JPS63309615A - Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability - Google Patents

Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability

Info

Publication number
JPS63309615A
JPS63309615A JP14550487A JP14550487A JPS63309615A JP S63309615 A JPS63309615 A JP S63309615A JP 14550487 A JP14550487 A JP 14550487A JP 14550487 A JP14550487 A JP 14550487A JP S63309615 A JPS63309615 A JP S63309615A
Authority
JP
Japan
Prior art keywords
dsr
melting point
phenylene
fiber
aromatic polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14550487A
Other languages
Japanese (ja)
Inventor
Akio Omori
大森 昭夫
Masaji Asano
浅野 正司
Masanori Osawa
正紀 大澤
Kohei Sei
静 公平
Masahiro Jinno
神野 政弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Kuraray Co Ltd
Priority to JP14550487A priority Critical patent/JPS63309615A/en
Publication of JPS63309615A publication Critical patent/JPS63309615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain polymetaphenylene isophthalate yarn having a specific melting point, specific crystallinity, specific elongation and specific dry shrinkage factor, excellent fiber performance and improved configuration stability even at high temperature. CONSTITUTION:Aromatic polyamide yarn which has a repeating unit shown by formula I [Ar1 is bifunctional phenylene residue shown by formula II or formula III (R is H or CH3) and has repeating unit with at least one CH3 at the ortho position of phenylene group C directly bonded to N of amide bond; Ar2 is bifunctional phenylene residue shown by formula IV and has repeating unit containing carbonyl carbon atom of amide bond directly bonded to 1, 3 positions or 1, 4 positions of phenylene group C and the ratio of 1, 3 position form:1, 4 position form of 100:0-80:20, melting point Tm, heat generation starting temperature Tex, crystallinity Xc, elongation DE, dry shrinkage factor DSR (Tm) at the melting point and dry shrinkage factor DSR (Tm+55 deg.C) at the melting point+55 deg.C which satisfy equations V-X.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明に既存の有機合成繊維と変わらない繊維とのない
優れた高温形態安定性とを兼備した耐熱性有機合成繊維
にかんするものである0(従来の技術) 有機合成繊維は優れた繊維性能を有するため衣料用から
産業資材用まで広く使われているものの、耐熱の要求さ
れる用途分野では、これまでは石綿、ガラス、スチール
など無機系繊維が中心で、その利用はきわめて少ないも
のであった。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a heat-resistant organic synthetic fiber that has excellent high-temperature dimensional stability unlike existing organic synthetic fibers. Conventional technology) Organic synthetic fibers have excellent fiber performance and are widely used in everything from clothing to industrial materials. was the main focus, and its use was extremely rare.

しかし、近年有機合成化学の進歩と一般衣料用および産
業資材用から航空宇宙開発用にいたるまでの多様なニー
ズとが結び付いて有機合成耐熱性繊維の開発が積極的に
展開されてきた。その成果として、種々の有機合成繊維
が誕生してきた。その中で商業生産規模で最も成功をお
さめ、その代表と思もわれるのが、メタ系全芳香族ポリ
アミド繊維で、その化学組成はポリメタフエニレインフ
タルアミド(以下PMIAと略する)を主成分としてい
る。
However, in recent years, advances in organic synthetic chemistry have been combined with diverse needs ranging from general clothing and industrial materials to aerospace development, and the development of organic synthetic heat-resistant fibers has been actively promoted. As a result, various organic synthetic fibers have been created. Among these, the one that has been most successful on a commercial scale and is considered to be the most representative is meta-based wholly aromatic polyamide fiber, whose chemical composition is mainly composed of polymethaphenylephthalamide (hereinafter abbreviated as PMIA). It is said that

このPMIA繊維は、既存の合成繊維の使用温度より5
0〜200°C程度も高い温度領域での使用が可能であ
ってかつ、汎用製品として必要な一般的な性能、たとえ
ば強度と伸度のバランスやしなやかさ、後加工性等を有
する。さらに、繊維が燃焼しても炎を出すことが 少な
く、炎を遠ざけると直ちに消火する“自己消火性″を示
す高い難燃性を持つことから、耐熱性濾過材料、電気絶
縁材料等の産業資材分野から、消防服、航空服、炉前服
等の耐熱防護服等の衣料分野、さらに寝装インテリア分
野まで広く使用され、今日まで拡大をつづけている。
This PMIA fiber has a temperature higher than that of existing synthetic fibers.
It can be used in a temperature range as high as 0 to 200°C, and has general performance required as a general-purpose product, such as a balance between strength and elongation, flexibility, and post-processability. In addition, it is highly flame retardant, exhibiting ``self-extinguishing'' properties that emit little flame even when the fibers burn, and immediately extinguishes when the flame is moved away. It has been widely used in the field of clothing, such as heat-resistant protective clothing such as firefighting suits, aviation suits, and fire vests, and even in the bedding and interior design field, and continues to expand to this day.

しかし、このPMIA繊維も衣料用途、たとえば耐熱防
換服用素材等圧おけるよシ高温、たとえば融点以上での
形態安定性への要求に対して十分でないことがわかって
きた。これに対する対策としてパラ系全芳香族ポリアミ
ド繊維を少量使用することが提案されている(多々他、
プラスチック36.34.1985)。この方法によれ
ば高温での形態安定性は混率に応じて改良されるものの
、バラ系全芳香族ポリアミド繊維の伸度が著しく小さく
、また極めて剛直性が高いために、一般衣料用なみのし
なやかさが低下するという欠点がある。
However, it has been found that this PMIA fiber is not sufficient to meet the requirements for morphological stability at high temperatures, for example, above the melting point, in clothing applications, such as materials for heat-resistant and protective clothing. As a countermeasure to this problem, it has been proposed to use a small amount of para-based wholly aromatic polyamide fiber (Tata et al.
Plastic 36.34.1985). According to this method, the shape stability at high temperatures is improved depending on the blending ratio, but since the elongation of the rose-based wholly aromatic polyamide fiber is extremely low and the rigidity is extremely high, it cannot be as flexible as for general clothing. The disadvantage is that the quality decreases.

PMIA繊維は燃焼時に溶融してメルトドリップを生じ
ることはないが、その繊維製品は熱収縮による大きな形
態変化をしながらさらに繊維同志が固く融着してしまう
ので劇熱防が服としてこれをT量中被災した場合、脱衣
困難になって火傷等の障害をかえって拡大するなどの問
題も起きている。
PMIA fibers do not melt during combustion and do not cause melt drips, but the fibers undergo a large change in shape due to heat shrinkage, and the fibers also become tightly fused together. In the event of a disaster, it may become difficult to take off clothes, causing problems such as burns and other injuries.

(発明が解決しようとする問題点) 本発明者らは、前記PNIA繊細のもつ問題に鑑み、既
存の一般有機合成繊維とかわらない一般繊維性能を有す
と同時に優れた高温での形態安定性、すなわち融点以上
の工うな高温下においても熱収縮率が小さく、かつ燃焼
時にも繊維同志が強固に融着することのない耐熱性有機
合成R維を得るべくポリマー合成面、繊維製造面さらに
繊維物性面から種々検討を試みた結果本発明に到達した
ものである。
(Problems to be Solved by the Invention) In view of the above-mentioned problems of PNIA delicacy, the present inventors have discovered that it has the same general fiber performance as existing general organic synthetic fibers, and at the same time has excellent form stability at high temperatures. In other words, in order to obtain a heat-resistant organic synthetic R fiber that has a small thermal shrinkage rate even at high temperatures above the melting point and that does not firmly fuse the fibers together during combustion, we have improved the polymer synthesis side, the fiber manufacturing side, and the fiber. The present invention was arrived at as a result of various studies from the viewpoint of physical properties.

(問題点を解決するための手段) すなわち本発明は、 「次式(1)ないしく6)を満足する特性を有する芳香
族ポリアミドからなる線維であって、該芳香族ボリアミ
ドは式〔I〕で表わされる繰り返し単位を有する芳香族
ポリアミドfit Pa 。
(Means for Solving the Problems) That is, the present invention provides fibers made of an aromatic polyamide having characteristics satisfying the following formulas (1) to 6), wherein the aromatic polyamide has the formula [I] Aromatic polyamide fit Pa having a repeating unit represented by:

Tm4350℃        ・・・・・・・・・(
1)Tm−Tex≧30°C・・・・・・・・・(2)
Xc≧10チ         ・・・・・・・・・(
3)DE≧lOチ         ・・・・・・・・
・(4)DSR(Trn)≦15 %      −・
・・・−(5)(ただしここでTm:融点、 Tex:発熱開始温度、XC:結晶化度、DE=繊維伸
度、 DSR(Tm):融点における乾熱収縮率、DSR(T
m+55℃):融点+55℃における乾熱収縮率) モ)IN−Art−NHOC−Arz−Co−)   
−・・−・−〔I〕で表わされる2価のフェニレン残基
である。ここでR1は水素またはメチル基を表わし、ア
ミド結合の窒素原子に直結するフェニレン基炭素原子の
オルソ位に少なくとも一個のCHs基を持つ繰り返し単
位を有する。Arzはゝ@辷で表わされる2価フェニレ
ン残基であシ、アミド結合のカルボニル炭素原子はフェ
ニレン基炭素原子の1.3位あるいは1.4位に直結し
、且つ該1.3位体:1.4位体が100:0〜80 
: 20の範囲にある繰り返し単位を有する。)   
            」である。
Tm4350℃・・・・・・・・・(
1) Tm-Tex≧30°C (2)
Xc≧10chi ・・・・・・・・・(
3) DE≧lOchi ・・・・・・・・・
・(4) DSR(Trn)≦15% −・
...-(5) (where Tm: melting point, Tex: exothermic start temperature, XC: crystallinity, DE = fiber elongation, DSR (Tm): dry heat shrinkage rate at melting point, DSR (T
m+55℃): Dry heat shrinkage rate at melting point +55℃)) IN-Art-NHOC-Arz-Co-)
It is a divalent phenylene residue represented by -...--[I]. Here, R1 represents hydrogen or a methyl group, and has a repeating unit having at least one CHs group at the ortho position of the phenylene carbon atom directly connected to the nitrogen atom of the amide bond. Arz is a divalent phenylene residue represented by ゝ@辷, the carbonyl carbon atom of the amide bond is directly connected to the 1.3-position or 1.4-position of the phenylene group carbon atom, and the 1.3-position: 1.4 position is 100:0-80
: Having repeating units in the range of 20. )
”.

なお、本発明でいう特性値および物性値はそれぞれ以下
に記す測定器、測定条件で見られた数値を表わす。
Note that the characteristic values and physical property values referred to in the present invention represent numerical values observed using the measuring instruments and measurement conditions described below, respectively.

Tm:融点 バー中ンエルマー社製DSC−2Cによシ゛ 約lO′
lIgの試料をA1g試料皿にいれ窒素ガス気流中(3
0x//min )で毎分10℃で室温から所定温度ま
でのDSC曲線を得、その吸熱ピーク温度をTmとする
Tm: Approximately 1O' by Elmer's DSC-2C in melting point bar
A 1Ig sample was placed in an A1g sample dish in a nitrogen gas stream (3
A DSC curve from room temperature to a predetermined temperature is obtained at 10° C./min at 0x//min), and its endothermic peak temperature is defined as Tm.

Tex :発熱開始温度 パーキエルマー社製DSC−2Cによシ約1Ornfの
試料をAl製試料皿にいれ窒素ガス気流中(30WL/
/m1n)で毎分lO℃で室温から所定温度までのDS
C曲線を得、その発熱開始温度をTexとする。
Tex: Exothermic start temperature A sample of approximately 1 ornf was placed in an Al sample pan using a Perchielmer DSC-2C and heated in a nitrogen gas stream (30 WL/
/m1n) per minute at 10°C from room temperature to the specified temperature.
A C curve is obtained, and its exothermic start temperature is defined as Tex.

XC;結晶化度 理学電気社製回転対陰極超強力X線発生装置RAD−R
A(40KvlOOmA、CuK2線)を使用し、X線
ビームに垂直な面内で試料を回転させながら回折角2θ
=5〜35の範囲のX線回折強度曲線を得、次に回折曲
線を結晶領域(A(りと非晶領域(Aa)に分離、次式
により算出した値Xcを結晶化度とする。
XC: Crystallinity Rotating anticathode ultra-strong X-ray generator RAD-R manufactured by Rigaku Denki Co., Ltd.
A (40 KvlOOmA, CuK2 ray), and while rotating the sample in a plane perpendicular to the X-ray beam, the diffraction angle 2θ was adjusted.
An X-ray diffraction intensity curve in the range of =5 to 35 is obtained, and then the diffraction curve is separated into a crystalline region (A) and an amorphous region (Aa), and the value Xc calculated by the following formula is defined as the degree of crystallinity.

Xc=(Ac/(Ac+Aa))xloo(S)BE:
繊維の伸度 インストロン引張試験機を用い試料長10謂、引張速度
5 t* / 5分、初荷重0.05f/dの条件化で
引張試験を行なって求めた。
Xc=(Ac/(Ac+Aa))xloo(S)BE:
Fiber elongation was determined by conducting a tensile test using an Instron tensile testing machine under the following conditions: sample length 10, tensile speed 5 t*/5 minutes, initial load 0.05 f/d.

本発明においては、繊維は、次式(1)〜(4)を満足
しなければならない。
In the present invention, the fiber must satisfy the following formulas (1) to (4).

Tm≧350 ’C−°°°−川−用1)Tm−Tex
≧30℃      ・・・・・・・・・(2)Xc≧
lOチ         ・・・・・・・・・(3)D
E≧lOチ         ・・・・・・・・・(4
)すなわち本発明の芳香族ポリアミド繊維においてTm
(融点)が350℃以上であり、Tmに対してTex 
(発熱開始温度)が30℃以上低(Xc(結晶化度)が
10−以上であるときに、融点以上の高温においても形
態安定性に優れた繊維となることを見いだしたものであ
る。
Tm≧350'C-°°°-River-1) Tm-Tex
≧30℃・・・・・・・・・(2)Xc≧
lOchi ・・・・・・・・・(3)D
E≧lOchi ・・・・・・・・・(4
) That is, in the aromatic polyamide fiber of the present invention, Tm
(melting point) is 350°C or higher, and Tex
It has been found that when the (exotherm onset temperature) is 30°C or lower (Xc (crystallinity) is 10- or higher, the fiber has excellent morphological stability even at high temperatures higher than the melting point).

これは換言すればTm4350℃でかつXc≧10−で
ある場合においても、Tm−Texが30℃以上とTm
 −Texが30℃未満の繊維を比較すると前者すなわ
ちTex(熱分解開始温度)がTm(融点)よシ30℃
以上低いほうが後者すなわちTexがTmよ930℃未
満にあるものよルその繊維のTm(融点)以上の高温に
おける形態安定性がよいということである。これは−尻
下合理なように考えられるが全く意外にも、実際にはT
oxのよシ低い方が良好な形態安定性を示すのである。
In other words, even when Tm is 4350°C and Xc≧10-, Tm-Tex is 30°C or more and Tm
- When comparing fibers with a Tex of less than 30°C, the former, that is, the Tex (thermal decomposition initiation temperature) is higher than the Tm (melting point) at 30°C.
The lower the value, the better the morphological stability at high temperatures above the Tm (melting point) of the fiber, compared to the latter, that is, the Tex is less than 930° C. than Tm. This may seem reasonable, but surprisingly, it actually turns out to be T.
The lower the ox, the better the morphological stability.

これについての正確な理由はよく分らないが、Tm≧3
50℃、Xc≧10俤であってかツT e X Z>E
Tmに対して30℃以上低い本発明繊維では比較的低い
Texか、ら熱分解が始まるのでそれは緩やかにかつ非
晶領域を中心に起シその際、結晶領域では微結晶が溶融
する事なく存在するため、熱による非晶領域の配向分子
鎖の配向緩和とともに生じる熱収縮に対して微結晶が分
子鎖の拘束点として作用するため、収縮が抑えられつつ
、同時に進行する熱分解反応に伴ない分子鎖間に一種の
架橋が起き、3次元構造が形成されるため融点以上でも
形態安定性が良好になると考えられる。
The exact reason for this is not well understood, but Tm≧3
50℃, Xc≧10t or T e X Z>E
In the fiber of the present invention, which is 30°C or more lower than Tm, thermal decomposition begins at a relatively low Tex, so it occurs slowly and mainly in the amorphous region.At that time, microcrystals exist in the crystalline region without melting. Therefore, the microcrystals act as restraining points for the molecular chains against thermal contraction that occurs as the orientation of the oriented molecular chains in the amorphous region is relaxed due to heat. It is thought that a type of crosslinking occurs between molecular chains and a three-dimensional structure is formed, resulting in good morphological stability even above the melting point.

それに対してTm≧350℃、Xc≧10%であっても
TexがTmに対して30℃未満でしか低くない時には
充分な分子間の架橋による3次元構造が形成されるまえ
に熱溶融が生じるので、熱収縮や繊維間での融着が大き
くな多形態安定性不良となったものと考えられる。
On the other hand, even if Tm≧350℃ and Xc≧10%, if Tex is lower than Tm by less than 30℃, thermal melting occurs before a three-dimensional structure is formed due to sufficient intermolecular crosslinking. Therefore, it is thought that heat shrinkage and fusion between fibers were large, resulting in poor polymorphic stability.

コノためTm−Texの範囲はTm −Tex≧30℃
でなければならず、好ましくはTm −Tex≧50℃
さらに好ましくはTm−Tex≧70°Cである。
Because of this, the range of Tm-Tex is Tm-Tex≧30℃
preferably Tm −Tex ≧50°C
More preferably, Tm-Tex≧70°C.

本発明の繊維はTm(融点)以上の高温下においても良
好なる形態安定性を有すものの、Tm以上では他の繊維
物性がある程度低下するので、一般の合成繊維よ#)2
00°C以上も高い温度でも実用可能な耐熱性繊維であ
るためには、Tm≧350℃でなければならず、好まし
くはTm≧400℃、より好ましくはTm≧420℃で
ある。
Although the fibers of the present invention have good morphological stability even at high temperatures above Tm (melting point), other fiber properties deteriorate to some extent at temperatures above Tm, so compared to general synthetic fibers.
In order to be a heat-resistant fiber that can be used practically even at temperatures as high as 00°C or higher, Tm must be 350°C, preferably Tm 400°C, and more preferably Tm 420°C.

また、Tm≧350℃、Tm−Tex≧30℃テアって
もX(!<10%と結晶性が小さい場合、微結晶による
分子鎖移動に対する拘束作用がほとんどないため、Tm
よシはるか低温のガラス転移点あたりから急激に熱収縮
を増大して形態安定性は不良となる。
In addition, even if Tm≧350℃ and Tm-Tex≧30℃ are torn, if the crystallinity is small (!
From around the glass transition point, which is a much lower temperature, thermal shrinkage increases rapidly and form stability becomes poor.

これらの理由からXc≧10チである事が必要であシ、
好ましくはXc≧15チである。
For these reasons, it is necessary that Xc≧10chi,
Preferably, Xc≧15.

さらに繊維が衣料用、産業資材用等の用途において既存
の有機合成繊維と同様な利用がされるためには、良好な
しなやかさ、加工性を有す必須の条件となる。このため
には強度と伸度のバランス、とシわけ伸度が充分にある
ことが大事でDE (繊維伸度)≧lO%でなければな
らない。好ましくはDE)15%、さらに好ましくはD
E)20チである。
Furthermore, in order for the fiber to be used in the same way as existing organic synthetic fibers in applications such as clothing and industrial materials, good flexibility and processability are essential conditions. For this purpose, it is important to have a sufficient balance between strength and elongation, as well as sufficient wrinkle elongation, and DE (fiber elongation) must be ≧lO%. Preferably DE) 15%, more preferably D
E) It is 20 chi.

次に本発明繊維の高温における形態安定性をさらに高め
るためには、繊維が次式(5)および(6)を満足しな
ければならない。
Next, in order to further improve the shape stability of the fiber of the present invention at high temperatures, the fiber must satisfy the following formulas (5) and (6).

DSR(Tm)515%     ・・・・・・・・・
(5)ここでDSR(Tm)は融点における乾熱収縮率
テアシ、DSR(Tm+55℃)は融点+55℃におけ
る乾熱収縮率である。
DSR (Tm) 515% ・・・・・・・・・
(5) Here, DSR (Tm) is the dry heat shrinkage rate at the melting point, and DSR (Tm + 55°C) is the dry heat shrinkage rate at the melting point + 55°C.

DSHの測定は次の様にして求めた。DSH was measured as follows.

即ち、繊維試料に0,1r/aの加重をかけその長さt
oを測定した後、所定温度の熱風乾燥機中で10分間フ
リーで処理し、その後30分後に再び0.1r/dの加
重をかけて試料長t1を測定し、次式によって乾燥収縮
率DSRを求めた。
That is, a load of 0.1r/a is applied to the fiber sample and its length t
After measuring o, it was free-processed for 10 minutes in a hot air dryer at a predetermined temperature, and then after 30 minutes, a load of 0.1 r/d was applied again to measure the sample length t1, and the drying shrinkage rate DSR was determined by the following formula. I asked for

to  −tI D S R=−X  1 0 0 チ t。to -tI D S R = -X 1 0 0 Chi t.

DSR(Tm)が15%を越える場合には融点において
乾熱収縮がすでに大きく形態安定性が良好とはいえない
。DSR(Tm)515%であっても急激に熱収縮が増
大するため、例えば耐熱防護服用途で着用中被災した場
合脱衣が困難となって火傷等の被害をかえって大きくす
るといった事があのように融点+55℃という融点より
かなシ高温でも熱収縮が充分に小さい事が重要である。
If the DSR (Tm) exceeds 15%, dry heat shrinkage is already large at the melting point, and the shape stability cannot be said to be good. Even with a DSR (Tm) of 515%, heat shrinkage increases rapidly, so if you are wearing heat-resistant protective clothing and are affected by an earthquake, it may be difficult to remove it, resulting in even greater damage such as burns. It is important that the thermal shrinkage be sufficiently small even at temperatures higher than the melting point of +55°C.

本発明における前記(1)から(6)を満足する繊維は
、次式〔■〕で特定される繰り返し単位を有する芳香族
ポリアミドポリマーを用いることによって製造出来る。
The fibers satisfying the above (1) to (6) in the present invention can be produced by using an aromatic polyamide polymer having a repeating unit specified by the following formula [■].

モNH−Arx−NHOC−Arz−CO−)−・−・
−・・−〔I)る2価のフェニレン残基である。Rは水
素またはメチル基を表わし、アミド結合の窒素原子に直
結するフェニレン基炭素原子のtルン位に少なくとも一
個のCHs基を持り繰り返し単位を有する。
MoNH-Arx-NHOC-Arz-CO-)--
-...- [I) is a divalent phenylene residue. R represents hydrogen or a methyl group, has at least one CHs group at the t-position of the phenylene carbon atom directly connected to the nitrogen atom of the amide bond, and has a repeating unit.

Arzはゝ@トで表わされる2価のフェニレン残基であ
りアミド結合のカルボニル炭素原子はフェニル基炭素原
子の1.3位あるいは1.4位に直結し、且つ該1.3
位体:1.4位体が100:O〜80:20の範囲にあ
る繰り返し単位を有する。)ここでArxが少なくとも
一個のメチル基を有することが、 TexがTm−30
℃以下の場合T@X以上の温度においてメチル基が酸化
を受けて架橋等の反応を起こして3次元構造形成をする
ため融点以上の高温での形態安定性の向上に寄与するも
のと思われる。さらに後述するように本発明繊維は夾用
レベルにある染色性をもつが、それはAr1Kおけるメ
チル基の置換効果によって溶媒に対する親和性の増大、
染着率の増大等の好ましい効果によるものと思われる。
Arz is a divalent phenylene residue represented by @, and the carbonyl carbon atom of the amide bond is directly connected to the 1.3- or 1.4-position of the phenyl group carbon atom, and the 1.3
Position: 1.4 position has a repeating unit in the range of 100:O to 80:20. ) where Arx has at least one methyl group, Tex is Tm-30
When the temperature is below ℃, the methyl group is oxidized at temperatures above T@X and causes reactions such as crosslinking to form a three-dimensional structure, which is thought to contribute to improving the morphological stability at high temperatures above the melting point. . Furthermore, as will be described later, the fibers of the present invention have dyeability at a dyeing level, which is due to the increased affinity for solvents due to the substitution effect of the methyl group in Ar1K.
This seems to be due to favorable effects such as an increase in dyeing rate.

したがってArrには少なくとも一個のメチル基が置換
されているのが好ましく、置換基Rがメチル基であるジ
メチル置換体の時は更に好ましい効果が発現される。又
Ar1のフェニレン基に直結するアミド結合の窒素原子
はフェニレン基の1.4位の炭素原子に直結しておシ、
Ar2のフェニレン基に直結するアミド結合のカルボニ
ル炭素原子はフェニレン基炭素原子の1.3位あるいは
1.4位にあシ、且つ1.3位体:1,4位体が100
:O〜80 : 20の範囲であるのが好ましい。この
理由はこれらの範囲以外にある場合においては、他の項
目が全て満足されたとしても、ポリマーを形成する分子
構造の規則性が著しく乱れてしまうため結晶性が低下し
てXc≧10%の所望繊維が得られないからである。
Therefore, it is preferable that Arr is substituted with at least one methyl group, and even more preferable effects are exhibited when the substituent R is a dimethyl substituent, in which the substituent R is a methyl group. Further, the nitrogen atom of the amide bond directly connected to the phenylene group of Ar1 is directly connected to the carbon atom at the 1.4-position of the phenylene group,
The carbonyl carbon atom of the amide bond directly connected to the phenylene group of Ar2 is at the 1.3 or 1.4 position of the phenylene group carbon atom, and the 1.3 position: 1,4 position is 100
:0~80:20 is preferable. The reason for this is that in cases outside these ranges, even if all other items are satisfied, the regularity of the molecular structure forming the polymer will be significantly disturbed, resulting in a decrease in crystallinity and Xc≧10%. This is because the desired fibers cannot be obtained.

以上の理由からも分るように本発明において、よシ好ま
しめ特定の構造の芳香族ポリアミドは繰返し単位の95
モル−以上が2−メチル−1,4−フェニレンイソ7タ
ルアミドおよび/または5−メチル−1,4−7二二レ
ンイソフタルアミド、又は3.6−ジ)fルー1,4−
フェニレンインフタルアミド/および/lたは2,5−
ジメチル−1,4−フェニレンイソフタルアミドであり
、更にこれら繰返し単位の混合物が好ましい。
As can be seen from the above reasons, in the present invention, aromatic polyamides having a particularly preferred structure have 95 repeating units.
moles or more of 2-methyl-1,4-phenyleneiso7talamide and/or 5-methyl-1,4-7dinileneisophthalamide, or 3,6-di)f-1,4-
Phenylene inphthalamide / and /l or 2,5-
Dimethyl-1,4-phenylene isophthalamide and also mixtures of these repeating units are preferred.

さらに又、繰返し単位の95モルチ以上が2.5′−ジ
メチル−1,4−ビフエニレ/−インフタルアミドおよ
び/または3.6−ジメチル−1.4′−ビフエニレン
−イソフタルアミドである芳香族ポリアミド繊維が好ま
しい。
Furthermore, an aromatic polyamide in which 95 moles or more of the repeating units are 2,5'-dimethyl-1,4-biphenylene/-inphthalamide and/or 3,6-dimethyl-1,4'-biphenylene-isophthalamide. Fibers are preferred.

本発明を満足する特定構造の芳香族ポリアミドは、公知
の製造法によって容易に製造することができる。すなわ
ち芳香族ジアミンと芳香族ジカルボン酸ハライドを低温
溶液重合法、低温界面重合法あるいは溶融重合法等によ
って製造できる。又芳香族ジインシアネートと芳香族ジ
カルボン酸から高温溶液重合で製造することもできる。
An aromatic polyamide having a specific structure that satisfies the present invention can be easily produced by a known production method. That is, aromatic diamine and aromatic dicarboxylic acid halide can be produced by low-temperature solution polymerization, low-temperature interfacial polymerization, melt polymerization, or the like. It can also be produced by high temperature solution polymerization from aromatic diincyanate and aromatic dicarboxylic acid.

そして本発明における高温形態安定性に優れる芳香族ポ
リアミドとして、特定繰返し単位を有する重合体を特定
できるが、なかでも本発明者らが別途特許出願中の技術
によって製造すると工業的に有利に目的繊維が製造でき
る。例えば特願昭60−030529号の方法に準じて
ジインシアネートとカルボン酸とを原料とし、N、N’
−ジメチルエチレンウレアを溶媒とし、アルカリ金属化
合物を触媒として100℃〜200℃の温度で加熱重縮
合して、芳香族ポリアミドを製造できる。この方法によ
れば、色相が良く繊維形成可能な高分子量のポリアミド
溶液が製造で1、重合溶液をその′4!ま、または場合
によっては濃縮して紡糸原液として使用できるので好ま
しい。
In the present invention, a polymer having a specific repeating unit can be specified as the aromatic polyamide having excellent high-temperature morphological stability, but in particular, it is possible to specify a polymer having a specific repeating unit. can be manufactured. For example, according to the method of Japanese Patent Application No. 60-030529, using diincyanate and carboxylic acid as raw materials, N, N'
- An aromatic polyamide can be produced by heating polycondensation using dimethylethylene urea as a solvent and an alkali metal compound as a catalyst at a temperature of 100°C to 200°C. According to this method, a high-molecular-weight polyamide solution with good color and capable of forming fibers is produced in one step, and a polymerization solution is produced in another step. Alternatively, it is preferable because it can be concentrated and used as a spinning stock solution in some cases.

本発明の芳香族ポリアミドを製造する原料としては、芳
香族ジアミンとしては例えば、2−メチル−P−フェニ
レンジアミン、2.5−ジメチル−P−フ二二しンジア
ミン、3.3’−ジメチル−4,4′−ビフェニルジア
ミンがあシ、また芳香族ジイソ’/アネ−)、!=L−
t”H2−メチル−P−フェニレンジイノシアネー)、
2.5−ジメチル−P−フ二二レンジイソシアネート、
3,3−ジメチル−4,4’−ビフェニルジイソシアネ
ートがある。芳香族ジカルボン酸としてはイソフタル酸
、テレフタル酸でアリ、芳香族ジカルボン酸シバライド
としては、イソフタル酸又はテレフタル酸のジクロライ
ド。
Examples of aromatic diamines used as raw materials for producing the aromatic polyamide of the present invention include 2-methyl-P-phenylene diamine, 2,5-dimethyl-P-phenylene diamine, and 3,3'-dimethyl- 4,4'-biphenyldiamine, aromatic diiso'/ane),! =L-
t”H2-methyl-P-phenylenediinocyane),
2.5-dimethyl-P-phenyl diisocyanate,
3,3-dimethyl-4,4'-biphenyl diisocyanate. Examples of the aromatic dicarboxylic acid include isophthalic acid and terephthalic acid, and examples of the aromatic dicarboxylic acid civalide include isophthalic acid and terephthalic acid dichloride.

ジクロライド等である。塩基成分としてはジアミン、ジ
イソシアネートともに窒素原子はフェニレン基の1,4
配位体であるが酸成分としてはジカルボンl!!、ジカ
ルボン酸ハライドともにカルボニル炭素原子はフェニレ
ン基の1,3配位体である事が好ましく、場合によって
は20モルチ以下の1,3配位体を含有しても良いが、
これ以上では所望の結晶性ポリマーで高温寸法安定性の
良いフィルムあるいは繊維を得ることはできない。
dichloride etc. As a base component, the nitrogen atom in both diamine and diisocyanate is 1,4 of the phenylene group.
Although it is a coordinator, the acid component is dicarboxylic! ! The carbonyl carbon atom of both dicarboxylic acid halides is preferably a 1,3-coordination form of a phenylene group, and may contain 20 mol or less of a 1,3-coordination form depending on the case.
If the amount is more than this, it is impossible to obtain a film or fiber made of the desired crystalline polymer and having good high-temperature dimensional stability.

本発明による高温形態安定性に優れた芳香族ポリアミド
繊維の製造法も公知のいかなる方法によってもよいが、
芳香族ポリアミドの場合は乾式紡糸あるいは、湿式紡糸
法によって製造するのが好ましい。
The aromatic polyamide fiber with excellent high-temperature morphological stability according to the present invention may be produced by any known method, but
In the case of aromatic polyamide, it is preferable to produce it by dry spinning or wet spinning.

特に本発明による特定構造のポリアミドの場合には前記
の如く本発明者らが別途発明した特願昭60−0305
29号の方法によって製造した重合溶液を紡糸原液とし
て使用し、例えば原液温度;30℃〜100℃、凝固浴
組成;Caα230〜50%水溶液、凝固浴温度;50
〜100℃の東件で湿式紡糸し、2いて、凝固浴とほぼ
同一の組成の水性溶液浴中で1.1〜5倍の湿熱延伸を
行ない、次に50〜100℃熱水中で水洗を充分に行な
った後。
In particular, in the case of the polyamide with a specific structure according to the present invention, as mentioned above, the present inventors separately invented the patent application No. 60-0305.
The polymerization solution prepared by the method of No. 29 is used as a spinning stock solution, for example, stock solution temperature: 30°C to 100°C, coagulation bath composition: Caα 230 to 50% aqueous solution, coagulation bath temperature: 50°C.
Wet spinning at ~100°C in a hot water bath, followed by 1.1 to 5 times wet heat stretching in an aqueous solution bath with almost the same composition as the coagulation bath, and then washing in hot water at 50 to 100°C. After doing enough.

100〜200℃で熱風乾燥し、つづいて300℃〜4
50℃の空気中または不活性ガス浴中で1.1〜5倍の
乾熱延伸熱処理を行なう事によって均質な本発明の高温
における形態安定性に優れた耐熱性芳香族ポリアミド繊
維を製造する事ができる。
Hot air drying at 100-200℃, followed by drying at 300℃-4
The homogeneous heat-resistant aromatic polyamide fiber of the present invention with excellent shape stability at high temperatures can be produced by carrying out a dry heat stretching heat treatment of 1.1 to 5 times in air or an inert gas bath at 50°C. Can be done.

(発明の効果・用途) 本発明の繊維は既存有機合成Fa維、例えばポリエデレ
ンテレフタレート繊維等とほとんど変らない強度、伸度
、ヤング率に代表されるバランスのとれた一般繊維性能
と既存の耐熱性芳香族ポリアミド繊維のPMIA繊維に
はない性能、すなわち融点以上の高温下においても熱収
縮が小さくかつ燃焼時にも繊維同志が強固にr&11f
Dすることがない優れた形態安定性をもつ。さらにPM
IA繊維の最も大きな欠点のひとつと云われる染色性の
不良も、本発明繊維はPMIA繊維よりははるかに良好
で実用レベルにある。したがって耐熱性と高温形態安定
性、さらに染色を生かした防護衣料から寝具からインテ
リアまで巾広い用途へ利用ができる0 次に本発明の態様を実施例をもって具体的に説明するが
、本発明はこれら記載例によって限定されるものではな
い。
(Effects and Applications of the Invention) The fiber of the present invention has well-balanced general fiber performance represented by strength, elongation, and Young's modulus that are almost the same as existing organic synthetic Fa fibers, such as polyethylene terephthalate fiber, and existing heat resistance. Aromatic polyamide fiber has properties that PMIA fiber does not have, that is, it has small heat shrinkage even at high temperatures above the melting point, and the fibers are strong together during combustion.
It has excellent morphological stability that does not cause D. Further PM
Regarding poor dyeability, which is said to be one of the biggest drawbacks of IA fibers, the fibers of the present invention are much better than PMIA fibers and are at a practical level. Therefore, it can be used in a wide range of applications, from protective clothing to bedding to interior decoration, which takes advantage of heat resistance and high-temperature shape stability, as well as dyeing. It is not limited by the example described.

実施例1 攪拌機、温度計、コンデンサー、滴下ロート、窒素導入
管を備えた3j容量のセパラブルフラスコ中にイソフタ
ル酸166、Or (0,9991モル)、イソフタル
酸モノカリウム塩2.040f、無水N。
Example 1 Isophthalic acid 166, Or (0,9991 mol), isophthalic acid monopotassium salt 2.040 f, anhydrous N in a 3J capacity separable flask equipped with a stirrer, thermometer, condenser, dropping funnel, and nitrogen inlet tube. .

N′−ジメチルエチレンウレア2000Rtをff12
雰囲気下に装入し、油浴上で攪拌しながら200℃に加
熱する。内容物を200℃に維持しながらトリレン−2
,5−ジイソシアネー) 174.1F(0,9994
モk ) ヲm水N、N’−ジメチルエチレンウレア2
00dに溶解した溶液を滴下ロートよシ2時間にわたっ
て滴下し、その後さらに1時間反応を継続した後に加熱
を止め、室温まで冷却した。反応液の一部をとシ強攪拌
水中に投入して白色ポリマーを沈殿させ、更に多量の水
で洗浄した後150℃で約3時間減圧乾燥して得たポリ
マーの対数粘度(95%H2SO40,1像、30℃)
は1.9であった。また重合液のポリマー濃度は約11
.4重量%で、この溶液の粘度は380ボイズ(B型粘
度1ti50℃)であった。また得られたポリマーはI
Rスペクトル、NMRスペクトルによりポリ(2−メチ
ル−1,4−フェニレンイソフタルアミド)であること
を確認した。
N'-dimethylethylene urea 2000Rt ff12
It is charged under atmosphere and heated to 200° C. with stirring on an oil bath. Trilene-2 while maintaining the contents at 200℃
,5-diisocyanate) 174.1F (0,9994
Mok) Wom water N, N'-dimethylethylene urea 2
A solution dissolved in 00d was added dropwise through the dropping funnel over a period of 2 hours, and the reaction was continued for an additional hour, after which heating was stopped and the mixture was cooled to room temperature. A portion of the reaction solution was poured into strongly stirred water to precipitate a white polymer, which was further washed with a large amount of water and dried under reduced pressure at 150°C for about 3 hours. 1 image, 30℃)
was 1.9. Also, the polymer concentration of the polymerization solution is about 11
.. At 4% by weight, the viscosity of this solution was 380 voids (Type B viscosity 1ti50°C). Moreover, the obtained polymer is I
It was confirmed by R spectrum and NMR spectrum that it was poly(2-methyl-1,4-phenylene isophthalamide).

ぬ紡糸原液を調整する。ついで50℃に保ったまま孔径
0.11■、孔数600(各孔は円形)のノズルから8
0℃に維持されたCa0240%を含む水性凝固浴中へ
54.5f/分で吐出する。ノズルより吐出された糸状
は凝固浴を通した後凝固浴と同一組成の浴中で温熱延伸
を約1.6倍で行ない、さらに80℃温水からなる水洗
浴で充分に水洗洗浄し、つづいて油剤付与し150℃の
熱風槽を通して乾燥を行ない湿熱延伸済紡糸原糸を得る
Prepare the spinning stock solution. Then, while maintaining the temperature at 50°C, 8 ink was applied from a nozzle with a hole diameter of 0.11cm and a number of holes of 600 (each hole was circular).
Discharge at 54.5 f/min into an aqueous coagulation bath containing 40% Ca02 maintained at 0°C. The filament discharged from the nozzle passes through a coagulation bath, then undergoes thermal stretching in a bath with the same composition as the coagulation bath at a rate of about 1.6 times, and is thoroughly washed with water in a washing bath consisting of 80°C hot water. An oil agent is applied and drying is carried out through a hot air bath at 150° C. to obtain a wet-heat drawn spun yarn.

紡糸原糸はだ円形断面であるが均質なもので、2900
−7’ニール/600フイラメントであった。次にこの
紡糸原糸を430℃に保たれた、窒素気流中空乾熱延伸
機によって乾熱延伸を延伸倍率的2.4倍で行なうこと
によって本発明のポリ(2−メチル−1,4−フェニレ
ンイソフタルアミド)#R維を製造した。
The spinning yarn has an oval cross section but is homogeneous and has a diameter of 2900
-7'neel/600 filament. Next, this spun yarn was subjected to dry heat stretching at a stretching ratio of 2.4 times using a nitrogen flow hollow dry heat stretching machine maintained at 430°C. phenylene isophthalamide) #R fiber was produced.

得られた繊維の物性値は単糸デニール−2,1,1度=
 5.3 f/dr、伸度=26.5%、ヤング率= 
90 r/d、Tm=421℃、Tox=327℃、T
m−Tex=94℃、Xc=24%、DSR(Tm)=
DSIL(421℃);12%、Dアシ、良好な一般f
Jl維物性と、融点以上の高温における優れた形態安定
性を示している。
The physical properties of the obtained fibers are single yarn denier -2, 1, 1 degrees =
5.3 f/dr, elongation = 26.5%, Young's modulus =
90 r/d, Tm=421℃, Tox=327℃, T
m-Tex=94°C, Xc=24%, DSR(Tm)=
DSIL (421℃); 12%, D reed, good general f
It shows Jl fiber physical properties and excellent morphological stability at high temperatures above the melting point.

次に本繊維を使って筒編地を作成しこれを用いて燃焼試
験を行なったところ、火災を遠ざけると直ちに消火する
自己消火性を明瞭に示し、燃焼後の編地を観察すると燃
焼部も繊維同志が強固に融着することもなかった。
Next, when we created a cylindrical knitted fabric using this fiber and conducted a combustion test using it, it clearly showed self-extinguishing properties that extinguished fire immediately when the fire was kept away. The fibers were not firmly fused together.

又、本繊維について染色試験を行なった。染色条件は分
散染料59gIo、w、f 、染色温度140℃、染色
時間60分、キャリア使いとしたところ、赤色の染着率
は72チであシ、中色以上に染った。
A dyeing test was also conducted on this fiber. The dyeing conditions were 59 g Io, w, f of disperse dye, dyeing temperature 140° C., dyeing time 60 minutes, and using a carrier.The red dyeing rate was 72 cm, and the color was dyed to a medium color or higher.

実施例2 実施例1と同様の装置と方法で重合した。インフタル酸
166.1f (1,000モル)、イソフタル酸モノ
カリウム塩2.005F、無水N、N’−ジメチルエチ
レンウレア210 Q+mを装入し、200℃に加熱溶
解り、り後、2.5− ジメチル−1,4−フ二二レン
ジイソシアネート188.2F (1,000モル)を
無水N、N’−ジメチルエチレンウレア200mK溶解
した溶液を2時間にわたって滴下した。この間溶液全体
は次第に濁りを増し、滴下終了時には乳濁状の不均一系
となった。更に1時間後反応を行った後、室温まで冷却
し、重合液の−Sを実施例1と同様に処理して得たポリ
マーの対数粘度は1.6であった。この重合液に無水塩
化カルシウム粉末を1重量%添加して室温で攪拌しなが
ら均質な溶液を得た。この没縮液の粘度は580ボイズ
であった0 上記重合液を実施例1と同様の方法で繊維化した。得ら
れた繊維の物性値は単糸デニール=2.1、強度= 5
.7 f/dr、伸度= 25.2%、ヤング率=11
6 r/d%Tm= 427℃、Tex= 332℃、
Tm−Tex=95℃、Xc=25 %、DSR(Tm
)=DSR(427℃)=11%、DSR(482℃)
=欠に本発明繊維を使って筒編地を作成し、これを用い
て燃焼試験を行なり九ところ、火炎を遠ざけると直ちに
消火する自己消火性を明瞭に示した。
Example 2 Polymerization was carried out using the same equipment and method as in Example 1. Inphthalic acid 166.1f (1,000 mol), isophthalic acid monopotassium salt 2.005F, anhydrous N,N'-dimethylethylene urea 210 Q+m were charged, heated and dissolved at 200°C, and after 2.5 - A solution containing 188.2F (1,000 mol) of dimethyl-1,4-phenyl diisocyanate dissolved in 200 mK of anhydrous N,N'-dimethylethylene urea was added dropwise over 2 hours. During this time, the entire solution gradually became cloudy, and by the end of the dropwise addition, it had become a milky, heterogeneous system. After further reaction for 1 hour, it was cooled to room temperature, and the -S of the polymerization solution was treated in the same manner as in Example 1. The logarithmic viscosity of the obtained polymer was 1.6. Anhydrous calcium chloride powder was added in an amount of 1% by weight to this polymerization solution, and a homogeneous solution was obtained with stirring at room temperature. The viscosity of this collapsing liquid was 580 voids. The above polymerization liquid was made into fibers in the same manner as in Example 1. The physical properties of the obtained fiber were: single yarn denier = 2.1, strength = 5
.. 7 f/dr, elongation = 25.2%, Young's modulus = 11
6 r/d%Tm=427℃, Tex=332℃,
Tm-Tex=95℃, Xc=25%, DSR(Tm
) = DSR (427°C) = 11%, DSR (482°C)
A cylindrical knitted fabric was prepared using the fibers of the present invention, and a combustion test was conducted using this fabric.The results clearly showed that the fabric had self-extinguishing properties, extinguishing the flame immediately when the flame was removed.

燃焼後の編地を観察したところ燃焼部においても繊維同
志が強固に融着することもなかった〇又本発明繊維につ
いても災箆例1と同様に染色試験を行なったところ、青
色の染着率は79%であシ、良好な染色性を示した。
Observation of the knitted fabric after combustion revealed that the fibers were not strongly fused to each other even in the combustion part.Also, when the fibers of the present invention were subjected to a dyeing test in the same manner as in Example 1, blue dyeing was observed. The staining rate was 79%, indicating good staining properties.

比較例1 ポリ(メタフェニレンイソフタルアミド)の製−會。Comparative example 1 Manufacture of poly(metaphenylene isophthalamide).

攪拌機、温度計、ジャケット付滴下ロートを備えた2t
のジャケット付セパラブルフラスコ中にイソフタル酸ク
ロリド250.29 (1,232モル)、無水テトラ
ヒドロ7ラン600罰を投入して溶解し、ジャケットに
冷媒を通して内容物を20℃に冷却した。強攪拌しなが
ら無水テトラヒドロフラン400m1K)タ1:r−二
V7ジ7−:/133.7f(1,239モル)を溶解
した溶液を約20分間で滴下した。得られた白色乳濁液
を無水炭酸ソーダ2.464モル含有水(水冷)中に強
攪拌下にすばやく投入した。直ちにスラリ一温度は室温
近くまで上昇した。引続いてカセイソーダで田を11に
なる様に調製した後スラリーを戸別し、得られたケーキ
を多量の水で充分に洗浄し、150℃下で減圧下に一晩
乾燥した。得られたポリマーの対数粘度は1,4であっ
た。
2t equipped with stirrer, thermometer and jacketed dropping funnel
250.29 (1,232 mol) of isophthalic acid chloride and 600 mol of anhydrous tetrahydrochloride were introduced into a jacketed separable flask and dissolved therein, and the contents were cooled to 20° C. by passing a refrigerant through the jacket. While vigorously stirring, a solution containing 400 ml of anhydrous tetrahydrofuran (1K) T1:r-2V7di7-:/133.7f (1,239 mol) was added dropwise over about 20 minutes. The obtained white emulsion was quickly poured into water (water-cooled) containing 2.464 mol of anhydrous sodium carbonate under strong stirring. Immediately, the slurry temperature rose to near room temperature. Subsequently, the slurry was adjusted to a concentration of 11 with caustic soda, and the resulting cake was thoroughly washed with a large amount of water and dried overnight under reduced pressure at 150°C. The obtained polymer had a logarithmic viscosity of 1.4.

ポリ(メタフェニレンイソ7タルアミド)繊維の製造 前記ポリ(メタフェニレンイソフタルアミド)すなわち
PMIAポリマー粉末をN−メチル−2−ビ0 リドy
(NMP)とNMPK対しテ2%+7)Li(jを含有
する溶媒中に22重量%濃度で溶解し80°Cで減圧脱
泡して気泡を含まぬ紡糸原液を調整した。ついで80℃
に保ったまま孔径o、 o s w孔数100(6孔は
円形)のノズルから80°CKm持されたCaα240
%を含む水性凝固浴中へ5.2t/分で吐出しs  I
 Q m 7分で回転するローラーを経て80℃温水浴
中を通して充分に水洗し、つづいて98℃の熱水中でロ
ーラーとローラーによシ湿熱延伸を2.88倍で行ない
、さらに油剤付与後150℃の熱風槽中を通して乾燥を
行ない湿熱延伸済み紡糸原糸を得た。紡糸原糸は均質が
まゆ形断面で、358デニール/100フイラメントで
あった。
Preparation of poly(metaphenylene isophthalamide) fiber The poly(metaphenylene isophthalamide) or PMIA polymer powder was mixed with N-methyl-2-bi-
(NMP) and NMPK were dissolved at a concentration of 22% by weight in a solvent containing 2% + 7) Li(j) and defoamed under reduced pressure at 80°C to prepare a spinning dope containing no air bubbles.Then, at 80°C
Caα240 was held at 80°CKm from a nozzle with hole diameter o, o sw number of holes 100 (6 holes are circular) while maintaining
Discharged at 5.2 t/min into an aqueous coagulation bath containing s I
Qm After passing through a roller that rotates for 7 minutes, passing through a hot water bath at 80°C and thoroughly washing with water, then performing moist heat stretching between rollers in 98°C hot water at a ratio of 2.88 times, and after applying an oil agent. The yarn was dried by passing it through a hot air tank at 150° C. to obtain a spun yarn that had been subjected to wet heat stretching. The spun yarn had a homogeneous cocoon cross section and was 358 denier/100 filaments.

次にこの紡糸原糸を310℃のプレート上で1.88倍
の乾熱延伸を行なう事によってポリ(メタフェニレンイ
ソフタルアミド)繊維を得た。
Next, this spun yarn was subjected to dry heat stretching of 1.88 times on a plate at 310°C to obtain poly(metaphenylene isophthalamide) fiber.

得られた繊維の物性値は単糸デニールニ2、強度=4.
99/d、伸度= 28.5チ、ヤング率=SO’/ 
d%Tm = 425℃、Tex=405°C,Tm−
Tex = 20℃、)(c=25%、DSR(Tm)
=DSR(425℃5=16チ、 でおシ、本発明外になるこのPMIA繊維は良好な一般
的繊維物性は示すものの、融点以上の高温における形態
安定性については本発明である実施例1.実施例2に比
べると明らかに劣ったものとなった。
The physical properties of the obtained fibers were as follows: single yarn denier: 2, strength: 4.
99/d, elongation = 28.5 inches, Young's modulus = SO'/
d%Tm = 425°C, Tex = 405°C, Tm-
Tex = 20℃, ) (c = 25%, DSR (Tm)
= DSR (425°C 5 = 16 cm) Although this PMIA fiber, which is outside the scope of the present invention, exhibits good general fiber physical properties, its shape stability at high temperatures above the melting point is not as good as that of Example 1, which is within the scope of the present invention. .It was clearly inferior to Example 2.

次に上記PMIA繊維を使って筒編地を作成しこれを用
いて燃焼試験を行なったところ、火炎をだ゛ 遠lけると直ちに消火する自己消火性は明瞭に示すもの
の、燃焼後編地を観察すると燃焼部では繊維同志が強固
に融着して繊維形態を完全に消失していた。
Next, we created a cylindrical knitted fabric using the above PMIA fibers and conducted a combustion test using it. Although it clearly showed self-extinguishing properties, extinguishing fire immediately when the flame was removed, we observed the knitted fabric after combustion. Then, in the combustion part, the fibers were firmly fused together and the fiber form had completely disappeared.

比較例2 実施例1と同様の装置と方法で重合した0イン7タル酸
166.1f (1,000モル)、イソフタル酸モノ
ナトリウム塩0.9405F、無水N、N’−ジメチル
エチルウレア1000a/をセパラブルフラスコに仕込
み、油浴上で内容物を200℃に加熱し、この温度に維
持しながら、トリレン−2,4−ジインシアネート17
4.1F(1,000モル)を無水N、N’−ジメチル
エテルクレア200dK溶解した容液を滴下ロートよυ
4時間にわたって滴下し、その後更に1時間反応を継続
させた後加熱を止め、室温まで冷却した。重合液の一部
をとり実施例1と同様にして処理して得たポリマーの対
数粘度は2.0でおつ九。またこの重合液中のポリマー
濃度は20.0重量係であシ、溶液粘度は230ボイズ
(B凰粘度針、80°C)であった。
Comparative Example 2 0-yne7talic acid 166.1f (1,000 mol), isophthalic acid monosodium salt 0.9405F, anhydrous N,N'-dimethylethylurea 1000a/ was charged into a separable flask, the contents were heated to 200°C on an oil bath, and while maintaining this temperature, tolylene-2,4-diincyanate 17
4. Add a solution containing 1F (1,000 mol) dissolved in 200 dK of anhydrous N,N'-dimethyl ether chloride to the dropping funnel.
The mixture was added dropwise over 4 hours, and after continuing the reaction for an additional hour, heating was stopped and the mixture was cooled to room temperature. A portion of the polymerization solution was taken and treated in the same manner as in Example 1, and the resulting polymer had a logarithmic viscosity of 2.0. The polymer concentration in this polymerization solution was 20.0% by weight, and the solution viscosity was 230 voids (B viscosity needle, 80°C).

上記重合液を80°Cで減圧濾過して気泡を含まぬ紡糸
原液を調整する。ついで80℃に保ったまま孔径0.0
8m、孔数300H(6孔は円形)のノズルから80℃
に維持されたCaα241%を含む水性凝固浴へ17.
Of 7Mで吐出し、10m/分で回転するローラーを
経て80℃温水浴中を通して充分に水洗し、つづいて9
8℃の熱水中でローラーとローラーによシ湿熱延伸を2
.34倍で行ない、さらに油剤付与後150℃の熱風槽
中を通して乾燥を行ない湿熱延伸済み紡糸原糸を得だ。
The above polymerization solution is filtered under reduced pressure at 80°C to prepare a spinning dope that does not contain air bubbles. Then, the pore size was reduced to 0.0 while maintaining the temperature at 80°C.
8m, 80℃ from a nozzle with 300H holes (6 holes are circular)
17. into an aqueous coagulation bath containing 241% Caα maintained at
Discharged at 7M, passed through rollers rotating at 10m/min, passed through a hot water bath at 80°C, rinsed thoroughly with water, and then
2. Moist heat stretching between rollers in hot water at 8℃
.. This was carried out at a magnification of 34 times, and after applying an oil agent, it was dried by passing it through a hot air bath at 150°C to obtain a spun yarn that had been drawn with wet heat.

紡糸原糸は均質なまゆ形断面で1310デニール/30
0フイラメントであった。次にこの紡糸原糸を310℃
プレート上で2.18倍の乾熱延伸を行う事によってポ
リ(4−メチル−1,3−フェニン/インフタルアミド
)繊維を得た。
The spinning yarn has a homogeneous cocoon-shaped cross section of 1310 denier/30
There were 0 filaments. Next, this spun yarn was heated to 310°C.
Poly(4-methyl-1,3-phenylene/inphthalamide) fibers were obtained by dry heat stretching 2.18 times on a plate.

得られた繊維の物性値は、単糸デニール=2、強度=4
,3f/d、伸度=35チ、ヤング率=81y/li、
Tm==390℃、Tex=290℃、 Trn−Te
x=100℃、Xe=25%、DSR(Tm)=DSR
(395℃)=831% となった。この場合一般繊維
物性は一応良好であるが、融点以上の高温における乾熱
収縮が非常に大きく形態安定性を求めるため1cDsR
(Tm+55℃)=DSR(445℃)で測定しようと
したが、処理後Fi織繊維形態変化大きく正しい試料が
求まらず測定不能となった0 次に実施例1、と同様の方法で燃焼試験を行なったとこ
ろ、自己消火性は明瞭に認められたものの、燃焼時の絹
地の収縮による形態変化が太きいもので、燃焼後の編地
を観察したところ繊維同志が強固に融着していた。
The physical properties of the obtained fiber are: single yarn denier = 2, strength = 4
, 3f/d, elongation=35chi, Young's modulus=81y/li,
Tm==390℃, Tex=290℃, Trn-Te
x=100°C, Xe=25%, DSR(Tm)=DSR
(395°C) = 831%. In this case, the general fiber properties are good, but the dry heat shrinkage at high temperatures above the melting point is very large, and 1cDsR
(Tm+55°C) = DSR (445°C), but the shape of the Fi woven fibers changed significantly after treatment, making it impossible to obtain the correct sample. When the test was conducted, self-extinguishing properties were clearly observed, but the shape change due to shrinkage of the silk fabric during combustion was significant, and when the knitted fabric was observed after burning, the fibers were firmly fused together. Ta.

実施例3 4−ビフェニレンイソフタル・テレフタルアミド)の製
造法 実施例1と同様の装置と方法で重合した。インフタル酸
149.!l’(0,9000モル)、テレフタル酸1
6.61 t (o、1oooモル)、イソフタル酸モ
ノカリウム塩2.010?、無水N、N’−ジメチルエ
チレンウレア2600tJji装入し、20O℃に加熱
溶解した後、3.3’−ジメチル−4,4′−ビフェニ
ルジイソシアネート264.39 (1,000モル)
を無水N。
Example 3 Method for producing 4-biphenylene isophthalate (terephthalamide) Polymerization was carried out using the same equipment and method as in Example 1. Inphthalic acid 149. ! l' (0,9000 mol), terephthalic acid 1
6.61 t (o, 1ooo mol), isophthalic acid monopotassium salt 2.010? , 2600 tJji of anhydrous N,N'-dimethylethylene urea was charged, and after heating and melting at 200°C, 264.39 (1,000 mol) of 3,3'-dimethyl-4,4'-biphenyl diisocyanate was added.
Anhydrous N.

N′−ジメチルエチレンウレア250fILIK溶解し
た溶液を2時間で滴下した。反応を30分継続した後、
室温まで冷却した。反応液の一部をとシ実施例1と同様
に処理して得たポリマーの対数粘度は1.7であった。
A solution containing 250 f of N'-dimethylethylene urea dissolved in ILIK was added dropwise over a period of 2 hours. After continuing the reaction for 30 minutes,
Cooled to room temperature. A portion of the reaction solution was treated in the same manner as in Example 1, and the resulting polymer had an logarithmic viscosity of 1.7.

この重合液のポリマー濃度は約11.5重′11%で、
溶液粘度1j410yNイズ(nu粘度計;50℃)で
あった。
The polymer concentration of this polymerization solution was approximately 11.5% by weight,
The solution viscosity was 1j410yN (nu viscometer; 50°C).

上記重合液を実施例1と同様の方法で繊維化した。得ら
れた繊維の物性値は単糸デニール=2.。
The above polymerization solution was made into fibers in the same manner as in Example 1. The physical properties of the obtained fibers were as follows: Single yarn denier = 2. .

強度=5,9f/dr、伸度=30.5%、ヤング率=
B 5 f/d、Tm=360℃、Tex=256℃、
−−Tex=1 10°C,XC=2cl、DSR(T
m)=DSR(360℃)28%、DSR(415℃)
ニ一般物性を有し、かつ融点以上でも形態安定性が侵れ
ていた。
Strength = 5.9f/dr, elongation = 30.5%, Young's modulus =
B 5 f/d, Tm=360°C, Tex=256°C,
--Tex=1 10°C, XC=2cl, DSR(T
m) = DSR (360°C) 28%, DSR (415°C)
It had two general physical properties, and its morphological stability was impaired even at temperatures above the melting point.

特許出願人 株式会社 り ラ し 同   三井東圧化学株式会社Patent applicant RiRashi Co., Ltd. Same Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、次式(1)ないし(6)を満足する特性を有する芳
香族ポリアミドからなる繊維であつて、該芳香族ポリア
ミドは式〔 I 〕で表わされる繰り返し単位を有する芳
香族ポリアミド繊維。 Tm≧350℃・・・・・・・・・(1) Tm−Tex≧30℃・・・・・・・・・(2) Xc≧10%・・・・・・・・・(3) DE≧10%・・・・・・・・・(4) DSR(Tm)≦15%・・・・・・・・・(5) DSR(Tm+55℃)/DSR(Tm)≦3%・・・
・・・・・・(6) (ただしここでTm:融点、 Tex:発熱開始温度、 Xc:結晶化度、 DE:繊維伸度、 DSR(Tm):融点における乾熱収縮率、 DSR(Tm+55℃):融点+55℃における乾熱収
縮率) ▲数式、化学式、表等があります▼・・・・・・・・・
〔 I 〕 (式中Ar_1は▲数式、化学式、表等があります▼、
▲数式、化学式、表等があります▼ で表わされる2価のフェニレン残基である。ここでR_
1は水素またはメチル基を表わし、アミド結合の窒素原
子に直結するフェニレン基炭素原子のオルソ位に少なく
とも一個のCH_3基を持つ繰り返し単位を有する。A
r_2は▲数式、化学式、表等があります▼で表わされ
る2価フェニレン残基であり、アミド結合のカルボニル
炭素原子はフェニレン基炭素原子の1、3位あるいは1
、4位に直結し、且つ該1、3位体:1、4位体が10
0:0〜80:20の範囲にある繰り返し単位を有する
。) 2、芳香族ポリアミドの繰り返し単位の95モル%以上
が2−メチル−1,4−フェニレンイソフタルアミド/
および/または5−メチル−1,4−フエニレンイソフ
タルアミドであることを特徴と する特許請求の範囲第
2項記載の芳香族ポリア ミド繊織。 3、芳香族ポリアミドの繰り返し単位の95モル%以上
が、3,6−ジメチル−1,4−フエニレ ン−イソフ
タルアミド/および/または/2,5−ジメチル−1,
4−フエニレンイソフタルアミ ドであることを特徴と
する特許請求の範囲第2項記載の芳香族ポリアミド繊維
。 4、芳香族ポリアミドの繰り返し単位の95モ ル%以
上が3,3′−ジメチル−4,4′−ビフエニレ ン−
イソフタルアミドであることを特徴とする特許請求の範
囲第2項記載の芳香族ポリアミド 繊維。
[Claims] 1. A fiber made of an aromatic polyamide having characteristics satisfying the following formulas (1) to (6), wherein the aromatic polyamide has an aromatic repeating unit represented by the formula [I]. family polyamide fiber. Tm≧350℃・・・・・・・・・(1) Tm-Tex≧30℃・・・・・・・・・(2) Xc≧10%・・・・・・・・・(3) DE≧10%・・・・・・・・・(4) DSR(Tm)≦15%・・・・・・・・・(5) DSR(Tm+55℃)/DSR(Tm)≦3%・・・
......(6) (where Tm: melting point, Tex: exothermic start temperature, Xc: crystallinity, DE: fiber elongation, DSR (Tm): dry heat shrinkage rate at melting point, DSR (Tm + 55) ℃): Melting point + dry heat shrinkage rate at 55℃) ▲Mathematical formulas, chemical formulas, tables, etc. are available▼・・・・・・・・・
[I] (Ar_1 in the formula ▲ has a mathematical formula, chemical formula, table, etc. ▼,
▲There are mathematical formulas, chemical formulas, tables, etc.▼ It is a divalent phenylene residue represented by. Here R_
1 represents hydrogen or a methyl group, and has a repeating unit having at least one CH_3 group at the ortho position of the phenylene carbon atom directly connected to the nitrogen atom of the amide bond. A
r_2 is a divalent phenylene residue represented by ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and the carbonyl carbon atom of the amide bond is at the 1st, 3rd or 1st position of the phenylene group carbon atom
, directly connected to the 4th position, and the 1 and 3 positions: 1 and 4 positions are 10
It has a repeating unit in the range of 0:0 to 80:20. ) 2. 95 mol% or more of the repeating units of the aromatic polyamide are 2-methyl-1,4-phenylene isophthalamide/
and/or 5-methyl-1,4-phenylene isophthalamide. 3. 95 mol% or more of the repeating units of the aromatic polyamide are 3,6-dimethyl-1,4-phenylene-isophthalamide/and/or/2,5-dimethyl-1,
The aromatic polyamide fiber according to claim 2, which is 4-phenylene isophthalamide. 4. At least 95 mol% of the repeating units of the aromatic polyamide are 3,3'-dimethyl-4,4'-biphenylene-
The aromatic polyamide fiber according to claim 2, characterized in that the fiber is isophthalamide.
JP14550487A 1987-06-10 1987-06-10 Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability Pending JPS63309615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14550487A JPS63309615A (en) 1987-06-10 1987-06-10 Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14550487A JPS63309615A (en) 1987-06-10 1987-06-10 Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability

Publications (1)

Publication Number Publication Date
JPS63309615A true JPS63309615A (en) 1988-12-16

Family

ID=15386787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14550487A Pending JPS63309615A (en) 1987-06-10 1987-06-10 Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability

Country Status (1)

Country Link
JP (1) JPS63309615A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639667A (en) * 1979-09-08 1981-04-15 Nec Corp Directional transmission-reception unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639667A (en) * 1979-09-08 1981-04-15 Nec Corp Directional transmission-reception unit

Similar Documents

Publication Publication Date Title
US3006899A (en) Polyamides from reaction of aromatic diacid halide dissolved in cyclic nonaromatic oxygenated organic solvent and an aromatic diamine
US2174527A (en) Polyamides
JP6185981B2 (en) Furan polyamide
RU2285761C1 (en) Method of manufacturing high-strength heat-resistant threads from aromatic copolyamide having heterocycles in the chain
EP0246634B1 (en) Heat resistant organic synthetic fibers and process for producing the same
JPS6157862B2 (en)
CA1118546A (en) Wholly aromatic polyamide composition
JPH05507954A (en) Copolyamides and fibers made therefrom
US5399431A (en) Fiber materials from homogeneous blends of aromatic polyamides and poly-N-vinylpyrrolidone, production thereof, and use thereof
JP2922431B2 (en) Method for producing meta-type aromatic polyamide fiber
EP0008126B1 (en) Aromatic polyamide composition
JP3847515B2 (en) Method for producing dense meta-type aromatic polyamide fiber
JPS63309615A (en) Heat-resistant organic synthetic yarn having excellent high-excellent configuration stability
CA1051594A (en) Aromatic polyamides and their production
JPS6136083B2 (en)
JPH11502241A (en) Hydrolysis resistant aramids
JPS6234848B2 (en)
JPS63309641A (en) Blended spun yarn excellent in shape stability at high temperature
JPS61123631A (en) Production of aromatic polyamide copolymer
JPH01139808A (en) Aromatic polyamide fiber with high configuration stability at high temperatures
JPH01139813A (en) Pigmented aromatic polyamide fiber and production thereof
RU2111978C1 (en) Anisotropic solution based on aromatic copolyamides and formed articles from this solution
JPH03119139A (en) Flameproofing and heat-resistant fabric
JPH01111039A (en) Heat resistant flameproof sheet
JPH01110393A (en) Anti-flame comforter