The blended yarn according to claim 1, characterized in that the fiber is made of an aromatic polyamide having a functional group or a halogen atom.
JP14657687A 1987-06-11 1987-06-11 Blended spun yarn excellent in shape stability at high temperature Pending JPS63309641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14657687A JPS63309641A (en) 1987-06-11 1987-06-11 Blended spun yarn excellent in shape stability at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14657687A JPS63309641A (en) 1987-06-11 1987-06-11 Blended spun yarn excellent in shape stability at high temperature

Publications (1)

Publication Number Publication Date
JPS63309641A true JPS63309641A (en) 1988-12-16

Family

ID=15410820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14657687A Pending JPS63309641A (en) 1987-06-11 1987-06-11 Blended spun yarn excellent in shape stability at high temperature

Country Status (1)

Country Link
JP (1) JPS63309641A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234932A (en) * 1989-03-09 1990-09-18 Teijin Ltd Heat-resistant spun yarn
JPH02307925A (en) * 1989-05-24 1990-12-21 Teijin Ltd Synthetic fiber yarn having high-class cottony hand and production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02234932A (en) * 1989-03-09 1990-09-18 Teijin Ltd Heat-resistant spun yarn
JPH02307925A (en) * 1989-05-24 1990-12-21 Teijin Ltd Synthetic fiber yarn having high-class cottony hand and production thereof

Similar Documents

Publication Publication Date Title
US4018735A (en) Anisotropic dopes of aromatic polyamides
JPH0418044B2 (en)
JPS636649B2 (en)
EP0018523B1 (en) Core-in-sheath type aromatic polyamide fiber and process for producing the same
US5399431A (en) Fiber materials from homogeneous blends of aromatic polyamides and poly-N-vinylpyrrolidone, production thereof, and use thereof
KR940005925B1 (en) Fibers and yarns from a blend of aromatic polyamides
EP0008126B1 (en) Aromatic polyamide composition
JPH0532490B2 (en)
JPS63309641A (en) Blended spun yarn excellent in shape stability at high temperature
JP3847515B2 (en) Method for producing dense meta-type aromatic polyamide fiber
JPH11502241A (en) Hydrolysis resistant aramids
JPS6136083B2 (en)
JP2971335B2 (en) Method for producing meta-type aromatic polyamide fiber
JPH042814A (en) Polyamide multifilament yarn having high shrinkage and production thereof
JPH03119139A (en) Flameproofing and heat-resistant fabric
JPS63312386A (en) Gasket
JPH01139808A (en) Aromatic polyamide fiber with high configuration stability at high temperatures
JPH01111039A (en) Heat resistant flameproof sheet
JP6321425B2 (en) Totally aromatic polyamide fiber
JPH01110393A (en) Anti-flame comforter
JPS60110918A (en) Aromatic copolyamide fiber
JPS63315685A (en) Heat and flame resistant rope
JPH01110308A (en) Heat-resisting carpet
JPH01139813A (en) Pigmented aromatic polyamide fiber and production thereof
JP2003342832A (en) Method for producing meta-type wholly aromatic polyamide fiber having excellent shrinkage stability