JPS63312386A - Gasket - Google Patents

Gasket

Info

Publication number
JPS63312386A
JPS63312386A JP14730887A JP14730887A JPS63312386A JP S63312386 A JPS63312386 A JP S63312386A JP 14730887 A JP14730887 A JP 14730887A JP 14730887 A JP14730887 A JP 14730887A JP S63312386 A JPS63312386 A JP S63312386A
Authority
JP
Japan
Prior art keywords
melting point
dsr
aromatic polyamide
tex
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14730887A
Other languages
Japanese (ja)
Inventor
Toshihiro Hamada
敏裕 浜田
Akio Omori
大森 昭夫
Masanori Osawa
正紀 大澤
Masahiro Jinno
神野 政弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Original Assignee
Kuraray Co Ltd
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd, Mitsui Toatsu Chemicals Inc filed Critical Kuraray Co Ltd
Priority to JP14730887A priority Critical patent/JPS63312386A/en
Publication of JPS63312386A publication Critical patent/JPS63312386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)

Abstract

PURPOSE:To obtain the titled gasket, having excellent shape stability at high temperatures, by using aromatic polyamide fibers having specific properties. CONSTITUTION:The aimed gasket obtained by using aromatic polyamide fibers having characteristics of Tm (melting point) >=350 deg.C; Tm-Tex (thermogenic starting point) >=30 deg.C; Xc (crystallinity) >=10% DE (elongation) >=10% DSR (Tm) [dry heat shrinkage at the melting point (Tm)] <=15% and the formula [DSR (Tm+55 deg.C) is dry heat shrinkage (%) at the melting point +55 deg.C]. Furthermore, the above-mentioned fibers are preferably fibers produced from an aromatic polyamide having 1-4C lower alkyl or functional groups selected from amino, sulfone, carboxyl and hydroxyl group or halogen atoms. in the o-position of phenylene groups directly linked to N and/or C of amide bonds.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスケット、グランドバッキング、配管継手等
に用いるガスケット材に関するもので、特に高温におけ
る形態安定性に優れたガスケット材を提供することにあ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a gasket material used for gaskets, gland backings, pipe joints, etc., and an object of the present invention is to provide a gasket material that has particularly excellent morphological stability at high temperatures.

〔従来の技術〕[Conventional technology]

ガスケット材は耐熱繊維、無機質充填剤および結合剤を
混練してシート状にする方法と、これらの原料を湿式で
抄造したものをプレス成形してシート状にして成型され
る。こ几らに使う材料はガスケット材の使用環境から、
耐熱性の材料が使われる。耐熱繊維としては石綿、ガラ
ス繊維が主として使われているが、近年石綿による発ガ
ン性による公害問題から有機耐熱繊維の使用が検討され
ている。その代表的な繊維はメタ系全芳香族ポリアミド
繊維で、その化学組成はポリメタフェニレンイソフタル
アミド(以下1’MIAと略記する)を主成分とする。
Gasket materials are formed by kneading heat-resistant fibers, inorganic fillers, and binders into a sheet, or by wet-forming these raw materials and press-molding them into a sheet. The materials used for these are based on the environment in which the gasket material is used.
Heat-resistant materials are used. Asbestos and glass fibers are mainly used as heat-resistant fibers, but in recent years the use of organic heat-resistant fibers has been considered due to pollution problems caused by asbestos' carcinogenic properties. A typical fiber thereof is a meta-based wholly aromatic polyamide fiber, whose chemical composition is mainly composed of polymetaphenylene isophthalamide (hereinafter abbreviated as 1'MIA).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

石綿は商い耐熱性を有しているので、それにより作られ
るガスケット材は高温においても高い寸法安定性を持っ
ている。PMIA繊維は450℃付近から急に熱収縮す
る性質かあり、それにより作ら几たガスケット材は、石
綿のそれよりも寸法安定性で劣る欠点がある。
Since asbestos is commercially resistant to heat, gasket materials made from it have high dimensional stability even at high temperatures. PMIA fibers have the property of rapidly shrinking due to heat at around 450° C., and gasket materials made from them have the disadvantage that they are inferior in dimensional stability to those made of asbestos.

゛   本発明者らは、前記PMI A繊細のもつ問題
に鑑み、高温での形態安定性、すなわち融点以上のよう
な高温においても熱収縮が小ざい耐熱性有機合成繊維を
用いることにより、寸法安定性に優れたガスケット材を
発明するにいたった。
゛ In view of the above-mentioned problems with the delicate nature of PMI A, the present inventors have achieved dimensional stability by using a heat-resistant organic synthetic fiber that has morphological stability at high temperatures, that is, has small heat shrinkage even at high temperatures above the melting point. This led to the invention of a gasket material with excellent properties.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は、Tm2350℃、Tm−Tex23
0℃、Xc≧10%、DE≧10%、DAB(Tm )
515%、D8B(Tm) 維をガスケット材用の耐熱繊維に使うことにより、従来
の芳香族ポリアミド繊維(PMIA繊維)では得られな
かった石綿並の寸法安定性が得られる事を見出した。
That is, the present invention has Tm2350°C, Tm-Tex23
0℃, Xc≧10%, DE≧10%, DAB (Tm)
We have discovered that by using 515% D8B(Tm) fibers as heat-resistant fibers for gasket materials, it is possible to obtain dimensional stability comparable to that of asbestos, which was not possible with conventional aromatic polyamide fibers (PMIA fibers).

なお、本発明でいう特性値および物性値はそれぞれ以下
に記す測定機、測定条件で得られた数値を表わす。
Note that the characteristic values and physical property values referred to in the present invention represent numerical values obtained using the measuring equipment and measurement conditions described below, respectively.

Tm:融点;パーキンエルマー社株製I)SC−20に
より約10.9の試料をAA’製試料皿に入れ窒素ガス
気流中(3077J/min )で毎分10℃で室温か
ら所定温度までのDSO曲線をえ、その吸熱ピーク温度
をTmとする。
Tm: Melting point; I) Using SC-20 manufactured by PerkinElmer Co., a sample of approximately 10.9 was placed in an AA' sample dish and heated at 10°C per minute in a nitrogen gas flow (3077 J/min) from room temperature to a specified temperature. A DSO curve is drawn, and its endothermic peak temperature is defined as Tm.

Tex :発熱開始温度;パーキンエルマー社■製DS
G−20により約10mgの試料をAn製試料皿に入れ
空気気流中(30mA/min )で毎分10℃で室温
から所定温度までのI)8G曲線をえ、その発熱開始温
度をTexとする。
Tex: Heat generation start temperature; PerkinElmer DS
Using G-20, place approximately 10 mg of the sample in an An sample dish and draw an 8G curve from room temperature to the specified temperature in an air stream (30 mA/min) at 10°C per minute, and let the temperature at which the heat starts to heat up to be Tex. .

結晶化度:Xc;理学電機■製回転対陰極超高強力X線
発生装置BAD −rA (40KV 100mA、0
uKz線)を使用し、X線ビームに垂直な面内で試料を
回転させながら回折角2θ−5゜〜35°の範囲のX線
回折強度曲線をえ、次に回折曲線を結晶領域(Ac)と
非晶領域(Aa)に分離、次式より算出した値Xcを結
晶化度とする。
Crystallinity: Xc; Rotating anticathode ultra-high intensity X-ray generator BAD-rA (40KV 100mA, 0
The sample is rotated in a plane perpendicular to the X-ray beam to obtain an X-ray diffraction intensity curve in the range of diffraction angles 2θ-5° to 35°, and then the diffraction curve is ) and an amorphous region (Aa), and the value Xc calculated from the following formula is defined as the degree of crystallinity.

Xc = −X 100(ト) Ac+Aa DE:繊維の伸度;インストロン引張り試験機を用い試
料長10CI11、引速5cM/分、初荷重o、o s
 g/dの条件下で引張試験を行なって求めた。
Xc = -X 100 (g) Ac+Aa DE: Elongation of fiber; using Instron tensile tester, sample length 10CI11, drawing speed 5cM/min, initial load o, o s
It was determined by conducting a tensile test under the condition of g/d.

DAB :乾熱収縮率;繊維試料にO,tg/dの加重
をかけその長ざlOを測定した後、所定温度の熱風乾燥
機中で10分間フリーで処理し、その後30分後に再び
0.1 g、/aの加重をかけて試料長11を測定し、
次式によって乾熱収縮率DABを求めた。
DAB: Dry heat shrinkage; after applying a load of O.tg/d to the fiber sample and measuring its length lO, it is free-treated in a hot air dryer at a predetermined temperature for 10 minutes, and then 30 minutes later, it returns to 0.0. Measure the sample length 11 by applying a load of 1 g, /a,
The dry heat shrinkage rate DAB was determined using the following formula.

lO 本発明における特定の物性値で表わされる芳香族ポリア
ミド繊維は、例えばアミド結合の窒素原子および/また
は炭素原子に直結するフェニレン基のオルソ位に炭素原
子1から4の低級アルキル基、あるいはアミン基、スル
ホン基、カルボキシル基、水酸基等から選ばれた官能基
、またはノ・ロゲン原子を有する芳香族ポリアミドより
製造された繊維である。芳香族ポリアミドのフェニル基
のオルソ位に存在する置換基としては繊維の物性値を満
足するものであればいかなるものであっても良いが、好
ましくは前記に記述のものが良い。ざらに好ましくは炭
素原子1から4の低級アルキル基のものである。
lO Aromatic polyamide fibers represented by specific physical properties in the present invention include, for example, a lower alkyl group having 1 to 4 carbon atoms, or an amine group at the ortho position of a phenylene group directly connected to the nitrogen atom and/or carbon atom of the amide bond. , a sulfone group, a carboxyl group, a hydroxyl group, etc., or an aromatic polyamide having a norogen atom. The substituent present at the ortho-position of the phenyl group of the aromatic polyamide may be any substituent as long as it satisfies the physical properties of the fiber, but those described above are preferred. Most preferred are lower alkyl groups having 1 to 4 carbon atoms.

本発明で用いる芳香族ポリアミド繊維の、前記特性値お
よび物性値について説明する。
The characteristic values and physical property values of the aromatic polyamide fiber used in the present invention will be explained.

Tm (融点)が350℃以上であり、稀に対してTe
x (発熱開始温度)が30℃以上低くXc(結晶化度
)が10%以上であるとぎに融点以上の高温においても
ノb態安定性に優れた繊維となる。
Tm (melting point) is 350℃ or higher, rarely Te
When x (exotherm onset temperature) is lower by 30°C or more and Xc (crystallinity) is 10% or more, the fiber has excellent nob state stability even at high temperatures above the melting point.

これは換言すrしはTm5350℃で且つXc≧10%
である場合においても、Tm−Texが30℃以上と’
lI’m−Texが30℃未満の繊維を比較すると前者
すなわち’l”ex(熱分解開始温度)がTm(融点)
より30℃以上低い方が後者すなわちTexがTmより
30℃未満にあるものよりその繊維のTm(融点)以上
の高温における形態安定性がよいという事である。これ
は−見不合理のように考えられるが全く意外にも、実際
にはTexのより低い方が良好な形態安定性を示すので
ある。
In other words, Tm5350℃ and Xc≧10%
Even if Tm-Tex is 30°C or higher,
When comparing fibers with lI'm-Tex of less than 30°C, the former, that is, 'l'ex (thermal decomposition initiation temperature) is Tm (melting point)
The shape stability of the fiber at high temperatures above Tm (melting point) is better when the temperature is 30°C or more lower than the latter, that is, when the Tex is lower than Tm by 30°C. This may seem unreasonable, but quite surprisingly, lower Tex actually shows better morphological stability.

こ几についての正確な理由はよく分らないが、Tm53
50℃、Xc≧10%であってかつTexがTmに対し
て30℃以上低い芳香族ポリアミド繊維では比較的低い
Texから熱分解が始まるのでそれは緩やかにかつ非晶
領域を中心に起りその際、結晶領域では微結晶が溶融す
る事なく存在するため、熱による非晶領域の配向分子鎖
の配向緩和とともに生じる熱収縮に対して微結晶が分子
鎖の拘束点として作用するため、収縮が抑えられつつ、
同時に進行する熱分解反応に伴ない分子鎖間に一種の架
橋が起き、3次元構造が形成されるため融点以上でも形
態安定性が良好になると考えられる。
I don't really know the exact reason for this, but Tm53
In the case of aromatic polyamide fibers where 50°C, Xc≧10% and Tex is 30°C or more lower than Tm, thermal decomposition starts from a relatively low Tex, so it occurs slowly and mainly in the amorphous region, and at that time, Since the microcrystals exist without melting in the crystalline region, the shrinkage is suppressed because the microcrystals act as restraint points for the molecular chains against thermal contraction that occurs when the orientation of the oriented molecular chains in the amorphous region is relaxed due to heat. Tsutsu,
It is thought that a type of crosslinking occurs between molecular chains as a result of the thermal decomposition reaction that proceeds simultaneously, forming a three-dimensional structure, resulting in good morphological stability even above the melting point.

それに対してTm5350℃、Xc≧10%であっても
TexかTmに対して30℃未満でしか低くない時には
充分な分子間の架橋による3次元構造が形成されるまえ
に熱溶融が生じるので、熱収縮や繊維間での融着が大ぎ
くなり形態安定性不良となったものと考えられる。
On the other hand, even if Tm5350℃ and Xc≧10%, if Tex or Tm is lower than 30℃, thermal melting will occur before a three-dimensional structure is formed due to sufficient intermolecular crosslinking. It is thought that heat shrinkage and fusion between fibers became large, resulting in poor shape stability.

このためTm−Texの範囲はTm−Tex230℃で
なければならず、好ましくはTm−Tex≧50℃ ざ
らに好ましくはTm−Tex270℃である。
Therefore, the range of Tm-Tex must be Tm-Tex 230°C, preferably Tm-Tex≧50°C, and more preferably Tm-Tex 270°C.

またTm以上では他の繊維物性がある程度低下するので
、一般の合成繊維より200℃以上も高い温度でも実用
可能な耐熱性繊維であるためには、Tm5350℃でな
ければならず、好ましくは52400℃以上、ざらに好
ましくはTm≧420℃以上である。
In addition, other fiber properties deteriorate to some extent at Tm or higher, so in order to be a heat-resistant fiber that can be used at temperatures 200°C or more higher than general synthetic fibers, Tm must be 5350°C, preferably 52400°C. As mentioned above, it is generally preferable that Tm≧420°C or higher.

また、Tm5350℃、Tm −Te x≧30℃であ
ってもXc<10%と結晶性が小ざい場合、微結晶によ
る分子鎖移動に対する拘束作用がほとんどないため、T
mよりはるか低温のガラス転移点あたりから急激に熱収
縮を増大して形態安定性は不良となる。
In addition, even if Tm5350℃ and Tm -Tex≧30℃, if the crystallinity is small (Xc<10%), there is almost no restraining effect on molecular chain movement by microcrystals, so T
From around the glass transition point, which is much lower than m, the thermal shrinkage increases rapidly and the shape stability becomes poor.

こ几らの理由からXc≧10%である事が必要であり、
好ましくは、lc≧15%である。
For the reasons mentioned above, it is necessary that Xc≧10%,
Preferably, lc≧15%.

ざらに繊維がその用途において既存の有機合成繊維と同
様な利用かされるためには、良好なしなやかさ、加工性
を有することが必須の条件となる。
In order for Zaraani fiber to be used in the same way as existing organic synthetic fibers, it is essential that it has good flexibility and processability.

このためには強度と伸度のバランス、とりわけ伸度か充
分にあることが大事でDE(繊維伸度)210%でなけ
ればならない。好ましくはDE>15%、ざらに好まし
くはDE>2 o 96である。またざらに高温におけ
る形態安定性をざらに高める態様としては繊維かD S
 ill (Tm )515%およびい。
For this purpose, it is important to have a sufficient balance between strength and elongation, especially elongation, and DE (fiber elongation) must be 210%. Preferably DE>15%, most preferably DE>2 o 96. In addition, as an aspect that greatly increases the morphological stability at high temperatures, fibers or D S
ill (Tm) 515%.

Doll(Tm)が1596を越える場合には融点にお
いて乾熱収縮かすでに大きく形態安定性が良好とはいえ
ない。D 8 E (Tm )515%であってもD8
B(Tm+55℃) 急激に熱収縮が増大するため、本発明の目的とする耐熱
ガスケット用途には好ましくない。したがという融点よ
りかなり高温でも熱収縮が充分に小さい事が重要である
When Doll (Tm) exceeds 1596, the dry heat shrinkage is already large at the melting point, and the shape stability cannot be said to be good. D8 E (Tm) Even if it is 515%, D8
B (Tm+55°C) Since thermal shrinkage increases rapidly, this is not preferable for use as a heat-resistant gasket, which is the object of the present invention. However, it is important that the thermal shrinkage is sufficiently small even at temperatures considerably higher than the melting point.

この様な特定の物性値の芳香族ポリアミド繊維の製造法
は、特別には限定されないが、例えば本発明者等が別途
出願した特願昭61−117970号明細書に記載され
ているが如き、繰り返し単位の95モル%以上が4−メ
チル−1,3−フェニレンテレフタルアミドおよびまた
は6−メチル−1,3−フェニレンテレフタルアミドで
あるポリマーを紡糸原液として用い、原液温度を20〜
150℃、好ましくは40〜1oo℃に保持して、金属
塩、例えばCaC1)4、Zn(JJI 2、L i 
(262、LiBr等を10−510−5O含有した温
度30〜沸点温度、好ましくは50〜100℃の水溶液
中に湿式紡糸し、ついで、凝同浴とほぼ同一の組成の水
性溶液浴中で1.1〜5倍の湿熱延伸を行ない、次に5
0〜100℃熱水中で水洗を充分に行なった後、100
〜200℃で熱風乾燥し、つづいて300℃〜450℃
の窓気中または不活性ガス浴中で1.1〜5倍の乾熱延
伸熱処理を行なう事によって製造ざnる。この湿式紡糸
の際、凝固浴の性質によって、得られる繊維の表面に凹
凸を形成させる事も出来、このような凹凸表面の繊維と
すれば、その紡績性に、より良い影響を与える事が出来
る。
The method for producing aromatic polyamide fibers having such specific physical property values is not particularly limited, but for example, as described in Japanese Patent Application No. 117970/1987 filed separately by the present inventors, A polymer in which 95 mol% or more of the repeating units is 4-methyl-1,3-phenylene terephthalamide and/or 6-methyl-1,3-phenylene terephthalamide is used as the spinning stock solution, and the stock solution temperature is set at 20 to 20 mol%.
Metal salts such as CaC1)4, Zn(JJI2, Li
(262, LiBr etc. is wet-spun in an aqueous solution containing 10-510-5O at a temperature of 30 to boiling point temperature, preferably 50 to 100°C, and then 1. .1 to 5 times wet heat stretching, then 5 times
After thorough washing in hot water of 0 to 100℃,
Hot air drying at ~200℃, followed by 300℃~450℃
It is manufactured by carrying out a dry heat stretching heat treatment of 1.1 to 5 times in a window atmosphere or an inert gas bath. During this wet spinning, it is possible to form irregularities on the surface of the resulting fiber depending on the properties of the coagulation bath, and if the fiber has such an uneven surface, it will have a better effect on its spinnability. .

次に本発明の態様を実施例をもって具体的に説明するが
、本発明はこれら記載例によって限定されるものではな
い。
Next, aspects of the present invention will be specifically explained with examples, but the present invention is not limited by these examples.

実施例1 撹拌機、温度計、コンデンサー、滴下ロート、窒素導入
管を備えた31容量のセパラブルフラスコ中にテレフタ
ル酸166、OQ (0,9991モル)、テレフタル
酸モノカリウム塩2.038g、無水N、N′−ジメチ
ルエチレンウレア1600yyu、を窒素雰囲気下に装
入し、油浴上で撹拌しながら200℃に加熱する。内容
物を200℃に維持しながらトリレン−24−ジイソシ
アネート174.OQ (0,9991モル)を無水N
、N’−ジメチルエチレンウレア160m1に溶解した
溶液を滴下ロートより4時間にわたって滴下し、その後
ざらに1時間反応を継続した後に加熱を止め、室温マで
冷却した。反応後の一部をとり強撹拌水中に投入して白
色ポリマーを沈澱させ、更に多量の水で洗浄した後15
0℃で約3時間減圧乾燥して得たポリマーの対数粘度(
95%R2SO40,1y/dll、30℃)は2.2
であった。また重合液のポリマー濃度は約11,0重量
%で、この溶液の粘度は420ポイズ(B型粘度計;5
0℃うであった。また得られたポリマーはIllスペク
トル、NMBスペクトルによりポリ(4−メチル−1,
3−フェニレンテレフタルアミド)であることを確認し
た。
Example 1 Terephthalic acid 166, OQ (0,9991 mol), 2.038 g of terephthalic acid monopotassium salt, anhydrous, in a 31-capacity separable flask equipped with a stirrer, thermometer, condenser, dropping funnel, and nitrogen inlet tube. 1600 yyu of N,N'-dimethylethylene urea is charged under a nitrogen atmosphere and heated to 200° C. with stirring on an oil bath. tolylene-24-diisocyanate 174. while maintaining the contents at 200°C. OQ (0,9991 mol) in anhydrous N
A solution dissolved in 160 ml of N'-dimethylethylene urea was added dropwise from the dropping funnel over a period of 4 hours, and after the reaction was continued for approximately 1 hour, heating was stopped and the mixture was cooled at room temperature. After the reaction, a portion was taken and poured into strongly stirred water to precipitate a white polymer, and washed with a large amount of water.
Logarithmic viscosity of the polymer obtained by drying under reduced pressure at 0°C for about 3 hours (
95%R2SO40,1y/dll, 30℃) is 2.2
Met. The polymer concentration of the polymerization solution was approximately 11.0% by weight, and the viscosity of this solution was 420 poise (B-type viscometer: 5
It was 0℃. In addition, the obtained polymer was determined by Ill spectrum and NMB spectrum from poly(4-methyl-1,
3-phenylene terephthalamide).

上記重合液を50℃で減圧脱泡して気泡を含まぬ紡糸原
液を調整する。ついで50℃に保ったまま孔径0.11
mm、孔数600(合孔は円形)のノズルから80℃に
維持されたOa(M240%を含む水性凝固浴中へ54
.59部分で吐出する。ノズルより吐出ざ几た糸状は凝
固浴を通した後凝固浴と同一組成の浴中で湿熱延伸を約
16倍で行ない、ざらに80℃温水からなる水洗浴で充
分に水洗洗浄しつづいて油剤付与し150℃の熱風槽を
通して乾燥を行ない湿熱延伸法紡糸原糸を得る。
The above polymerization solution is degassed under reduced pressure at 50° C. to prepare a spinning dope that does not contain air bubbles. Then, while keeping the temperature at 50℃, the pore size was adjusted to 0.11.
54 mm, into an aqueous coagulation bath containing 40% Oa (M2) maintained at 80 °C from a nozzle with 600 holes (the holes are circular).
.. Discharge at 59 portions. After passing through a coagulation bath, the coarse threads discharged from the nozzle are subjected to moist heat stretching at a ratio of about 16 times in a bath with the same composition as the coagulation bath, followed by thorough washing in a water wash bath consisting of approximately 80°C warm water, followed by an oil solution. The mixture is applied and dried through a hot air bath at 150° C. to obtain a wet heat drawing method spun yarn.

紡糸原糸はだ円形断面であるが均質なもので、2900
7’ニール/600フイラメントであった。
The spinning yarn has an oval cross section but is homogeneous and has a diameter of 2900
It was a 7'neel/600 filament.

次にこの紡糸原糸を430℃に保たれた、窒素気流中空
乾熱延伸機によって乾熱延伸を延伸倍率的2.4倍で行
なうことによって本発明のポリ(4−メチル−1,3−
〕二ニレしテレフタルアミド)繊維を製造した。
Next, this spun yarn was subjected to dry heat stretching at a stretching ratio of 2.4 times using a nitrogen flow hollow dry heat stretching machine maintained at 430°C.
] Two elm terephthalamide) fibers were produced.

得られた繊維の物性値は単糸デニール=2、強度= 5
.8 ct/dr、伸度=254LX)、ヤング率=8
8y/d 、 Tm= 42 s℃、Tex=95℃、
Tm−Tex=95℃、Xc=24%、DS l((’
I’m)= DS B 42’ 5℃= 11%、 D8B(Tm)       DAB(425℃)  
 13%であり、良好な一般繊維物性と融点以上の高温
における優れた形態安定性を数値的に示しているのが分
る。
The physical properties of the obtained fibers are: single yarn denier = 2, strength = 5
.. 8 ct/dr, elongation = 254LX), Young's modulus = 8
8y/d, Tm=42s℃, Tex=95℃,
Tm-Tex=95°C, Xc=24%, DS l(('
I'm) = DS B 42' 5°C = 11%, D8B(Tm) DAB (425°C)
13%, which numerically indicates good general fiber physical properties and excellent shape stability at high temperatures above the melting point.

この繊維の31ranカツトフアイバーを75部、シリ
コンゴム10部、充填剤としてタルク10部、その他加
硫剤、安定剤をそれぞn2.5部添加し、ロール混練し
、その後金型に投入し、160℃×200 kgAiの
条件で加熱加圧成形し、内径40+++m、外径70m
、厚さ3711mのガスケットを成形した。
75 parts of 31ran cut fiber of this fiber, 10 parts of silicone rubber, 10 parts of talc as a filler, and 2.5 parts each of other vulcanizing agents and stabilizers were added, kneaded with rolls, and then put into a mold. Heat and pressure molded under the conditions of 160℃ x 200 kgAi, inner diameter 40 + + + m, outer diameter 70 m
, a gasket with a thickness of 3711 m was molded.

このガスケットを450℃の高温下に1分間放置したが
、ガスケットの変形はほとんど認めら註なかった。
This gasket was left at a high temperature of 450° C. for 1 minute, but almost no deformation of the gasket was observed.

比較例1 撹拌機、温度計、ジャケット付滴下ロートを備えた21
のジャケット付セパラブルフラスコ中にイソフタル酸ク
ロリド250.29 (1,232モル)、無水テトラ
ヒドロフラン600m1を投入して溶Hし、ジャケット
に冷媒を通して内容物を20℃に冷却した。強撹拌しな
がら無水テトラヒドロフラン400m1にメタフェニレ
ンジアミン133.7 g(1,237モル)を溶解し
た溶液を約20分間で滴下した。得られた白色乳濁液を
無水炭酸ソーダ2.464モル含有水(水冷)中に強撹
拌下にすばやく投入した。直ちにスラリ一温度は室温近
くまで上昇した。引続いてカセイソーダでpHを11に
なる様に調製した後スラリーをp別し、得られたケーキ
を多量の水で充分に洗浄し、150℃下で減圧下に一晩
乾燥して得られたポリマーの対数粘度は1.4であった
Comparative Example 1 21 equipped with a stirrer, thermometer, and jacketed dropping funnel
250.29 (1,232 mol) of isophthalic acid chloride and 600 ml of anhydrous tetrahydrofuran were put into a separable flask with a jacket to form a solution H, and the contents were cooled to 20° C. by passing a refrigerant through the jacket. A solution of 133.7 g (1,237 mol) of metaphenylenediamine dissolved in 400 ml of anhydrous tetrahydrofuran was added dropwise over about 20 minutes with strong stirring. The obtained white emulsion was quickly poured into water (water-cooled) containing 2.464 mol of anhydrous sodium carbonate under strong stirring. Immediately, the slurry temperature rose to near room temperature. Subsequently, after adjusting the pH to 11 with caustic soda, the slurry was separated, and the resulting cake was thoroughly washed with a large amount of water and dried overnight under reduced pressure at 150°C. The logarithmic viscosity of the polymer was 1.4.

製造 前記ポリ(メタフェニレンイソフタルアミド)すなわち
PMIAポリマー粉末をN−メチル−2−ピロリドン(
NMP )とNMPに対して296の整した。ついで8
0℃に保ったママ孔径0.08頭孔数100(番孔は円
形)のノズルから80℃に維持されたCaCj?240
%を含む水性凝固浴中へ5.29/分で吐出し、10〜
扮で回転するローラーを経て80℃温水浴中を通して充
分に水洗し、つづいて98℃の熱水中でローラーとロー
ラーにより湿熱延伸を2.88倍で行ない、ざらに油剤
付与後150℃の熱風槽中を通して乾燥を行ない湿熱延
伸済み紡糸原糸を得た。紡糸原糸は均質なまゆ形断面で
、358デニール/100フイラメントであった。
Preparation The poly(metaphenylene isophthalamide) or PMIA polymer powder was mixed with N-methyl-2-pyrrolidone (
NMP ) and 296 adjusted for NMP. Then 8
CaCj? maintained at 80°C from a nozzle with a hole diameter of 0.08 and 100 holes (the holes are circular) kept at 0°C. 240
% into an aqueous coagulation bath containing
After passing through a rotating roller and thoroughly rinsing with water in an 80°C hot water bath, it was then subjected to wet heat stretching at 2.88 times in 98°C hot water using rollers, and after applying an oil agent to Zara, it was washed with hot air at 150°C. The yarn was dried by passing it through a tank to obtain a spun yarn that had been subjected to wet heat stretching. The spun yarn had a homogeneous cocoon-shaped cross section and was 358 denier/100 filaments.

次にこの紡糸原糸を310℃のプレート上で1.88倍
の乾熱延伸を行なう事によってポリ(メタフェニレンイ
ソフタルアミド)繊維を得た。
Next, this spun yarn was subjected to dry heat stretching of 1.88 times on a plate at 310°C to obtain poly(metaphenylene isophthalamide) fiber.

得られた繊維の物性値は単糸デニール=2、強度= 4
.9 Q/d 、伸度=28.5%、ヤング率=80y
/rl、Tm= 42 s℃、Tex=405℃、Tm
−Tex=20℃、Xc=25%、])S B (Tm
 )=D8 ]((425℃)=16%、 DAB(Tm+ss℃)   D8B(480℃)  
  61%であり、このPMI人繊維は良好な一般的繊
維物性は示すものの、融点以上の高温における形態安定
性については本発明である実施例1、に比べると明らか
に劣ったものとなった。
The physical properties of the obtained fibers are: single yarn denier = 2, strength = 4
.. 9 Q/d, elongation = 28.5%, Young's modulus = 80y
/rl, Tm=42 s℃, Tex=405℃, Tm
-Tex=20℃, Xc=25%, ])S B (Tm
)=D8]((425℃)=16%, DAB(Tm+ss℃) D8B(480℃)
61%, and although this PMI human fiber exhibited good general fiber physical properties, it was clearly inferior to Example 1, which is the present invention, in terms of shape stability at high temperatures above the melting point.

この繊維を実施例1と同様な方法でガスケットを成形し
、450Yl:の高温下に1分間放置するとガスケット
は大きく変形し、寸法変化率で2096の収縮率であり
耐熱性に劣る。
A gasket is formed from this fiber in the same manner as in Example 1, and when it is left at a high temperature of 450 Yl for 1 minute, the gasket is greatly deformed and has a shrinkage rate of 2096 in terms of dimensional change rate, which is poor in heat resistance.

Claims (1)

【特許請求の範囲】 1、次式を満足する特性を有する芳香族ポリアミド繊維
を用いてなるガスケット。 Tm≧350℃ Tm−Tex≧30℃ Xc≧10% DE≧10% DSR(Tm)≦15% [DSR(Tm+55℃)]/[DSR(Tm)]≦3
(ここでTmは融点(℃)、Texは発熱開始湿度(℃
)、Xcは結晶化度(%)、DEは伸度(%)、DSR
(Tm)は融点Tmにおける乾熱収縮率(%)、DSR
(Tm+55℃)は融点+55℃における乾熱収縮率(
%)を表わす。)2、芳香族ポリアミド繊維が、アミド
結合の窒素原子および/または炭素原子に直結するフェ
ニレン基のオルソ位に炭素原子1から4の低級アルキル
基、あるいはアミノ基、スルホン基、カルボキシル基、
水酸基から選ばれた官能基、またはハロゲン原子を有す
る芳香族ポリアミドより製造された繊維である事を特徴
とする特許請求範囲第1項記載のガスケット。
[Scope of Claims] 1. A gasket made of aromatic polyamide fiber having characteristics satisfying the following formula. Tm≧350℃ Tm-Tex≧30℃ Xc≧10% DE≧10% DSR(Tm)≦15% [DSR(Tm+55℃)]/[DSR(Tm)]≦3
(Here, Tm is the melting point (℃), Tex is the humidity at which heat generation starts (℃)
), Xc is crystallinity (%), DE is elongation (%), DSR
(Tm) is dry heat shrinkage rate (%) at melting point Tm, DSR
(Tm+55℃) is the dry heat shrinkage rate at the melting point +55℃ (
%). ) 2. The aromatic polyamide fiber has a lower alkyl group having 1 to 4 carbon atoms, or an amino group, a sulfone group, or a carboxyl group, in the ortho position of the phenylene group directly connected to the nitrogen atom and/or carbon atom of the amide bond,
2. The gasket according to claim 1, which is a fiber made of aromatic polyamide having a functional group selected from hydroxyl groups or a halogen atom.
JP14730887A 1987-06-12 1987-06-12 Gasket Pending JPS63312386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14730887A JPS63312386A (en) 1987-06-12 1987-06-12 Gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14730887A JPS63312386A (en) 1987-06-12 1987-06-12 Gasket

Publications (1)

Publication Number Publication Date
JPS63312386A true JPS63312386A (en) 1988-12-20

Family

ID=15427257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14730887A Pending JPS63312386A (en) 1987-06-12 1987-06-12 Gasket

Country Status (1)

Country Link
JP (1) JPS63312386A (en)

Similar Documents

Publication Publication Date Title
US4018735A (en) Anisotropic dopes of aromatic polyamides
WO2007089008A1 (en) Meta-type fully aromatic polyamide fiber having excellent high-temperature processability and method for production thereof
JPH0418044B2 (en)
JPH11508938A (en) Aromatic polyamide, optically anisotropic dope and molded product, and method for producing the same
EP0018523B1 (en) Core-in-sheath type aromatic polyamide fiber and process for producing the same
JPH0532490B2 (en)
JPH11502241A (en) Hydrolysis resistant aramids
JP2004003049A (en) Method for producing compact meta type wholly aromatic polyamide fiber
JP3847515B2 (en) Method for producing dense meta-type aromatic polyamide fiber
JPS63312386A (en) Gasket
JPS6218504B2 (en)
JPS63309641A (en) Blended spun yarn excellent in shape stability at high temperature
JP2971335B2 (en) Method for producing meta-type aromatic polyamide fiber
JP4664794B2 (en) Method for producing meta-type aromatic polyamide fiber
JPS60110918A (en) Aromatic copolyamide fiber
JP6356463B2 (en) Totally aromatic polyamide fiber
JP6321425B2 (en) Totally aromatic polyamide fiber
JPH01111039A (en) Heat resistant flameproof sheet
JP2003342832A (en) Method for producing meta-type wholly aromatic polyamide fiber having excellent shrinkage stability
JPH01139407A (en) Heat resistant belt
JPH03119139A (en) Flameproofing and heat-resistant fabric
JP4563827B2 (en) Method for producing aromatic copolyamide fiber
JPH01139808A (en) Aromatic polyamide fiber with high configuration stability at high temperatures
JPS63165515A (en) Aromatic polyamide copolymer fiber
JPH01110393A (en) Anti-flame comforter